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Aircraft noise is a growing problem

Approach 
Noise 

(EPNdB)

(Data from “Advisory Circular”, DOT, 
FAA, November 2001)

100% increase in noise related restrictions in the last decade

NASA’s goal is to reduce noise by 20 decibels in next 20 years
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Aircraft Noise Certification
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Brake 
Release

Aircraft must be certified by the FAA and ICAO in terms of noise levels

Certification noise is measured at flyover, sideline, and approach

Based on aircraft max TOGW and number of engines, the noise level is limited

Additionally, regulations limit the hours and the number of operations
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Research Objectives

Include aircraft noise in the conceptual design phase

Design low-airframe-noise transport aircraft using MDO

Quantify change in performance w.r.t. traditionally designed aircraft

Airframe Noise Sources
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Design Methodology: Noise as a Design Constraint

Reference 
configuration

Optimize aircraft without 
considering aircraft noise

Aircraft noise analysis of 
reference configuration

Reference 
noise level, refN

NNN refnew ∆≤−Add a noise constraint

Re-optimize the reference 
configuration for a target 

noise reduction

New  configuration 
with       less noiseN∆
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MDO Framework

Optimizer
Aircraft 

Analysis
Noise 

Analysis

ModelCenter

Aircraft analysis codes previously developed at Virginia Tech

– High-lift system analysis module was added

ANOPP used for aircraft noise analysis

ModelCenter used to integrate the codes

DOT is the optimizer; Method of Feasible Directions optimization algorithm
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ANOPP Overview

Semi-empirical code

Uses publicly available noise prediction schemes

Continuously updated by NASA

The airframe noise module is component based

Based on airframe noise models by Fink

The general approach:
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ANOPP – Acoustic Power of Each Component

Wing Trailing-Edge (Clean wing)

Leading-Edge Slat

– Increment on wing TE noise

– TE noise of LE slat

Trailing-Edge Flap
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MDO Formulation
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Objective function
– Min Takeoff Gross Weight

Design variables (17-22)
– Geometry

– Average Cruise Altitude

– Sea level static thrust 

– Fuel weight

Constraints (16-17)
– Geometry 

– Performance 

• Takeoff, Climb, Cruise, 
Landing

Parameters
– Fuselage geometry

b/2

s

Telescoping 
Sleeve Strut

Strut Offset

bfuse
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High-Lift System Configuration
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High-lift analysis model based on semi-empirical methods by Torenbeek

Model validated by analyzing a DC-9-30 and comparing with published data
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High-Lift Design Limits and Requirements
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MDO Formulation for the High-Lift System
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Design Studies

1.  Approach speed study

2.  TE flap noise reduction

3.  Airframe noise analysis of cantilever wing vs. SBW

Cruise - Climb

Climb Descent
Mach = 0.85

Range = 7,730 nm
Payload = 305 pax

Reserve = 500 nm

Warmup
Taxi 

Takeoff

Landing
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Study 1: Approach Speed Study
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Reducing airframe noise by reducing approach speed alone, will not 
provide significant noise reduction without a large weight penalty
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Study 2: TE flap noise reduction
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Eliminate TE flaps by increasing Sref and α without 
incurring significant weight penalty
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Thus, eliminating any noise associated with TE flaps 
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Study 3: Airframe noise analysis of
cantilever wing and SBW 
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SBW shows a significant improvement in weight & 
performance compared to a cantilever wing

Design Parameter Cantilever Wing SBW Difference
TOGW (lb) 601,901 543,066 -9.8%
Fuel Weight (lb) 230,614 196,236 -14.9%
Wing Weight (lb) 90,044 81,492 -9.5%
Aspect Ratio 9.91 11.42 15.2%
L/D at Cruise 21.14 23.54 11.4%
Specific Range (nm/1000 lb fuel) 31.25 37.59 20.3%

oo
app 30  , 7.7 f == δα oo

app 30  , 8.5 f == δα
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SBW has a similar or potentially lower total
airframe noise than a cantilever wing aircraft

Component Cantilever Wing SBW Difference
(EPNdB) (EPNdB) (EPNdB)

Main Landing Gear 87.02 85.21 -1.82
LE Slat 87.06 87.02 -0.04
TE Flap 85.54 85.33 -0.21
Nose Landing Gear 76.76 76.76 0.00
Wing TE 74.31 74.41 0.09
Strut - 67.16 -
Total 91.89 91.27 -0.63

Main landing gear
– Cantilever with 6 wheels; SBW with 4 wheels and ½ the strut length

Wing strut modeled as wing TE noise
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Conclusions

A methodology for designing low-airframe-noise aircraft has been 
developed and implemented in an MDO framework

Reducing airframe noise by reducing approach speed alone, will not 
provide significant noise reduction without a large weight penalty 

Therefore, more dramatic changes to the aircraft design are needed 
to achieve a significant airframe noise reduction

Cantilever wing aircraft can be designed with minimal TE flaps 
without significant penalty in weight and performance

If slat noise and landing gear noise sources were reduced (this is 
being pursued), the elimination of the flap will be very significant

Clean wing noise is the next ‘noise barrier’

SBW aircraft could have a similar or potentially lower total airframe 
noise compared to cantilever wing aircraft
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Future Work

Important topics
– Effects of reduced runway length

– Effects on other noise sources
• Increased drag at approach => Increased engine noise for same speed

SBW’s and BWB’s should be considered in future studies
– Clean wing noise model by Hosder et al.
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