Goddard Problem

> Posed by R.H. Goddard, "A Method of Reaching Extreme Altitudes", Smithsonian Inst. Misc. Coll. 71, 1919, reprinted by Am. Rocket Soc., 1946.
> Three state variables
r : distance from Earth's center
v : radial velocity
m : rocket's mass
$>$ One control variable β : mass flow-rate

- The dynamical model

$$
\begin{aligned}
\dot{r} & =v \\
\dot{v} & =\frac{\beta c}{m}-\frac{D(r, v)}{m}-\frac{\mu}{r^{2}} \\
\dot{m} & =-\beta \\
\text { with } \beta & \in\left[0, \beta_{\max }\right] .
\end{aligned}
$$

$>$ The initial conditions are:
$r(0)=R_{e}$ Earth's radius
$v(0)=0$ start from rest $m(0)=M_{0}$ initial mass
> The (only) specified end-condition is

$$
\theta_{1}\left(\vec{x}\left(t_{f}\right)\right)=m\left(t_{f}\right)-M_{f}
$$

where $M_{f}<M_{0}$ is the mass with all fuel expended

> The cost functional is

$$
g\left(r\left(t_{f}\right), v\left(t_{f}\right), m\left(t_{f}\right)\right)=-r\left(t_{f}\right)
$$

that is, we maximize the final altitude.

Nondimensional Form

- It's convenient to nondimenionalize. We select
$M: M_{0}$ unit mass
$L: R_{e}$ unit length
$T: \sqrt{R_{e}^{3} / \mu}$ unit time

Note that this leads to

$$
\begin{aligned}
\sqrt{\mu / R_{e}} & : \text { unit speed } \\
M_{0} \mu / R_{e}^{2} & : \text { unit force }
\end{aligned}
$$

- The scaled dynamical model

$$
\begin{aligned}
& \dot{\tilde{r}}=\tilde{v^{*}} \\
& \dot{\tilde{\boldsymbol{\beta}}} \tilde{c} \\
& \dot{\tilde{m}}=\frac{\tilde{D}(\tilde{r}, \tilde{v})}{\tilde{m}}-\frac{1}{\tilde{r}^{2}} \\
& \dot{\tilde{\beta}}
\end{aligned}
$$

with $\tilde{\boldsymbol{\beta}} \in\left[0, \tilde{\boldsymbol{\beta}}_{\text {max }}\right]$, where, for example,

$$
\tilde{r}=r / \boldsymbol{R}_{e}
$$

$>$ In the following we drop the ${ }^{\sim}$ and note that all quantities have been non-dimensionalized.

Applying the M.P.

$>$ We form the variational

Hamiltonian

$$
\begin{aligned}
H^{a}= & \lambda_{r} v \\
& +\lambda_{v}\left[\frac{\beta c}{m}-\frac{D(r, v)}{m}-\frac{1}{r^{2}}\right] \\
& -\lambda_{m} \beta
\end{aligned}
$$

- The adjoint differential

equations are

$$
\begin{aligned}
\dot{\lambda}_{r} & =\lambda_{v}\left[\frac{1}{m} \frac{\partial D}{\partial r}-\frac{2}{r^{3}}\right] \\
\dot{\lambda}_{v} & =-\lambda_{r}+\frac{\lambda_{v}}{m} \frac{\partial D}{\partial v} \\
\dot{\lambda}_{m} & =\frac{\lambda_{v}}{m^{2}}[\beta c-D(r, v)]
\end{aligned}
$$

> The terminal transversality

conditions imply

$$
\begin{aligned}
\boldsymbol{H}\left(\boldsymbol{t}_{f}\right) & =0 \\
\boldsymbol{\lambda}_{r}\left(\boldsymbol{t}_{f}\right) & =\boldsymbol{\lambda}_{0} \\
\boldsymbol{\lambda}_{v}\left(\boldsymbol{t}_{f}\right) & =0 \\
\boldsymbol{\lambda}_{m}\left(\boldsymbol{t}_{f}\right) & =\nu_{1}
\end{aligned}
$$

Note that \boldsymbol{H} is constant along an extremal path.

Applying the M. P. $\min H$

$>$ We are to minimize the variational Hamiltonian \boldsymbol{H} subject to the bounds.
$>$ Observe that H can be written

as

$$
\begin{aligned}
H= & {\left[\frac{\lambda_{v} c}{m}-\lambda_{m}\right] \beta } \\
& + \text { terms independent of } \beta
\end{aligned}
$$

Use the symbol S for the terms
in square brackets
$>$ For the mass flow-rate β we find

three possibilities

$$
\beta^{*}= \begin{cases}0 & \text { if } S>0 \\ \boldsymbol{\beta}_{\max } & S<0 \\ \text { singular } & S=0\end{cases}
$$

The singular case arises only if
$S(\cdot)$ vanishes on an arc of finite width.

- Since m is positive we can
multiply S by m without changing the conclusions. Hence we re-define

$$
S=\left[\lambda_{v} c-\lambda_{m} m\right]
$$

Singular Control

$>$ For S to stay constant at zero we require $\dot{S}=0$ and this leads to

$$
\dot{S}=\dot{\lambda}_{v} c-\dot{\lambda}_{m} m-\lambda_{m} \dot{m}
$$

> Substituting the appropriate

state/adjoint differential

 equations this simplifies to$$
\dot{S}=\frac{\lambda_{v}}{m}\left[D+c \frac{\partial D}{\partial v}\right]-\lambda_{r} c
$$

Note that the β terms have cancelled out.
$>$ We could take a second time-derivative and insist that

$\ddot{S}=0$. Equivalently, observe that the three conditions

$$
\begin{aligned}
H & =0 \\
S & =0 \\
\dot{S} & =0
\end{aligned}
$$

are three linear homogeneous
equations in the adjoint
variables $\lambda_{r}, \lambda_{v}, \lambda_{m}$. Since the adjoints can not all vanish simultaneously, this implies that the determinant must be zero. That is,
$v\left[D+c \frac{\partial D}{\partial v}\right]-c\left[D+\frac{m}{r^{2}}\right]=0$
$>$ Since this involves only state variables it's somewhat simpler than \dot{S}. Setting the time-derivative of this expression to zero will lead to an expression for the singular control β. It is still somewhat messy.
$>$ In general, the control will appear first in an even time-derivative of the switching function. If the control appears first in the $2 q$-th time-derivative of S, we say the singular arc is of order q. The Goddard problem has a first order singular arc.

