

Multidisciplinary Design Optimization of Low-Airframe-Noise Transport Aircraft

Leifur Leifsson, William Mason, Joseph Schetz, and Bernard Grossman *Virginia Tech* and Raphael Haftka, *University of Florida*

Work sponsored in part by NASA Langley Research Center Phoenix Integrations Inc. provided ModelCenter software

44th AIAA Aerospace Science Meeting and Exhibit, Reno January 9, 2006

Outline

- Introduction
- Research objectives
- Methodology
- MDO formulation
- Design studies
- Conclusions
- Future work

(Source: www.airliners.net)

Aircraft noise is a growing problem

◆ 100% increase in noise related restrictions in the last decade

NASA's goal is to reduce noise by 20 decibels in next 20 years

Aircraft Noise Certification

- Aircraft must be certified by the FAA and ICAO in terms of noise levels
- Certification noise is measured at flyover, sideline, and approach
- ♦ Based on aircraft max *TOGW* and number of engines, the noise level is limited
- Additionally, regulations limit the hours and the number of operations

Research Objectives

- Include aircraft noise in the conceptual design phase
- Design *low-airframe-noise* transport aircraft using MDO
- Quantify change in performance w.r.t. traditionally designed aircraft

Airframe Noise Sources

Design Methodology: Noise as a Design Constraint

MDO Framework

- Aircraft analysis codes previously developed at Virginia Tech
 - High-lift system analysis module was added
- ANOPP used for aircraft noise analysis
- ModelCenter used to integrate the codes
- DOT is the optimizer; Method of Feasible Directions optimization algorithm

ANOPP Overview

- Semi-empirical code
- Uses publicly available noise prediction schemes
- Continuously updated by NASA
- The airframe noise module is component based
- Based on airframe noise models by Fink
- The general approach:

Far-Field Mean Square Acoustic Pressure

$$\langle p^2 \rangle = \frac{\prod}{4 \pi r_s^2} \frac{D(\theta, \phi) F(S)}{(1 - M_\infty \cos \theta)^4}$$

Acoustic Power

 $\Pi = K \left(M_{\infty} \right)^a G$

ANOPP – Acoustic Power of Each Component

Wing Trailing-Edge (Clean wing)

$$\Pi_{\text{Wing TE}} = K_1 \left(M_{\infty} \right)^5 \delta_w$$

- Increment on wing TE noise
- TE noise of LE slat
- Trailing-Edge Flap

 $\Pi_{\text{Flap}} = K_2 \left(M_{\infty} \right)^6 S_f \sin^2 \delta_f$

Landing-Gear

$$\Pi_{\text{Landing gear strut}} = K_3 \left(M_{\infty} \right)^6 dl$$

$$\Pi_{\text{Landing gear wheels}} = K_4 \left(M_{\infty} \right)^6 d^2 n$$

Turbulent BL thickness

$$\int \int \frac{\rho_{\infty} M_{\infty} c_{\infty} S_{w}}{\mu_{\infty} b_{w}} \int^{-0.2}$$

MDO Formulation

- Objective function
 - Min Takeoff Gross Weight
- Design variables (17-22)
 - Geometry
 - Average Cruise Altitude
 - Sea level static thrust
 - Fuel weight
- Constraints (16-17)
 - Geometry
 - Performance
 - Takeoff, Climb, Cruise, Landing
- Parameters
 - Fuselage geometry

High-Lift System Configuration

- High-lift analysis model based on semi-empirical methods by Torenbeek
- Model validated by analyzing a DC-9-30 and comparing with published data

High-Lift Design Limits and Requirements

FAA Design Requirement: $C_{L_{\text{max}}} \ge 1.3^2 C_{L_{app}}$

MDO Formulation for the High-Lift System

MDO DV's: $b_f/2$, E_f **Constraints:** $C_{L_{\max}} \geq 1.3^2 C_{L_{app}}$ $C_{L_{\max}} \leq C_{L_{\max}}$ $\alpha_{app} \leq \alpha_{tailscrape} - \gamma_{glideslope} = 15 \text{ deg}$ $\eta_{f_{*}} \le 0.75$ Flap Deflection: $\min_{0 \le \delta_f \le 30} \left| 1.3^2 C_{L_{app}} - C_{L_{max}} \left(\delta_f \right) \right|$ Side Constraint: $0 \le b_f / 2 \le 80$ ft Parameters: $C_{L_{\text{max limit}}} V_{app} E_{a}$, E_{s}

Limited by ANOPP

Design Studies

- 1. Approach speed study
- 2. TE flap noise reduction
- 3. Airframe noise analysis of cantilever wing vs. SBW

Study 1: Approach Speed Study

Reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large weight penalty

Study 2: TE flap noise reduction

Eliminate TE flaps by increasing S_{ref} and α without incurring significant weight penalty

Thus, eliminating any noise associated with TE flaps

Study 3: Airframe noise analysis of cantilever wing and SBW

SBW shows a significant improvement in weight & performance compared to a cantilever wing

$$\alpha_{app} = 7.7^{\circ}$$
 , $\delta_{\rm f} = 30^{\circ}$

$$\alpha_{app} = 5.8^{\circ}$$
 , $\delta_{\rm f} = 30^{\circ}$

21

Design Parameter	Cantilever Wing	SBW	Difference
TOGW (lb)	601,901	543,066	-9.8%
Fuel Weight (lb)	230,614	196,236	-14.9%
Wing Weight (lb)	90,044	81,492	-9.5%
Aspect Ratio	9.91	11.42	15.2%
L/D at Cruise	21.14	23.54	11.4%
Specific Range (nm/1000 lb fuel)	31.25	37.59	20.3%

SBW has a similar or potentially lower total airframe noise than a cantilever wing aircraft

Component	Cantilever Wing	SBW	Difference
	(EPNdB)	(EPNdB)	(EPNdB)
Main Landing Gear	87.02	85.21	-1.82
LE Slat	87.06	87.02	-0.04
TE Flap	85.54	85.33	-0.21
Nose Landing Gear	76.76	76.76	0.00
Wing TE	74.31	74.41	0.09
Strut	-	67.16	-
Total	91.89	91.27	-0.63

• Main landing gear

- Cantilever with 6 wheels; SBW with 4 wheels and ½ the strut length

Wing strut modeled as wing TE noise

Conclusions

- A methodology for designing *low-airframe-noise* aircraft has been developed and implemented in an MDO framework
- Reducing airframe noise by reducing approach speed alone, will not provide significant noise reduction without a large weight penalty
- Therefore, more dramatic changes to the aircraft design are needed to achieve a significant airframe noise reduction
- Cantilever wing aircraft can be designed with minimal TE flaps without significant penalty in weight and performance
- If slat noise and landing gear noise sources were reduced (this is being pursued), the elimination of the flap will be very significant
- Clean wing noise is the next 'noise barrier'
- SBW aircraft could have a similar or potentially lower total airframe noise compared to cantilever wing aircraft

Future Work

- Important topics
 - Effects of reduced runway length
 - Effects on other noise sources
 - Increased drag at approach => Increased engine noise for same speed
- SBW's and BWB's should be considered in future studies
 - Clean wing noise model by Hosder et al.

