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Goddard Problem

Posed by R.H. Goddard, “A
Method of Reaching Extreme
Altitudes”, Smithsonian Inst.
Misc. Coll. 71, 1919, reprinted
by Am. Rocket Soc., 1946.
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Three state variables

r : distance from Earth’s center
v : radial velocity

m : rocket’s mass

One control variable 3 : mass

How-rate
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The dynamical model

T = v
. Bc D(’P,”U) 12
Y —

m m 72
m = —0

with 8 € [0, Bmax]-
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The 1nitial conditions are:

r(0) = R. Earth’s radius
v(0) = O start from rest

m(0) = M, initial mass

The (only) specified

end-condition 1s

0.(Z(ty)) = m(ty) — My

-
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/ where M < My is the mass O
with all fuel expended

The cost functional is

g(r(ts),v(ty), m(ty)) = —r(ty),
that is, we maximize the final

altitude.
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Nondimensional Form

It’s convenient to

nondimenionalize. We select

M : M,y unit mass
L : R, unit length
T : \/Rg/u unit time

~
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/ Note that this leads to

v/ it/R. : unit speed
Mop/R? : unit force

The scaled dynamical model

ro=

v

. B¢ D(Fo) 1
VvV —

m~

 m=-F
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with 3 € 0, ,émax], where, for

example,
r=1/R,

In the following we drop the ™
and note that all quantities have

been non-dimensionalized.

/
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Applying the M.P.

We form the variational
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Hamiltonian
H? =)\, v
) D ;-
1A, Bc (’I“, ’U)
m m r?

The adjoint differential

10
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equations are

: 10 D 2
Ar = Ay

m or rs
: A, O D
Afv = —Ap

m Ov

: )
Am = 2 Bc — D(r,v)].

The terminal transversality

/
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4 conditions imply
H(tf) = 0
Ar(tr) = o
As(ty) = 0
An(ty) = 11

Note that H is constant along

an extremal path.

/
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Applying the M. P.

min H

We are to minimize the
variational Hamiltonian H

subject to the bounds.

Observe that H can be written

~
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aS

‘A, C _

m

+ terms independent of G

Use the symbol S for the terms

in square brackets

For the mass flow-rate 3 we find

/
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three possibilities

0 if S >0
B = q Bmax S <0

singular S =0

The singular case arises only if

S(-) vanishes on an arc of finite

width.

/
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Since m is positive we can
multiply S by m without
changing the conclusions. Hence

we re-define

S=[Ac — \p,m]
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Singular Control

For S to stay constant at zero

we require S = 0 and this leads

to
S:).\vc—).\mm—)\mm

Substituting the appropriate

~

/
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state/adjoint differential

equations this simplifies to
: Ao | OD]
S=—1|D+c A\C

m Ov |

Note that the 3 terms have

cancelled out.

We could take a second

\ time-derivative and insist that

~

/
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S =0. Equivalently, observe
that the three conditions

H = 0
S = 0
S = 0

are three linear homogeneous

equations in the adjoint

\_

/
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variables A,., A\,, A\,,. Since the
adjoints can not all vanish
simultaneously, this implies that

the determinant must be zero.

That is,
_D n O D] ) m |
v C

O v 72

20



AOE 5244 - E.M. Cliff

-~

-

Since this involves only state
variables it’s somewhat simpler
than S. Setting the
time-derivative of this
expression to zero will lead to
an expression for the singular
control 3. It is still somewhat

messy.

~
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In general, the control will N
appear first in an even

time-derivative of the switching
function. If the control appears
first in the 2g-th time-derivative

of S, we say the singular arc is of

order q. The (Goddard problem

has a first order singular arc.

/
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