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Goddard Problem

➤ Posed by R.H. Goddard, “A

Method of Reaching Extreme

Altitudes”, Smithsonian Inst.

Misc. Coll. 71, 1919, reprinted

by Am. Rocket Soc., 1946.
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➤ Three state variables

r : distance from Earth’s center

v : radial velocity

m : rocket’s mass

➤ One control variable β : mass

flow-rate
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➤ The dynamical model

ṙ = v

v̇ =
β c

m
−
D(r, v)

m
−
µ

r2

ṁ = −β

with β ∈ [0, βmax].
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➤ The initial conditions are:

r(0) = Re Earth’s radius

v(0) = 0 start from rest

m(0) = M0 initial mass

➤ The (only) specified

end-condition is

θ1(~x(tf)) = m(tf)−Mf
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where Mf < M0 is the mass

with all fuel expended

➤ The cost functional is

g(r(tf), v(tf),m(tf)) = −r(tf) ,

that is, we maximize the final

altitude.
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Nondimensional Form

➤ It’s convenient to

nondimenionalize. We select

M : M0 unit mass

L : Re unit length

T :
√
R3
e/µ unit time
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Note that this leads to√
µ/Re : unit speed

M0µ/R
2
e : unit force

➤ The scaled dynamical model

˙̃r = ṽ

˙̃v =
β̃ c̃

m̃
−
D̃(r̃, ṽ)

m̃
−

1

r̃2

˙̃m = −β̃
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with β̃ ∈ [0, β̃max], where, for

example,

r̃ = r/Re

➤ In the following we drop the˜

and note that all quantities have

been non-dimensionalized.
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Applying the M.P.

➤ We form the variational



AOE 5244 - E.M. Cliff 10'

&

$

%

Hamiltonian

Ha = λr v

+ λv

[
β c

m
−
D(r, v)

m
−

1

r2

]
− λm β

➤ The adjoint differential
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equations are

λ̇r = λv

[
1

m

∂ D

∂ r
−

2

r3

]
λ̇v = −λr +

λv

m

∂ D

∂ v

λ̇m =
λv

m2
[βc−D(r, v)] .

➤ The terminal transversality
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conditions imply

H(tf) = 0

λr(tf) = λ0

λv(tf) = 0

λm(tf) = ν1

Note that H is constant along

an extremal path.
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Applying the M. P.

minH

➤ We are to minimize the

variational Hamiltonian H

subject to the bounds.

➤ Observe that H can be written
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as

H =

[
λv c

m
− λm

]
β

+ terms independent of β

Use the symbol S for the terms

in square brackets

➤ For the mass flow-rate β we find
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three possibilities

β∗ =


0 if S > 0

βmax S < 0

singular S = 0

The singular case arises only if

S(·) vanishes on an arc of finite

width.
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➤ Since m is positive we can

multiply S by m without

changing the conclusions. Hence

we re-define

S = [λv c − λmm]
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Singular Control

➤ For S to stay constant at zero

we require Ṡ = 0 and this leads

to

Ṡ = λ̇v c− λ̇mm− λmṁ

➤ Substituting the appropriate
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state/adjoint differential

equations this simplifies to

Ṡ =
λv

m

[
D + c

∂ D

∂ v

]
− λrc

Note that the β terms have

cancelled out.

➤ We could take a second

time-derivative and insist that
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S̈ = 0. Equivalently, observe

that the three conditions

H = 0

S = 0

Ṡ = 0

are three linear homogeneous

equations in the adjoint
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variables λr, λv, λm. Since the

adjoints can not all vanish

simultaneously, this implies that

the determinant must be zero.

That is,

v

[
D + c

∂ D

∂ v

]
− c

[
D +

m

r2

]
= 0
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➤ Since this involves only state

variables it’s somewhat simpler

than Ṡ. Setting the

time-derivative of this

expression to zero will lead to

an expression for the singular

control β. It is still somewhat

messy.
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➤ In general, the control will

appear first in an even

time-derivative of the switching

function. If the control appears

first in the 2q-th time-derivative

of S, we say the singular arc is of

order q. The Goddard problem

has a first order singular arc.


