

# **Design Report Ballistic Missile Defense Cruiser** (CGX/BMD)

VT Total Ship Systems Engineering



CGX/BMD Variant 13 Ocean Engineering Design Project AOE 4065/4066 Fall 2007 – Spring 2008 Virginia Tech Team 2

|                  | Andrew & Bloken       |       |
|------------------|-----------------------|-------|
| Andrew Bloxom    | Alloward Dialo        | 27032 |
| David Donnelly   |                       | 25361 |
| Carrie Gonsoulin | _ Carried Donsonline_ | 25264 |
| Kevin Loyer      | Lemm Rempell Tog-     | 27673 |
| Joseph Schaffer  | Joseph John /         | 25691 |
| Brian Scott      | - Ben put             | 23686 |

#### **Executive Summary**



Lunnann 221.25 m. 208 m. 196 m. 184 m. 172 m. 180 m. 142 m. <sup>1421849</sup>.132 m. 112 m. 98 m. 78 m. 68 m.<sup>1421849</sup>.54 m. 44 m. 28 m. 18 m. 8 m. 0 m. Ap

This report describes the Concept Exploration and Development of a Ballistic Missile Defense (BMD) Cruiser (CGX) for the United States Navy. This concept design was completed in a twosemester ship design course at Virginia Tech.

The CGX/BMD requirement is based on the CGX Initial Capabilities Document (ICD) and Virginia Tech CGX Acquisition Decision Memorandum (ADM), Appendix A and Appendix B.

Concept Exploration trade-off studies and design space exploration are accomplished using a Multi-Objective Genetic Optimization (MOGO) after significant technology research and definition. Objective attributes for this optimization are cost, risk (technology, cost, schedule and performance) and military effectiveness. The product of this optimization is a series of cost-risk-effectiveness frontiers which are used to select alternative designs and define a Capability Development Document (CDD) based on the customer's preference for cost, risk and effectiveness.

CGX/BMD variant 13 is a low to medium risk, high cost, and very high effectiveness alternative on the non-dominated frontier.

CGX/BMD will address the need for a new Aegis-type ship with more capable core systems and modular systems similar to DDG-1000, with particular emphasis on providing robust ICBM defense. CGX/BMD will have the ability to operate forward deployed to conduct BMD operations from advantageous locations at sea that are inaccessible to ground-based systems. CGX/BMD will employ large, powerful, phased-array radar, and a large battery of SM-3's and KEI's to defend a large down-range territory against potential attack by ballistic missiles.

CGX/BMD has a hybrid flare-tumblehome hullform to balance between seakeeping capability and reduced radar cross section. Its large installed power plant and IPS will enable CGX/BMD to adapt to changing mission conditions and provide flexibility for future growth.

Concept Development included hull form development and analysis for intact and damage stability, structural finite element analysis, propulsion and power system development and arrangement, general arrangements, machinery arrangements, combat system definition and arrangement, seakeeping analysis, cost and producibility analysis and risk analysis. The final concept design satisfies critical operational requirements in the CDD within cost and risk constraints.

#### **Ship Characteristics**

| Parameter                  | Value                                                                                                                     |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Hull                       | Hybrid flare-tumblehome                                                                                                   |  |
| LWL                        | 221.4 m                                                                                                                   |  |
| Beam                       | 23.5 m                                                                                                                    |  |
| Depth                      | 16.0 m                                                                                                                    |  |
| Draft                      | 7.6 m                                                                                                                     |  |
| Ср                         | 0.678                                                                                                                     |  |
| Сх                         | 0.871                                                                                                                     |  |
| Full Load Displacement     | 24,940 MTON                                                                                                               |  |
| Power and Propulsion       | Full IPS<br>2 pods FPP, PMM<br>4x 36MW MT30 marine turbines<br>2x 5.1MW CAT 3616 diesels<br>2X 5MW PEM fuel cells EMR PWR |  |
| Total Installed Power      | 155.2 MW                                                                                                                  |  |
| Sustained Speed            | 32.7 knots                                                                                                                |  |
| Endurance Speed            | 20 knots                                                                                                                  |  |
| Endurance Range            | 8007 nm                                                                                                                   |  |
| CPS                        | Full                                                                                                                      |  |
| Vulnerability (Material)   | Steel                                                                                                                     |  |
| Ballast/fuel system        | Clean, separate ballast tanks                                                                                             |  |
| Total Manning              | 452 (31 officers, 35 CPO, 386 enlisted)                                                                                   |  |
| AAW/BMD/STK                | SPY-3/VSR+++ DBR, IRST, AEGIS<br>BMD 2014 Combat System, CIFF-SD,<br>SLQ/32(R) improved, MK36 SRBOC<br>with NULKA         |  |
| ASUW/NSFS                  | 1xMK45 5"/62 gun, SPS-73, Small<br>Arms, TISS, FLIR, GFCS, 2x7m RHIB,<br>MK46 Mod2 3x CIGS                                |  |
| ASW/MCM                    | Dual Frequency Bow Array, ISUW,<br>NIXIE, 2xSVTT, mine-avoidance sonar                                                    |  |
| CCC                        | Enhanced CCC                                                                                                              |  |
| LAMPS                      | 2 x Embarked LAMPS w/Hangar,<br>2xVTUAV                                                                                   |  |
| SDS                        | SLQ-32(V) 3, SRBOC, NULKA, ESSM                                                                                           |  |
| GMLS                       | 160 cells MK57, 8 cells KEI                                                                                               |  |
| OMOE (Effectiveness)       | 0.852                                                                                                                     |  |
| OMOR (Risk)                | 0.286                                                                                                                     |  |
| Lead Ship Acquisition Cost | \$4.454 Billion                                                                                                           |  |
| Avg. Follow Ship Acq. Cost | \$3.676 Billion                                                                                                           |  |
| Avg. Ship Acq. Cost        | \$3.650 Billion                                                                                                           |  |

## **Table of Contents**

| EXECUTIVE SUMMARY |                   |                                                                |          |
|-------------------|-------------------|----------------------------------------------------------------|----------|
| TA                | TABLE OF CONTENTS |                                                                |          |
| 1                 | INT               | TRODUCTION, DESIGN PROCESS AND PLAN                            | 5        |
|                   | 1.1               | INTRODUCTION                                                   | 5        |
|                   | 1.2               | DESIGN PHILOSOPHY, PROCESS, AND PLAN                           | 5        |
|                   | 1.3               | Work Breakdown                                                 | 7        |
|                   | 1.4               | RESOURCES                                                      | 7        |
| 2                 | MIS               | ISSION DEFINITION                                              | 8        |
|                   | 2.1               | CONCEPT OF OPERATIONS                                          | 8        |
|                   | 2.2               | PROJECTED OPERATIONAL ENVIRONMENT (POE) AND THREAT             | 8        |
|                   | 2.3               | SPECIFIC OPERATIONS AND MISSIONS                               | 9        |
|                   | 2.4               | MISSION SCENARIOS                                              | 9        |
|                   | 2.5               | REQUIRED OPERATIONAL CAPABILITIES                              | 9        |
| 3                 | CO                | DNCEPT EXPLORATION                                             | 12       |
|                   | 3.1               | TRADE-OFF STUDIES, TECHNOLOGIES, CONCEPTS AND DESIGN VARIABLES |          |
|                   | 3.1               | 1.1 Hull Form Alternatives                                     |          |
|                   | 3.1               | 1.2 Propulsion and Electrical Machinery Alternatives           |          |
|                   | 3.1               | 1.3 Automation and Manning Parameters                          |          |
|                   | 3.1               | 1.4 Combat System Alternatives                                 |          |
|                   | 3.Z               | DESIGN SPACE                                                   |          |
|                   | 2.2<br>2.1        | SHIP SYNTHESIS MODEL                                           |          |
|                   | 3.4<br>3.1        | OBJECTIVE ATTRIBUTES                                           |          |
|                   | 34                | 4.7 Overall Measure of Ejsectiveness (OMOE)                    |          |
|                   | 34                | 4.2 Overall measure of Risk (OMOR)                             |          |
|                   | 3.5               | MULTI-OBJECTIVE GENETIC OPTIMIZATION                           |          |
|                   | 3.6               | MULTI-OBJECTIVE GENETIC OPTIMIZATION RESULTS                   |          |
|                   | 3.7               | MOGO BASELINE CONCEPT DESIGN                                   |          |
|                   | 3.8               | SINGLE OBJECTIVE RE-OPTIMIZATION                               |          |
|                   | 3.9               | DESIGN 13I FEASIBILITY STUDY IN ASSET                          |          |
| 4                 | CO                | DNCEPT DEVELOPMENT (FEASIBILITY STUDY)                         | 47       |
|                   | 4.1               | PRELIMINARY ARRANGEMENT (CARTOON)                              | 47       |
|                   | 4.2               | HULL FORM AND DECK HOUSE                                       | 47       |
|                   | 4.2               | 2.1 Hullform                                                   | 47       |
|                   | 4.2               | 2.2 Deck House                                                 |          |
|                   | 4.3               | STRUCTURAL DESIGN AND ANALYSIS                                 |          |
|                   | 4.3               | 3.1 Geometry, Components and Materials                         |          |
|                   | 4.3               | 3.2 Loads                                                      |          |
|                   | 4.5               | 5.5 Adequacy                                                   |          |
|                   | 4.4               | POWER AND PROPULSION                                           |          |
|                   | 4.4               | 4.1 Resistance                                                 |          |
|                   | 4.4<br>1 1        | <ul> <li>4.3 Fleetric Load Analysis (FLA)</li> </ul>           | 01 62    |
|                   | 4.4<br>4 4        | 4.4 Fuel Calculation                                           | 02<br>67 |
|                   | 4.5               | MECHANICAL AND ELECTRICAL SYSTEMS                              |          |
|                   | 4.5               | 5.1 Integrated Power System (IPS)                              |          |
|                   | 4.5               | 5.2 Service and Auxiliary Systems                              |          |
|                   | 4.5               | 5.3 Ship Service Electrical Distribution                       |          |
|                   | 4.6               | MANNING                                                        |          |
|                   | 4.7               | SPACE AND ARRANGEMENTS                                         |          |

|    | 4.7.1           | Volume                                                        | 66  |
|----|-----------------|---------------------------------------------------------------|-----|
|    | 4.7.2           | Main and Auxiliary Machinery Spaces and Machinery Arrangement | 67  |
|    | 4.7.3           | Internal Arrangements                                         | 74  |
|    | 4.7.4           | Living Arrangements                                           | 77  |
|    | 4.7.5           | External Arrangements                                         |     |
|    | 4.8 WEIGH       | ITS AND LOADING                                               | 80  |
|    | 4.8.1           | Weights                                                       | 80  |
|    | 4.8.2           | Loading Conditions                                            | 80  |
|    | 4.9 Hydro       | OSTATICS AND STABILITY                                        |     |
|    | 4.9.1           | Intact Stability                                              |     |
|    | 4.9.2           | Damage Stability                                              |     |
|    | 4.10 COST A     | AND RISK ANALYSIS                                             |     |
|    | 4.10.1          | Cost and Producibility                                        |     |
|    | 4.10.2          | Risk Analysis                                                 |     |
| 5  | CONCLUSI        | ONS AND FUTURE WORK                                           |     |
|    | 5.1 Assess      | SMENT                                                         |     |
|    | 5.2 FUTUR       | e Work                                                        |     |
|    | 5.3 CONCL       |                                                               |     |
| RI | EFERENCES       |                                                               |     |
|    |                 |                                                               |     |
| AI | PPENDIX A – IN  | ITIAL CAPABILITIES DOCUMENT (ICD)                             | 90  |
| AI | PPENDIX B- AC   | QUISITION DECISION MEMORANDUM (ADM)                           | 94  |
| AI | PPENDIX C-PAI   | RWISE COMPARISON RESULTS                                      |     |
|    |                 |                                                               |     |
| AI | PPENDIX D-CDI   | )                                                             |     |
| AI | PPENDIX E-ME    | L                                                             | 105 |
| AI | PPENDIX F-SSC   | S                                                             |     |
| AI | PPENDIX G – W   | EIGHTS AND CENTERS                                            |     |
| AI | PPENDIX H – BA  | SIC RESISTANCE MATHCAD FILE                                   |     |
| AI | PPENDIX I – PRO | OP SELECTION, ENGINE MATCH AND FUEL CALCULATION MATHCAD FILE  |     |
|    |                 |                                                               |     |
| AI | PPENDIX J – SIN | IPLIEFIED COST MODEL MATHCAD FILE                             |     |

## 1 Introduction, Design Process and Plan

#### 1.1 Introduction

This report describes the concept exploration and development of a Ballistic Missile Defense Cruiser (CGX/BMD) for the United States Navy. The CGX/BMD requirement is based on the CGX/BMD Initial Capabilities Document (ICD), and Virginia Tech CGX/BMD Acquisition Decision Memorandum (ADM), Appendix A and Appendix B respectively. This concept design was completed in a two-semester ship design course at Virginia Tech. CGX/BMD must perform the following primary missions:

- Ballistic Missile Defense (BMD)
- Carrier Battle Group (CBG) Anti-Air Warfare (AAW) and escort

CGX/BMD will be capable of intercepting ballistic missile warheads in boost, early ascent, and mid-course of the flight via SM-3's and/or Kinetic Energy Interceptor's (KEIs). It will use a large, powerful, Dual Band Radar (DBR) array. DBR is a phased-array radar system consisting of AN/SPY 3 and the Volume Search Radar (VSR). It gives the ability to detect objects, from ballistic missiles to periscopes, at long range with high accuracy, supporting the Ballistic Missile Defense mission while requiring little maintenance.

CGX/BMD is to be deployed for missions up to seventy-five days in length in regions that pose a strategic threat to the United States, including open ocean and littoral waters both shallow and deep. It will operate in all-weather conditions with dense contacts and threats with complicated targeting. CGX/BMD shall have a minimum endurance range of 5000 nautical miles at 20 knots, a minimum sustained speed at 30 knots, carry at least 96 mixed missiles and use SPY-3 X/S-band and Volume Search (VSR) radars.

Ship options should consider a new CGX/BMD ship with limited multi-mission capability to a fully multimission ship with extensive BMD capability and maximum DDG-1000 commonality. The design must minimize personnel vulnerability in combat through automation. Average follow-ship acquisition cost shall not exceed \$3.7B (\$FY2012) with a lead ship acquisition cost less than \$5.3B. It is expected that 18 ships of this type will be built with IOC in 2018.

The concepts introduced in the CGX/BMD may include medium to high-risk alternatives.

#### 1.2 Design Philosophy, Process, and Plan

The traditional approach to ship design is largely an 'ad hoc' process. Experience, design lanes, rules of thumb, preference, and imagination guide the selection of design components for assessment. Often, objective attributes are not adequately synthesized or presented to support efficient and effective decisions. This project uses a total systems approach for the design process, including a structured search of the design space based on multi-objective consideration of effectiveness, cost, and risk.

Most naval ships go through five stages of design processes, taking a total of 15 to 20 years to complete. In this Virginia Tech design project, only two are performed: concept exploration and concept development. Concept exploration considers past ships and new developments in technology. The CGX/BMD may be closely related to the DDG-1000 and a modified-repeat DDG-1000 is considered. Concept exploration generates a baseline concept design and is the focus of the first semester of the ship design course at Virginia Tech. The second semester is spent maturing the baseline design in concept development. Figure 1 shows the design process.



Figure 1 – Design Process

Concept and requirements exploration and concept development are the main focus of this project. Figure 2 shows the concept exploration process that is used. The process involves constructing a design space of design variables and then searching that design space for the "best designs" in terms of cost, effectiveness and risk. The results are the selection of a baseline design, a Capability Development Document (CDD), and a selection of technology.



**Figure 2 – Concept Exploration** 

Figure 2 shows the process that begins by identifying a need that must be fulfilled, specified in an Initial Capabilities Document (ICD). Based on the ICD, an Acquisition Decision Memorandum (ADM) directs that concept exploration should be performed, and specifies the general requirements that need to be met by a design. Models, incorporating many components, are then constructed to balance and assess design options in the design space. These include a ship synthesis model, a risk model based on the ICD and ADM, and a cost model that considers possible production strategies. Past data and expert opinion are also used to develop the models. Physics-based models are used when parametric models are inadequate. There are uncertainties associated with a fully modeled design space.

The fully-modeled design space is then searched using a genetic algorithm to find designs with the best possible effectiveness for a given cost and risk. The result of optimization is a non-dominated frontier, which is then used to pick one to three baseline designs. Based on these baseline designs, a CDD is created and development of technology for the design is begun, at which point concept development begins.

Figure 3 shows the more traditional feasibility study design spiral process that is used in concept development for this project. The feasibility study investigates each step in the spiral at a level of detail necessary to demonstrate that assumptions and results obtained are both balanced and feasible. During this process, a second layer of detail is added to the design and risk is reduced.



Figure 3 – Concept Development Design Spiral

## 1.3 Work Breakdown

CGX/BMD Team 2 consists of six students from Virginia Tech. Table 1 lists areas of work assigned to each team member according to his or her interests and special skills. A team leader is assigned to assure the team efficiently coordinates its efforts and maximizes the overall understanding to create an integrated ship design. Each team member is responsible for an area of specialization based on a great level of understanding of that particular area. However, specializations do overlap to guarantee integration.

| Name                       | Specialization                                        |
|----------------------------|-------------------------------------------------------|
| Joe Schaffer (Team Leader) | Hullform, Propulsion, Rhino, ASSET                    |
| Carrie Gonsoulin           | General Arrangements, Combat Systems                  |
| Brian Scott                | Producibility, Machinery Arrangements and Electrical  |
|                            | Loads, Manning, ASSET                                 |
| Dave Donnelly              | Structures, Manuevering and Seakeeping                |
| Andrew Bloxom              | Hullform, Tankage and Subdivision, Weights, Stability |
|                            | and Trim, Manuevering and Seakeeping                  |
| Kevin Loyer                | Resistance and Propulsion, Cost and Risk              |

| Table 1 - | Work Breakdown |
|-----------|----------------|
|-----------|----------------|

## 1.4 Resources

Table 2 lists computational and modeling tools used in this project. When using computer software, a great deal of time is spent learning the theory behind the inputs and outputs of each program to better understand the results. Approximate order of magnitude calculations were also performed by hand to validate computer-aided results.

| Table 2 - Tools           |                              |  |  |
|---------------------------|------------------------------|--|--|
| Analysis Software Package |                              |  |  |
| Arrangement Drawings      | Rhino                        |  |  |
| Hullform Development      | Rhino, ASSET                 |  |  |
| Hydrostatics              | Rhino, HECSALV               |  |  |
| Resistance/Power          | MathCAD                      |  |  |
| Ship Motions              | SMP                          |  |  |
| Ship Synthesis Model      | MathCad, Model Center, ASSET |  |  |
| Structure Model           | MAESTRO                      |  |  |

#### 2 Mission Definition

The CGX/BMD requirement is based on the CGX/BMD Initial Capabilities Document (ICD), and Virginia Tech CGX/BMD Acquisition Decision Memorandum (ADM), Appendix A and Appendix B with elaboration and clarification obtained by discussion and correspondence with the customer, and reference to pertinent documents and web sites referenced in the following sections.

#### 2.1 Concept of Operations

The CGX concept of operations is based on the Initial Capabilities Document and the Acquisition Decision Memorandum for a Ballistic Missile Defense Cruiser that will have the ability to conduct BMD operations from advantageous locations at sea. It must have the ability to operate in forward locations in international waters and readily move to new maritime locations as needed. It must be able to operate over the horizon from observers ashore, and evade detection and targeting by enemy forces. It also must be able to move to locations that lie along a ballistic missile's potential flight path to facilitate tracking and intercepting the attacking missile, or move to locations to permit the CGX/BMD radar to view a ballistic missile from a different angle to allow the CGX systems to track the attacking missile more effectively.

CGX/BMD must be capable of defending a large down-range territory against potential attack by ballistic missiles. It will use very fast interceptors to intercept ballistic missiles fired from launchers during the boost phase and mid-flight. CGX/BMD must be equipped with high-altitude long-range search and track radar capable of detecting and establishing precise tracking information on ballistic missiles, discriminating missile warheads from decoys and debris, providing data for updating ground-based interceptors in flight, and assessing the results of intercept attempts.

CGX/BMD radar will be a large, powerful, phased-array radar operating in the X and S band frequencies. The X-band frequency is necessary for tracking missile warheads with high accuracy. To intercept the ballistic missile warheads in boost, early ascent, and mid-course of the flight, SM-3's and Kinetic Energy Interceptor's (KEIs) will be considered for the CGX/BMD weapons payload.

Additionally, the CGX/BMD will perform Carrier Battle Group (CBG) and Expeditionary Readiness Group (ERG) escort, providing area Anti-Air Warfare (AAW) defense and limited Anti-Submarine Warfare (ASW) and Anti-Surface Warfare (ASUW) defense in support of these units. The CGX/BMD will also perform Tomahawk Land Attack Missile (TLAM) strikes in conjunction with the CBG, ERG, Surface Action Group (SAG) or operating independently.

#### 2.2 Projected Operational Environment (POE) and Threat

The current threat to the United States involves the acquisition and intent to use missiles capable of medium to long range flight against the U.S. and its allies by powers who wish to inflict large damage with nuclear, biological, or chemical attacks. The advances in technology since the Cold War have made the acquisition of such missiles within the hands of hostile states or terrorist actors who do not require the same quality or quantity of U.S. missile arsenals. Lower quality missiles capable of devastating strikes could be bought, reverse-engineered, or stolen by these hostiles, within a time scale that leaves the U.S. with little to no warning of an impending attack. For this reason, a BMD ship with the ability to detect and track Intercontinental Ballistic Missiles (ICBM) and Intermediate Range Ballistic Missiles (IRBM) from the boost phase of flight is important.

To successfully detect and track such a launch from the early stages requires the strategic positioning of the CGX/BMD. The ability to stealthily enter foreign waters without permission to achieve the best vantage point from which to conduct surveillance and reconnaissance operations is critical. The best vantage point for this lies in geographically constrained (littoral) bodies of water. Due to this, the tactical defense strategy will be at a smaller scale than that of open ocean warfare. A wider array of threats will evolve including: (1) highly advanced weapons – cruise missiles, fast surface gunboats, diesel submarines, and land launched attack aircraft; and (2) less sophisticated weapons including mines, chemical and biological weapons, shore gunfire, and improvised explosives like that seen in the attack on the USS Cole.

The littoral environment will be densely crowded with contacts, commercial, personal, and hostile. The radar picture will be severely affected resulting and complicated targeting of close in surface threats and reduced effectiveness in the critical BMD mission. The CGX/BMD will perform in all weather, shallow and deep water, and maintain survivability through sea state 9.

## 2.3 Specific Operations and Missions

The CGX will perform tasks consistent with the BMD mission, working to prevent strikes against the U.S. and its allies. At other times, it will serve as CBG escort, providing vital AAW support with its large radar capabilities and weapons outfit.

## 2.4 Mission Scenarios

Table 3 shows a mission scenario for the primary CGX/BMD mission. This mission scenario was developed to showcase the entire range of capabilities of the ship during a highly active 77 day period. It reflects the diversity of detection and strike abilities possessed by the combat systems.

| Day   | Mission Scenario                                                                           |  |
|-------|--------------------------------------------------------------------------------------------|--|
| 1-3   | Transit with Frigates/escorts (for ASW support) to area of hostility from forward base     |  |
| 4     | Detect, engage and kill incoming anti-ship missile attack                                  |  |
| 5-10  | Patrol grid for launch of ballistic missile (BM)                                           |  |
| 11    | Receive tasking for TLAM strike                                                            |  |
| 12    | Cruise to 25 nm offshore                                                                   |  |
| 13    | Embark Special Forces by helo                                                              |  |
| 14    | Insert Special Forces by RIB                                                               |  |
| 15-25 | Patrol grid for launch of BM                                                               |  |
| 26    | Detect IRBM attack against ally; engage and destroy with SM-3                              |  |
| 27-29 | Cruise to new grid                                                                         |  |
| 30    | Sustain damage (Radar down) due to SS9                                                     |  |
| 31-44 | Cruise back to port for repairs                                                            |  |
| 45-60 | Repairs                                                                                    |  |
| 61-68 | Transit back to area of hostility                                                          |  |
| 69    | Detect ICBM launch against homeland; engage and kill with KEI                              |  |
| 70-71 | Cruise to station, 35 nm offshore                                                          |  |
| 72-73 | Conduct recon with AAV                                                                     |  |
| 74    | AAV detects terrorist activity                                                             |  |
|       | Intelligence indicates high-value target with terrorist cell; conduct TLAM strike and kill |  |
| 74    | target                                                                                     |  |
| 75-77 | Cruise back to forward base                                                                |  |
| 77    | Arrive at forward base                                                                     |  |

| Table 3 - CGX Ballistic Missile Defense | Mission |
|-----------------------------------------|---------|
|-----------------------------------------|---------|

## 2.5 Required Operational Capabilities

Table 4 lists the Required Operational Capabilities (ROCs) needed to support the missions and mission scenarios described in Sections 2.3 and 2.4. Each ROC is related to functional capabilities required of the ship design. In the scope of the Concept Exploration design space, the ship's ability to perform these functional capabilities is measured by explicit Measures of Performance (MOPs).

| Table 4 - List of Required Operational Capabilities (ROCs) |                                                                                                                              |                      |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| ROCs                                                       | Description                                                                                                                  | MOP                  |  |
| AAW 1                                                      | Provide anti-air defense                                                                                                     | AAW                  |  |
| AAW 1.1                                                    | Provide area anti-air defense                                                                                                | AAW                  |  |
| AAW 1.2                                                    | Support area anti-air defense                                                                                                | AAW                  |  |
| AAW 1.3                                                    | Provide unit anti-air self defense                                                                                           | AAW, RCS, IR         |  |
| AAW 2                                                      | Provide anti-air defense in cooperation with other forces                                                                    | AAW                  |  |
| AAW 3.1                                                    | Initial Phase Ballistic Missile Defense (I-BMD)                                                                              | AAW                  |  |
| AAW 3.2                                                    | Mid-Course Phase Ballistic Missile Defense (MC-BMD)                                                                          | AAW                  |  |
| AAW 5                                                      | Provide passive and soft kill anti-air defense                                                                               | AAW, IR, RCS         |  |
| AAW 6                                                      | Detect, identify and track air targets                                                                                       | AAW, IR, RCS         |  |
| AAW 9                                                      | Engage airborne threats using surface-to-air armament                                                                        | AAW, IR, RCS         |  |
| AMW 6                                                      | Conduct day and night helicopter, Short/Vertical Take-off<br>and Landing and airborne autonomous vehicle (AAV)<br>operations | ASW, ASUW, FSO (NCO) |  |
| AMW 6.3                                                    | Conduct all-weather helo ops                                                                                                 | ASW, ASUW, FSO (NCO) |  |
| AMW 6.4                                                    | Serve as a helo hangar                                                                                                       | ASW, ASUW, FSO (NCO) |  |
| AMW 6.5                                                    | Serve as a helo haven                                                                                                        | ASW, ASUW, FSO (NCO) |  |
| AMW 6.6                                                    | Conduct helo air refueling                                                                                                   | ASW, ASUW, FSO (NCO) |  |
| AMW 12                                                     | Provide air control and coordination of air operations                                                                       | ASW, ASUW, FSO (NCO) |  |
| AMW 14                                                     | Support/conduct Naval Surface Fire Support (NSFS)<br>against designated targets in support of an amphibious<br>operation     | NSFS                 |  |
| ASU 1                                                      | Engage surface threats with anti-surface armaments                                                                           | ASUW                 |  |
| ASUW 1.1                                                   | Engage surface ships at long range                                                                                           | ASUW                 |  |
| ASUW 1.2                                                   | Engage surface ships at medium range                                                                                         | ASUW                 |  |
| ASUW 1.3                                                   | Engage surface ships at close range (gun)                                                                                    | ASUW                 |  |
| ASUW 1.5                                                   | Engage surface ships with medium caliber gunfire                                                                             | ASUW                 |  |
| ASUW 1.6                                                   | Engage surface ships with minor caliber gunfire                                                                              | ASUW                 |  |
| ASUW 1.9                                                   | Engage surface ships with small arms gunfire                                                                                 | ASUW                 |  |
| ASUW 2                                                     | Engage surface ships in cooperation with other forces                                                                        | ASUW, FSO            |  |
| ASUW 4                                                     | Detect and track a surface target                                                                                            | ASUW                 |  |
| ASUW 4.1                                                   | Detect and track a surface target with radar                                                                                 | ASUW                 |  |
| ASUW 6                                                     | Disengage, evade and avoid surface attack                                                                                    | ASUW                 |  |
| ASW 1                                                      | Engage submarines                                                                                                            | ASW                  |  |
| ASW 1.1                                                    | Engage submarines at long range                                                                                              | ASW                  |  |
| ASW 1.2                                                    | Engage submarines at medium range                                                                                            | ASW                  |  |
| ASW 1.3                                                    | Engage submarines at close range                                                                                             | ASW                  |  |
| ASW 4                                                      | Conduct airborne ASW/recon                                                                                                   | ASW                  |  |
| ASW 5                                                      | Support airborne ASW/recon                                                                                                   | ASW                  |  |
| ASW 7                                                      | Attack submarines with antisubmarine armament                                                                                | ASW                  |  |
| ASW 7.6                                                    | Engage submarines with torpedoes                                                                                             | ASW                  |  |
| ASW 8                                                      | Disengage, evade, avoid and deceive submarines                                                                               | ASW                  |  |
| CCC 1                                                      | Provide command and control facilities                                                                                       | CCC                  |  |
| CCC 1.6                                                    | Provide a Helicopter Direction Center (HDC)                                                                                  | CCC, ASW, ASUW       |  |
| CCC 2                                                      | Coordinate and control the operations of the task<br>organization or functional force to carry out assigned<br>missions      | CCC, FSO             |  |
| CCC 3                                                      | Provide own unit Command and Control                                                                                         | CCC                  |  |

| ROCs    | Description                                                                                                                           | MOP                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| CCC 4   | Maintain data link capability                                                                                                         | ASW, ASUW, AAW                   |
| CCC 6   | Provide communications for own unit                                                                                                   | CCC                              |
| CCC 9   | Relay communications                                                                                                                  | CCC                              |
| CCC 21  | Perform cooperative engagement                                                                                                        | CCC, FSO                         |
| FSO 5   | Conduct towing/search/salvage rescue operations                                                                                       | FSO                              |
| FSO 6   | Conduct SAR operations                                                                                                                | FSO                              |
| FSO 8   | Conduct port control functions                                                                                                        | FSO                              |
| FSO 9   | Provide routine health care                                                                                                           | All designs                      |
| FSO 10  | Provide first aid assistance                                                                                                          | All designs                      |
| FSO 11  | Provide triage of casualties/patients                                                                                                 | All designs                      |
| INT 1   | Support/conduct intelligence collection                                                                                               | INT                              |
| INT 2   | Provide intelligence                                                                                                                  | INT                              |
| INT 3   | Conduct surveillance and reconnaissance                                                                                               | INT                              |
| INT 8   | Process surveillance and reconnaissance information                                                                                   | INT, CCC                         |
| INT 9   | Disseminate surveillance and reconnaissance information                                                                               | INT, CCC                         |
| INT 15  | Provide intelligence support for non-combatant evacuation operation (NEQ)                                                             | INT CCC                          |
| MIW 6   | Conduct magnetic silencing (degaussing deperming)                                                                                     | Magnetic Signature               |
|         | Steam to design capacity in most fuel efficient manner                                                                                | Sustained Speed, Endurance Range |
| MOB 1   |                                                                                                                                       | @20 knt, Surge to Theater        |
| MOB 2   | Support/provide aircraft for all-weather operations                                                                                   | ASW, ASUW, FSO (NCO)             |
| MOB 3   | Prevent and control damage                                                                                                            | VUL                              |
| MOB 3.2 | Counter and control NBC contaminants and agents                                                                                       | NBC                              |
| MOB 5   | Maneuver in formation                                                                                                                 | All designs                      |
| MOB 7   | Perform seamanship, airmanship and navigation tasks<br>(navigate, anchor, mooring, scuttle, life boat/raft capacity,<br>tow/be-towed) | All designs                      |
| MOB 10  | Replenish at sea                                                                                                                      | All designs                      |
| MOB 12  | Maintain health and well being of crew                                                                                                | All designs                      |
| MOB 13  | Operate and sustain self as a forward deployed unit for an extended period of time during peace and war without shore-based support   | provisions                       |
| MOB 16  | Operate in day and night environments                                                                                                 | All designs                      |
| MOB 17  | Operate in heavy weather                                                                                                              | Seakeeping index                 |
| MOB 18  | Operate in full compliance of existing US and international pollution control laws and regulations                                    | All designs                      |
| NCO 3   | Provide unkeep and maintenance of own unit                                                                                            | All designs                      |
| NCO 19  | Conduct maritime law enforcement operations                                                                                           | NCO                              |
| SEW 2   | Conduct sensor and ECM operations                                                                                                     | AAW                              |
| SEW 3   | Conduct sensor and ECCM operations                                                                                                    | AAW                              |
| SEW 5   | Conduct coordinated SEW operations with other units                                                                                   | AAW                              |
| STW 3   | Support/conduct multiple cruise missile strikes                                                                                       | All designs                      |

#### **3** Concept Exploration

Chapter 3 describes the Concept Exploration process. Trade-off studies, design space exploration, and optimization are accomplished using a Multi-Objective Genetic Optimization (MOGO).

#### 3.1 Trade-Off Studies, Technologies, Concepts and Design Variables

Available technologies and concepts necessary to provide required functional capabilities are identified and defined in terms of performance, cost, risk and ship impact (weight, area, volume, power). Trade-off studies are performed using technology and concept design parameters to select trade-off options in a multi-objective genetic optimization (MOGO) for the total ship design. Technology and concept trade spaces and parameters are described in the following sections.

#### 3.1.1 Hull Form Alternatives

The hull form technology selection process is a meticulous procedure. The first step is considering the Transport Factor which uses methodology to identify alternative hullform types. Important parameters are payload (or cargo weight), required sustained speed, endurance speed and range. Figure 4 shows the calculation.

$$TF = \frac{W_{FL}V_S}{SHP_{TI}} = \frac{(W_{LS} + W_{Fuel} + W_{Cargo})V_S}{SHP_{TI}}$$
$$TF = \frac{(W_{LS} + W_{Cargo})V_S}{SHP_{TI}} + \frac{SFC_ESHP_E}{SHP_{TI}}\frac{R}{V_E}V_S}{SHP_{TI}}$$

$$\begin{split} W_{FL} &= Full \ load \ weight \ of \ the \ ship \\ W_{LS} &= Light \ ship \ weight \\ W_{Fuel} &= Ship's \ fuel \ weight \\ W_{Cargo} &= Ship's \ cargo \ or \ payload \ weight \\ V_S &= Sustained \ speed \\ V_E &= Endurance \ speed \\ SHP_{TI} &= Total \ installed \ shaft \ horsepower \ including \ propulsion \ and \ lift \ systems \\ R &= Range \ at \ endurance \ speed \\ SFC_E &= Specific \ fuel \ consumption \ at \ endurance \ speed \end{split}$$

#### **Figure 4 - Transport Factor Calculation**

The estimated Transport Factor for CGX/BMD is based on mission capabilities and similar ships. Large and heavy combat systems (radar, cooling, missiles, AAV and a hangar), which are not included in a DDG51 or CG47, need to be considered in the transport factor calculation. Major combatant, worldwide operations require endurance range from 5000 to 8000 nm at 20 knots. The estimated transport factor is 21.5 for CGX/BMD. This suggests a monohull design.

The second step in the hullform process is to estimate and consider important characteristics to select hullform types. These include the transport factor, efficient endurance and sustained speed resistance. There also needs to be sufficient deck area for a helicopter deck, and sufficient large object space for the vertical launch system (VLS) and integrated power system (IPS). Low radar cross section (RCS) is required to keep the ship stealthy and unobserved. An approach to accomplish low RCS is tumblehome. Producibility, structural efficiency, and seakeeping are also important criteria.

The third step is to use the design lanes to specify hullform design parameter ranges for the design space. The hullform types considered are tumblehome monohull and the flare monohull (flare =  $\pm 10^{\circ}$ )

- $\Delta = 14000-26000 \text{ MT}$
- L = 180 m 230 m
- B = 18 m 33 m
- D = 10m 22m
- T = 5 m 12 m
- L/B = 7 10

- L/D = 10.75 17.8
- B/T = 2.8 3.2
- $V_{DH} = 10,000 20,000 \text{ m}^3$
- $C_p = 0.56 0.64$
- $C_x^r = 0.75 0.85$
- $C_{rd} = 0.7 .8$

## 3.1.2 Propulsion and Electrical Machinery Alternatives

## 3.1.2.1 Machinery Requirements

Based on the ADM and Program Manager guidance, pertinent propulsion plant design requirements are summarized as follows:

## <u>General Requirements</u> –

CGX/BMD will use an Integrated Power System (IPS) with Zonal Electrical Distribution (ZEDS). System flexibility and Fight-Through Power with future growth requires IPS. IPS module types are:

- Power Generation Module (PGM)
- Propulsion Motor Module (PMM)
- Power Distribution Module (PDM)
- Power Conversion Module (PCM)
- Power Control (PCON)
- Energy Storage Module (ESM)

CGX/BMD speed and power requires high power density alternatives. For each IPS module, several advanced technologies are considered. The power requirement shall be satisfied with 2-4 Power Generation Modules (PGMs) of 25-40 MW, and 1-2 Secondary PGMs (SPGMs) of 5-10 MW. The power generation modules shall be Navy qualified gas turbines coupled to AC synchronous or superconducting homopolar (SCH) generators. The propulsion motor modules shall be advanced induction motors (AIM), SCH motors, or permanent magnet motors (PMM). AC and DC ZEDS are both considered. IPS with ZEDS provides arrangement and operational flexibility, future power growth, improved fuel efficiency, and survivability with moderate weight and volume penalties. The ship must be designed for continuous operation using distillate fuel in accordance with DFM (NATO Code F-76).

<u>Sustained Speed and Propulsion Power</u> – The ship shall have a minimum sustained speed of 30 knots in the full load condition, calm water, and clean hull using no more than 80% of the installed engine rating (MCR) of main propulsion engines or motors. The goal sustained speed is 35 knots to allow travel with a CBG. The ship shall have a minimum range of 5000 nautical miles using a 20 knot endurance speed. The ship's power range must span 80000-120000 SHP with ship service power greater than 10000 kW MFLM.

<u>Ship Control and Machinery Plant Automation</u> – Ship control and machinery plant automation makes use of an integrated bridge system. The integrated bridge system includes integrated navigation, radio communications, interior communications, and ship maneuvering equipment and systems. It shall comply with the ABS Guide for One Man Bridge Operated (OMBO) Ships and with ABS ACCU requirements for periodically unattended machinery spaces.

Sufficient manning and automation will be provided to continuously monitor auxiliary systems, electric plant and damage control systems from the SCC, MCC and Chief Engineer's office, and control the systems from the MCC and local controllers.

<u>Propulsion Engine and Ship Service Generator Certification</u> – Because of the criticality of propulsion and ship service power to many aspects of the ship's mission and survivability, this equipment shall be non-nuclear and gas turbine alternatives shall be Navy-qualified and grade A shock certified.

## 3.1.2.2 Machinery Plant Alternatives

CGX/BMD will use an Integrated Power System (IPS). IPS uses power generation modules which provide electrical power to all components of the ship, including propulsion and combat systems. The options for power and propulsion for the CGX/BMD are based on five design variables: Power Generation Module (PGM),

Secondary PGM (SPGM), propulsor type, power distribution type, and propulsion motor module type. Table 5 shows power and propulsion options, which total 2880 options. Each design variable is detailed in this section.

| <b>DV</b> Name | Description                | Design Space                                           |  |  |  |  |  |
|----------------|----------------------------|--------------------------------------------------------|--|--|--|--|--|
| PGM            | Power Generation Module    | Option 1) 3xLM2500+, AC synchronous, 4160 VAC          |  |  |  |  |  |
|                |                            | Option 2) 3xLM2500+, AC synchronous, 13800 VAC         |  |  |  |  |  |
|                |                            | Option 3) 3xLM2500+, SCH generator, 4160 VAC           |  |  |  |  |  |
|                |                            | Option 4) 3xLM2500+, SCH generator, 13800 VAC          |  |  |  |  |  |
|                |                            | Option 5) 4xLM2500+, AC synchronous, 4160 VAC          |  |  |  |  |  |
|                |                            | Option 6) 4xLM2500+, AC synchronous, 13800 VAC         |  |  |  |  |  |
|                |                            | Option 7) 4xLM2500+, SCH generator, 4160 VAC           |  |  |  |  |  |
|                |                            | Option 8) 4xLM2500+, SCH generator, 13800 VAC          |  |  |  |  |  |
|                |                            | Option 9) 2xMT30, AC synchronous, 4160 VAC *(DDG 1000) |  |  |  |  |  |
|                |                            | Option 10) 2xMT30, AC synchronous, 13800 VAC           |  |  |  |  |  |
|                |                            | Option 11) 2xMT30, SCH generator, 4160 VAC             |  |  |  |  |  |
|                |                            | Option 12) 2xMT30, SCH generator, 13800 VAC            |  |  |  |  |  |
|                |                            | Option 13) 3xMT30, AC synchronous, 4160 VAC            |  |  |  |  |  |
|                |                            | Option 14) 3xMT30, AC synchronous, 13800 VAC           |  |  |  |  |  |
|                |                            | Option 15) 3xMT30, SCH generator, 4160 VAC             |  |  |  |  |  |
|                |                            | Option 16) 3xMT30, SCH generator, 13800 VAC            |  |  |  |  |  |
|                |                            | Option 17) 4xMT30, AC synchronous, 4160 VAC            |  |  |  |  |  |
|                |                            | Option 18) 4xMT30, AC synchronous, 13800 VAC           |  |  |  |  |  |
|                |                            | Option 19) 4xMT30, SCH generator, 4160 VAC             |  |  |  |  |  |
|                |                            | Option 20) 4xMT30, SCH generator, 13800 VAC            |  |  |  |  |  |
| SPGM           | Secondary Power Generation | Option 1) none                                         |  |  |  |  |  |
|                | Module                     | Option 2) 2xLM500G, geared, w/AC sync *(DDG 1000)      |  |  |  |  |  |
|                |                            | Option 3) 2xMC5.0 Fuel Cells                           |  |  |  |  |  |
|                |                            | Option 4) 2xMC8.5 Fuel Cells                           |  |  |  |  |  |
|                |                            | Option 5) 2xPEM5.0 Fuel Cells                          |  |  |  |  |  |
|                |                            | Option 6) 2xPEM8.5 Fuel Cells                          |  |  |  |  |  |
|                |                            | Option 7) 2xCAT 3618 Diesel                            |  |  |  |  |  |
|                |                            | Option 8) 2xPC 2/18 Diesel                             |  |  |  |  |  |
| PROPtype       | Propulsor type             | Option 1) 2xFPP *(DDG 1000)                            |  |  |  |  |  |
|                |                            | Option 2) 2xPods                                       |  |  |  |  |  |
|                |                            | Option 3) 1xFPP + SPU (7.5MW)                          |  |  |  |  |  |
| DISTtype       | Power distribution type    | Option 1) AC ZEDS                                      |  |  |  |  |  |
|                |                            | Option 2) DC ZEDS *(DDG 1000)                          |  |  |  |  |  |
| PMM            | Propulsion Motor Module    | Option 1) AIM (Advanced Induction Motor) *(DDG 1000)   |  |  |  |  |  |
|                |                            | Option 2) PMM (Permanent Magnet Motor)                 |  |  |  |  |  |
|                |                            | Option 3) SCH (Superconducting Homopolar Motor)        |  |  |  |  |  |

 Table 5 – Power and Propulsion Options Table

The PGM options are a combination of 2-4 Navy qualified gas turbines, and two types of generators with two voltage ratings totaling 20 options. The function of the PGM is to convert fuel into electrical power.

The SPGM will use gas turbine, diesel engine, or fuel cell technologies. Gas turbines and diesel engines are familiar to the US Navy, but fuel cells provide many advantages, including high efficiency (35-60%), and no large dedicated intakes-uptakes. The challenges presented by fuel cells include reforming fuel into hydrogen with an onboard chemical plant, eliminating sulfur from fuels, a slow dynamic response, and slow startup. They are sized to provide fuel efficiency at endurance speed.

The propulsors are either two fixed-pitch propellers (FPP), which are standard on US Navy combatants, two podded propulsors, which offer more maneuverability and flexibility, or a combination of one stern FPP and one forward secondary propulsor unit (SPU), which offers maneuverability and increased survivability. The podded and secondary propulsors are promising options, but are higher risk because they are not yet proven.

The power distribution system will be either AC or DC ZEDS. ZEDS offers zonal survivability, which is the ability of a distributed system, when experiencing internal faults, to ensure loads in unmanned zones do not experience a service interruption. It limits the damage propagation to the fewest number of zones, enabling concentration of damage control and recoverability efforts.

The power distribution system is made up of Power Conversion Modules (PCMs), a Power Distribution Module (PDM), and a Power Control Module (PCON). Figure 5 shows how the PCMs are arranged in a ZEDS system. The PDM includes switchboards, load centers, power panels, and cable. It functions as a transport between other modules, provides ability to configure the distribution system (including the paralleling of busses), detect and isolate faults, and provides measurements of system voltages, currents, frequency, and power, etc. to PCON. PCON is software and logic embedded in the machinery control system. Its functions are resource and load management, reconfiguration, system protection, remote monitoring, and control and diagnostics.





The Propulsion Motor Modules considered are advanced induction motors (AIM), SCH motors, or permanent magnet motors (PMM). AIMs are a proven technology, and modern drives enable higher efficiencies, but are large and heavy, and still not as efficient as other motor types. Superconducting motors can achieve significantly higher magnetic flux densities, and promise to significantly reduce the size and weight of propulsion motors. The Navy is currently investing in superconducting motor technology. SCH motors, specifically, are true DC motors, and have low noise, low torque pulsations, low weight, small size, use low voltage and high current, use high-current brushes, but they are still developmental. Permanent magnet motors are low weight, quieter, and have better part load efficiency, but are still developmental and costly.

#### 3.1.3 Automation and Manning Parameters

Manning is required to perform specific tasks. The cost of manning, however, is sixty percent of the Navy's budget! The cost of the ship's crew is the largest expense incurred over the ship's lifetime. There are several issues and observations associated with manning. Manning puts personnel in harm's way. Firefighting and damage control are managed by manpower with a very high risk to the personnel. Computer literacy, reduced response time and job enrichment are human factors that can be responsible for the life of a fellow sailor. Another issue is the background of each sailor on a ship. Different backgrounds come with different cultures and traditions that must be addressed on the ship. There is also the "manning triad": watch standing, maintenance and damage control. The triad has a high need for manpower. Automation has to be taken into consideration where manning can be decreased. When applied to ships early in their development and throughout their design, human systems (analysis) have the potential to substantially reduce requirements for personnel, leading to significant cost savings.

Automation is the use of computers or machinery to get a task done with fewer personnel. Firefighting may be replaced by automated sprinkler systems designed to go off when excessive heat or smoke is sensed. This helps reduce the manpower needed to fight fires on board a ship, which in turn can reduce the number of people injured during a critical mission. Response time can be reduced with an automated system. Maintenance can be made easier for personnel by implementing a system that can "check" the functionality or maintenance schedules of all parts.

There are many technologies that can help with automation and computers and software are some of the most important. With an automated watch station, a computer can monitor and control ship automation. Watch-standing technology has been improved with GPS, automated route planning, electronic charting and navigation, collision avoidance and electronic log keeping. Video teleconferencing provides a way to access experts without bringing extra personnel on board. Computers can also make training much easier. Hands-on-experience isn't necessary for training on board a ship. Crews can learn the computer systems on shore with programs that can be replayed. These technologies call for a paperless ship, in which administration personnel can stay on shore and receive what they need to do their jobs electronically.

In concept exploration, it is difficult to deal with automation manning reductions explicitly, so a ship manning and automation factor is used. This factor represents reductions from "standard" manning levels resulting from automation. The manning factor,  $C_{AUTO}$ , varies from 0.5 to 1.0. A manning factor of 1.0 corresponds to a "standard" fully-manned ship of today, using current ship automation technologies already implemented in the Navy. A ship manning factor of 0.5 results in a 50% reduction in manning and implies a large increase in automation. The manning factor is also applied using simple expressions based on expert opinion for automation cost, automation risk, damage control performance, and repair capability performance. A more detailed manning analysis is performed in concept development.

A Manning Response Surface Model (RSM) calculates the manning requirement for the ship. ISMAT (Integrated Simulation Manning Analysis Tool) was used to create a scenario of personnel assigned to maintenance tasks based on systems and their department. The same scenario is used for all designs. ISMAT calculates optimum manning based on crew cost. The RSM is used in the overall ship synthesis program instead of ISMAT to reduce computation time. The level of automation also effects cost and risk for the design. The total crew size is calculated as shown in the equation below:

$$NT = 374.49 + 82.06 * LevAuto - 6.09 * MAINT + 11.29 * LWLComp - 59.85 * LevAuto2 + 2.08 * PSYS * LWLComp - .147 * PSYS3 + 8.52 * LevAuto3 - .294 * ASuW * PSYS * LevAuto + .341 * ASuw * MAINT2 - .684 * PSYS2 * LWLComp + .413 * PSYS * LevAuto * CCC - .485 * MAINT * CCC * LWLComp + .210 * CCC * LWLComp2$$

where: NT = total crew size, LevAuto = level of automation, MAINT = maintenance level, LWLComp = length of the waterline, PSYS = propulsion system, ASUW = anti-surface warfare, and CCC = command, control and communication.

#### 3.1.4 Combat System Alternatives

Combat System Alternatives are grouped as Anti-Air Warfare (AAW), Ballistic Missile Defense (BMD), Strike Warfare (STK), Anti-Surface Warfare (ASUW), Anti-Submarine Warfare (ASW), Naval Surface Fire Support (NSFS), Mine Countermeasures (MCM), Command, Control and Communications (CCC), Guided Missile Launching Support (GMLS), and Light Airborne Multi-Purpose System (LAMPS).

#### 3.1.4.1 AAW/BMD/STK

The AAW/BMD goal and threshold options are listed in Table 6, and discussed in the following paragraphs.

| Warfighting System | Options                                                                 |
|--------------------|-------------------------------------------------------------------------|
|                    | Option 1) SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014 Combat System, CIFF-   |
|                    | SD, SLQ/32(R) improved, MK36 SRBOC with NULKA                           |
|                    | Option 2) SPY-3/VSR++ DBR, IRST, AEGIS BMD 2014 Combat System, CIFF-SD, |
| A AW/DMD/STV       | SLQ/32(R) improved, MK36 SRBOC with NULKA                               |
| AAW/DIVID/STK      | Option 3) SPY-3/VSR+ DBR, IRST, AEGIS BMD 2014 Combat System, CIFF-SD,  |
|                    | SLQ/32(R) improved, MK36 SRBOC with NULKA                               |
|                    | Option 4) SPY-3/VSR (DDG-1000 3L) DBR, IRST, AEGIS BMD 2014 Combat      |
|                    | System, CIFF-SD, SLQ/32(R) improved, MK36 SRBOC with NULKA              |

#### Table 6 – AAW/BMD Combat Systems Options Table

AN/SPY-3 is a multi-function radar (MFR) that provides X-band capability allowing ships to operate and target enemies in a high clutter environment. AN/SPY-3 meets all horizon search and fire control requirements for the twenty-first century fleet, and supports all BMD missions. It detects the most advanced low observable Anti-Ship Cruise Missile (ASCM) threats, and provides fire-control illumination requirements for the Evolved Sea Sparrow Missile (ESSM). AN/SPY-3 supports new ship design requirements for reduced cross-section, limiting different ship signatures to avoid detection. It has a long range 2-D search and limited volume search.

Dual Band Radar (DBR) consists of AN/SPY 3 and the Volume Search Radar (VSR). VSR is an S-Band frequency, 3-D tracking, and long range volume search radar. It can be used for enhanced BMD. DBR is a horizon and volume search radar, which can detect stealthy targets in sea-land clutter. It also includes periscope detection, allowing the ship to have anti-submarine warfare capabilities. The DBR combines the functionality of the X-Band AN/SPY-3 MFR with an S-Band VSR. It provides low maintenance with no dedicated operator or display console, and supports stealth operations with low radar cross section (RCS) and infrared (IR) signature. BMD capabilities

in DBR include the ability to do combat control, including air control, missile tracking, periscope detection, and target illumination, as well as functional details such as environmental mapping and uplink/downlink. See Figure 6 for a visual description. DBR meets next-generation naval radar challenges by performing multiple functions automatically and simultaneously, including detecting and tracking advanced high and low altitude anti-ship cruise missiles.



Figure 6 - Dual Band Radar (DBR) capabilities (Raytheon, 2007)

The Infrared Search and Track (IRST) is a shipboard integrated sensor designed to detect and report low flying ASCMs by their heat plumes. It works by scanning the horizon (plus or minus a few degrees) and can be manually changed to search higher angles. It provides accurate bearing, elevation angle and relative thermal intensity readings.

AN/UPS-26(V) CIFF-SD is the Centralized ID Friend or Foe (CIFF) system. It is a centralized, controller processor-based system that associates different sources of target information. It accepts, processes, correlates and combines sensor inputs into one large track picture.

The AN/SLQ-32(R) Improved is a Space and Electronic Warfare component that provides early warning of threats. It automatically dispenses chaff decoys, which is part of the MK36 SRBOC and NULKA systems, which are shown in Figure 7. Super Rapid Bloom Offboard Countermeasures (SRBOC) is a decoy launching system. NULKA is specifically a rapid response Active Expendable Decoy (AED), which is capable of providing highly effective defense for ships of cruiser size and below against modern radar homing anti-ship missiles.



Figure 7 - MK 36 SRBOC and NULKA systems

#### 3.1.4.2 ASUW/NSFS

Anti-Surface Warfare and Naval Surface Fire Support combat systems operate to detect and protect from other surface combatants and provide sea and land gunfire support. Combat systems options for ASUW and NSFS are listed in Table 7.

| Warfighting System | Options                                                                                                                                                                                                                                                                                                                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASUW/NSFS          | <ul> <li>Option 1) 1x155mm AGS, SPS-73, Small Arms, TISS, FLIR, GFCS, 2x7m RHIB, MK46 Mod2 3x CIGS</li> <li>Option 2) 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS, FLIR, GFCS, 2x7m RHIB, MK46 Mod2 3x CIGS</li> <li>Option 3) 1xMK110 57mm gun, SPS-73, Small Arms, TISS, FLIR, GFCS, 2x7m RHIB, MK46 Mod2 3x CIGS</li> </ul> |

Figure 8 shows the 155 mm Advanced Gun Systems (AGS). It is a high-volume gun, which sustain fires in support of amphibious operations and the joint land battle. AGS fires up to 12 rounds per minute from an automated magazine, storing up to as many as 750 rounds. The round is 6.1 inches in diameter, and includes the development of the 155 mm version of the Extended-Range Guided Munitions (ERGM). AGS is a conventional, single barrel, low-signature gun system with fast-reaction, fully stabilized train and elevation capabilities. The AGS is planned for DDG 1000.



Figure 8 – 155 mm Advance Gun System (AGS)

The MK 45 5"/62 gun and gun mount has a range of over 60 nautical miles with the ERGM rounds. The gun mount is a basic MK 45 gun mount with a 62-caliber barrel, strengthened trunnion supports and a lengthened recoil stroke. It also has an ERGM initialization interface, round identification capability and an enhanced control system. Figure 9 shows the new gun mount shield which reduces overall radar signature, maintenance and production cost.



Figure 9 – MK45 5"/62 Gun

The 1xMK110 57 mm gun (Figure 10) is capable of firing 2.4 kilogram shells at a rate of 220 rounds per minute. Its range is of nine miles. The MK110 57 mm gun is a multi-purpose, medium caliber gun.



Figure 10 - MK110 57 mm Naval Gun

The Thermal Imaging Sensor System (TISS) is a stabilized imaging system which provides a visual infrared and television image to assist operators in identifying a target by its contrast or infrared characteristics. It detects, recognizes, laser ranges and automatically tracks targets under day, night or reduced visibility conditions, complementing and augmenting existing shipboard sensors. TISS is a manually operated system which can receive designations from the command system and provide azimuth, elevation, and range for low cross section air targets, floating mines, fast attack boats, navigation operations, and search and rescue missions. See Figure 11.



Figure 11 – TISS (Thermal Imaging Sensor System)

Figure 12 shows a Forward Looking Infrared Radar Sensor (FLIR). FLIR uses detection of thermal energy to create a picture of the forward surroundings. It can be used at night, in heavy fog and all different types of weather. FLIR is a good investment in military operations for several reasons. It distinguishes heat from a distance of a few miles, which is hard for an enemy to camouflage. It can see through many atmospheric changes (fog, haze, smoke etc.) which is a major benefit for safety reasons and military options.



Figure 12 – Forward Looking Infrared Radar (FLIR)

The Gun Fire Control System (GFCS) is part of the Aegis combat weapon system. It is used to engage surface, air and shore targets and can maintain a track file on up to four Surface Direct Fire (SDF) or Anti-Air (AA) targets assigned by Command and Decision (C&D). It can also maintain a track file on a maximum of 10 NGFS targets entered at the Gun Console (GC).

Mk46 Mod2 3x CIGS (Close-In Gun System) is a two-axis stabilized chain gun that can fire up to 250 rounds per minute. This system uses FLIR to optimize accuracy against small, high-speed surface targets. It can be operated locally at the gun's turret or fired remotely by a gunner in the ship's combat station.

RHIBs, or Rigid Hull Inflatable Boats are 7 m long, weigh 4400 lbs, and have a beam of 9 ft, 6 in. and draft of 13 inches. With a Cummins 6-cycle, 234 horsepower engine, it can carry up to 18 personnel. See Figure 13 for a picture of a RHIB.



Figure 13 – Rigid Hull Inflatable Boat (RHIB)

The stern launch/recovery ramp is a major CGX design consideration. Figure 14 shows how it will be able to accommodate two standard 7 m RHIBs. Only one person is needed to operate machinery rather than as many as nine for a frapping line/hydraulic side recovery. The stern launch/recovery ramp will be enclosed to reduce the radar cross section for the CGX.



Figure 14 - Stern Launch/Recovery Design

Table 9

#### 3.1.4.3 ASW/MCM

Anti-Submarine Warfare and Mine Counter-Measures protect the CGX from possible underwater damage. The purpose is to detect submarines and mines and be able to defend against attacks. The options are listed in Table 8.

ASW/MCM Combat Systems Ontions Table

|                    | Table 8 – AS W/WCW Combat Systems Options Table                                                                                                                                                                                                                                                                    |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Warfighting System | Options                                                                                                                                                                                                                                                                                                            |
| ASW/MCM            | <ul> <li>Option 1) Dual Frequency Bow Array, NIXIE, IUSW, 2xSVTT, mine-avoidance sonar</li> <li>Option 2) SQS-53C, NIXIE, SQR-19 TACTAS, IUSW, 2xSVTT, mine-avoidance sonar</li> <li>Option 3) SQS-56, NIXIE, IUSW, 2xSVTT, mine-avoidance sonar</li> <li>Option 4) NIXIE, 2xSVTT, mine-avoidance sonar</li> </ul> |

The Dual Frequency Bow Array is part of the Integrated Underwater Surface Warfare made from Raytheon. More information can be found in the IUSW section.

SQS-53C is a bow-mounted sonar with both active and passive operating capabilities providing precise information for ASW weapons control and guidance. It is a computer-controlled surface-ship sonar, and performs direct path ASW search, detection, localization and tracking from hull mounted transducer array. It has higher power and improved signal processing equipment with direct linkage to the computer ensuring swift, accurate processing of target information. Functions of the system are the detection, tracking and classification of underwater targets. It can also be used for underwater communications, countermeasures against acoustic underwater weapons and certain oceanographic recording uses. Figure 15 shows a depiction of this bow sonar.



Figure 15 – SQS-53C Bow-Mounted Sonar Array

SQS-56 is a hull mounted sonar with digital implementation, system control by a built-in mini computer and an advanced display system. It is extremely flexible and easy to operate. It also uses active/passive operating capability, as well as preformed beam, digital sonar providing panoramic echo ranging and panoramic passive surveillance. A single operator can search, track, classify and designate multiple targets from the active system while simultaneously maintaining anti-torpedo surveillance on the passive display.

IUSW is the Integrated Undersea Warfare system. IUSW incorporates two types of sonar arrays in one automated system. The high frequency sonar provides in-stride mine avoidance capabilities, while the medium frequency sonar optimizes anti-submarine and torpedo defense operations. The suite integrates all acoustic undersea warfare systems and subsystems, including the dual frequency bow array, towed array, towed torpedo countermeasures, expendable bathythermograph, data sensor, acoustic decoy launcher, underwater communications, and associated software.

Figure 16 shows NIXIE, a tow-behind decoy that employs an underwater acoustic projector. It provides deceptive countermeasures against acoustic homing torpedoes and can be used in pairs or singles.



Figure 16 – NIXIE

Figure 17 shows the MK32 Surface Vessel Torpedo Tube (SVTT). It is an ASW launching system that pneumatically launches torpedoes over the side. It can handle the MK46 and MK50 torpedoes and is capable of

stowing and launching up to three torpedoes under either local control or remote control from an ASW fire control system.



Figure 17 – MK32 Surface Vessel Torpedo Tube (SVTT)

Mine Avoidance Sonar is a multi-purpose sonar system VANGUARD is a versatile two frequency active and broadband passive sonar system. It is conceived for use on surface vessels to assist navigation and permit detection of dangerous objects. The system is designed primarily to detect mines but will also be used to detect other moving or stationary underwater objects. Mine Avoidance Sonar can be used as navigation sonar in narrow or dangerous waters. In addition it can complement the sensors on board anchoring surface vessels with regard to surveillance and protection against divers. Figure 18 is an illustration of the mine avoidance sonar.



Figure 18 – Mine Avoidance Sonar



Figure 19 - Total Ship Combat Environment

#### 3.1.4.4 CCC

Command, Control and Communications (CCC) refers to the ability of shipboard personnel to communicate with its own crew or off-ship personnel, control ship systems, and manage the battle space. All launch abilities, radar screens and any communication ability are located in or nearby the CCC. Table 9 lists the CCC combat systems options.

|                    | Table 9 – CCC Combat Systems Options Table                |
|--------------------|-----------------------------------------------------------|
| Warfighting System | Options                                                   |
| CCC                | Option 1) Enhanced CCC, TSCE<br>Option 2) Basic CCC, TSCE |

The total ship concept of CCC with a common computing environment is represented in Figure 19. CCC is an important warfighting system that allows ships to communicate with other ships of the same navy and its own crew members.

#### 3.1.4.5 GMLS

GMLS stands for Guided Missile Launching System. GMLS options are listed in Table 10.

| Warfighting System | Options                                |
|--------------------|----------------------------------------|
|                    | Option 1) 160 cells MK57 + 8 cells KEI |
| CMIS               | Option 2) 160 cells MK57               |
| GIVILS             | Option 3) 120 cells MK57               |
|                    | Option 4) 80 cells MK57                |

 Table 10 – GMLS Combat Systems Options Table



Figure 20 - MK57 VLS



Figure 21 – Range of Weapons available to the VLS

The MK57 VLS is a component of all four combat systems options. Each option has a different number of cells available. Figure 20 shows the MK57 Vertical Launching System (VLS), which has a 4-cell module height of 26 feet, capable of handling a range of weapons, which are shown in Figure 21. MK 57 VLS can be configured in a peripheral VLS arrangement (PVLS) for increased survivability. In this arrangement, the cells are located around the periphery of the hull, so that in the event of an explosion, the energy is expelled outwards, away from vital ship systems.

Figure 21 also shows the KEI, the Kinetic Energy Interceptor missile. It has been designed to intercept and destroy enemy ballistic missiles during their boost, ascent and early midcourse phases of flight. It is also the first ballistic missile defense weapon system to be developed without the constraints of the Anti-Ballistic Missile Treaty. The KEI missile will provide the nation with the capability of defeating future sophisticated threats before their payloads are released.

#### 3.1.4.6 LAMPS

Light Airborne Multi-Purpose System (LAMPS) refers to the system for holding, refueling, and launch and recovery of SH-60 helicopters on a ship. The ship must have an area for a flight deck. The LAMPS combat systems options are listed in Table 11.

Table 11 I AMDE Combet Sustains Ontions Table

| Warfighting System | Options                                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| LAMPS              | Option 1) 2xEmbarked LAMPS w/Hangar, 2xVTUAV<br>Option 2) LAMPS haven (flight deck), 2xVTUAV<br>Option 3) in-flight refueling, 2xVTUAV |

The major component of LAMPS is the SH-60 Seahawk, or LAMPS MK III (Figure 22). It can do a wide range of things, including ASW, ASUW, SPECOPS, cargo lift, and search and rescue. It can deploy sonobuoys, torpedoes (MK46 or MK50) and AGM-119 penguin missiles, as well as house two 7.62 mm machine guns. The Seahawk can extend the ship's radar capabilities and has a retractable in-flight fueling probe, designed to refuel aircraft in need of fuel.



Figure 22 - SH-60 Seahawk (LAMPS MK III)

Vertical Takeoff Unmanned Aircraft Vehicles (VTUAV) can extend the ship's sensors and is suited for highrisk missions, with virtually no risk to personnel. It is small in size, and can easily be stored onboard. Very little space is required for take-off. Figure 23 is a picture of a VTUAV.



Figure 23 – VTUAV

## 3.1.4.7 Combat Systems Payload Summary

To trade-off combat system alternatives with other alternatives in the total ship design, combat system characteristics are included in the ship synthesis model data base. **Table 12** lists these characteristics.

| ID         NAME         DV         VTGRP         SingleD         NTT         IMAGE         DIAREA         DIAREA           2         ISSUMAGE         ASUW         W164         100         19         33.76         0         0         0         0           3         ISSUMAGE         ASUW         W164         100         19         33.76         0         0         0         0           18SUMAGE         ASUW         W187         100         4.4         19.25         0         0         0         0         0           18SUMAGE         F            0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |                                         | Tuble   |          | at Bystem |           |               | ur uever 15 | 105     |       |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------|---------|----------|-----------|-----------|---------------|-------------|---------|-------|----------|
| ID         NAME         DV         VICKU         Single D         DM1         (m)         Cm2         Circle N           2         PISMETERS         ASUW         W164         100         19         33.76         0         0         0         0           15         SIMETERS         ASUW         W187         100         8.4         19.25         0         0         0         0           15         SIMETERS         ASUW         W187         100         8.4         19.25         0         0         0         0         0           15         SIMETERS         ASUW         W187         100         8.4         19.25         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                         |         |          |           | WT        | HD10          | HAREA       | DHAREA  |       |          |
| 2         PROMINANS<br>PROVINCE         ASUW         W164         100         19         33.76         0         0         0         0           3         FOUNDATIONS         ASUW         W187         100         47         32.75         0         0         0         0           153 <mm ags<="" td="">         ASUW         W187         100         8.4         19.25         0         0         0         0           153<mm ags<="" td="">         SUW         W187         100         8.4         19.25         0         0         0         0           153<mm ags<="" td="">         SUW         W164         100         12.75         24         0         0         0         0         0           153<mm ags="" gun<="" td="">         ASUW         W11         700         74.0         31         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <td< td=""><td>ID</td><td></td><td>DV</td><td>WTGRP</td><td>SingleD</td><td>(MT)</td><td>(m)</td><td>(m2)</td><td>(m2)</td><td>CRSKW</td><td>BATKW</td></td<></mm></mm></mm></mm>                                                                                                                                                                                                                                                                                                                                                                 | ID |                                         | DV      | WTGRP    | SingleD   | (MT)      | (m)           | (m2)        | (m2)    | CRSKW | BATKW    |
| 1         15 MM AGS         ASUW         WHS7         100         47         32.75         0         0         0         0           4         PACKADARE SUPPORT         ASUW         WHS7         100         8.4         19.25         0         0         0         0           155 MM AGS CM         SUW         WH61         100         12.75         24         0         0         0         0         0           155 MM AGS CM         ASUW         W11         700         44.1         34.25         54.14         0         30         275           7         15708 AGP SUBSYSTEM         ASUW         W711         700         749         31         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>2</td> <td>155 MM AGS<br/>PROTECTION</td> <td>ASUW</td> <td>W164</td> <td>100</td> <td>19</td> <td>33.76</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2  | 155 MM AGS<br>PROTECTION                | ASUW    | W164     | 100       | 19        | 33.76         | 0           | 0       | 0     | 0        |
| 3         Disk Markages         Disk Markages <thdisk markages<="" th=""> <thdisk markages<="" th=""></thdisk></thdisk>                                                                                                                                                                                                                     | 2  | 155 MM AGS                              | ACTIV   | W197     | 100       | 47        | 22.75         | 0           | 0       | 0     | 0        |
| 4         MAGAZINE SUPPORT         ASUW         W187         100         8.4         19.25         0         0         0         0           155 MM AGS<br>FROTECTION         ASUW         W164         100         12.75         2.4         0         0         0         0           155 MM AGS GUN<br>FROTECTION         ASUW         W711         700         44.1         34.25         54.14         0         30         0.275           155 MM AGS CABIE<br>ASUM AGS CABIE         ASUW         W711         700         2.99         30         0         0         0         0           155 MM AGS CABIE<br>ASUM AGS AMMO<br>PALETS 104         ASUW         W712         700         105         22.99         0         0         0         0         0         0           155 MM AGS AMMO<br>PALETS 1044         ASUW         W721         20         44.2         2.55         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  | 155 MM AGS                              | ASUW    | W187     | 100       | 4/        | 32.73         | 0           | 0       | 0     | 0        |
| ISS MA AGS<br>STORUPOM         ASUW         W164         100         12.75         24         0         0         0           6         MS MAGS COLD         ASUW         W11         700         44.1         34.25         54.14         0         30         275           7         STORAGE SUBSYETM         ASUW         W711         700         7.49         31         0         0         0         0         0           9         HANDLING SUBSYETM         ASUW         W711         700         2.99         30         0         0         0         0         0           9         HANDLING SYSTEM         ASUW         W712         700         105         2.2.99         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4  | MAGAZINE SUPPORT                        | ASUW    | W187     | 100       | 8.4       | 19.25         | 0           | 0       | 0     | 0        |
| S TOREROOM<br>PROTECTION         ASUW         W164         100         12.75         24         0         0         0           6         ISS MM AGS GUN<br>MORN         ASUW         W711         700         44.1         34.25         54.14         0         30         275           7         STORAGE SUBSYSTEM         ASUW         W711         700         7.49         31         0         0         0         0           8         ISS MM AGS CABLE         ASUW         W712         700         105         22.99         0         0         0         0           15 MM AGS MMO<br>PALLETS [304         ASUW         W712         700         105         22.99         0         0         0         0           15 MM AGS AMMO<br>PALLETS [304         ASUW         W721         20         54.4         24.25         0         0         0         0           15 SMALI ARMS AMD         ASUW         W760         700         594387<-1.92024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 155 MM AGS                              |         |          |           |           |               |             |         |       |          |
| Is MM AGS CLN         ASUW         W711         700         44.1         34.25         54.14         0         30         275           IS MM AGS ENERGY<br>STORAGE SUBSYSTEM         ASUW         W711         700         7.99         31         0         0         0         0         0           IS MM AGS CARE         ASUW         W711         700         2.99         30         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5  | STOREROOM<br>PROTECTION                 | ASUW    | W164     | 100       | 12.75     | 24            | 0           | 0       | 0     | 0        |
| 15         MA GG ENERGY<br>STORAGE SUBSYSTEM         SSUW         W711         700         7.49         31         0         0         0         0           15         MA GS CUN         ASUW         W711         700         2.99         30         0         0         0         0         0           15         MA GS CUN         ASUW         W712         700         105         22.99         0         0         0         0           15         MA GS AMMO<br>ROUNDSI         ASUW         WF21         20         54.4         24.25         342         0         0         0           10 ROUNDSI         ASUW         WF21         20         54.4         24.25         0         0         0         0           11 ROUNDS         ASUW         WF21         20         44.2         25         0         0         0         0         0           12         SEARCI RADAR         ASUW         WF21         20         4.16579         -1.92024         18.8593         0         0         0         0           13         MAIL ARMS AMO         ASUW         W452         400         0.16         10.85         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6  | 155 MM AGS GUN<br>MOUNT                 | ASUW    | W711     | 700       | 44.1      | 34.25         | 54.14       | 0       | 30    | 275      |
| 7         STORAGE SUBSYSTEM         ASUW         W711         700         7.49         31         0         0         0         0           B         155 MM AGS CABLE         ASUW         W711         700         2.99         0         0         0         0         0           155 MM AGS CABLE         ASUW         W712         700         105         22.99         0         0         0         0         0           10         ROUNDS         ASUW         WF21         20         54.4         24.25         342         0         0         0         0           115 MM AGS AMMO         ISIM MADS         ASUW         WF21         20         44.2         25         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>_</td> <td>155 MM AGS ENERGY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  | 155 MM AGS ENERGY                       |         |          |           |           |               |             | -       | _     |          |
| 8         155 MM AGS CARLE         ASUW         W/11         700         2.99         30         0         0         0         0         0           155 MM AGS CUN         ASUW         W712         700         105         22.99         0         0         0         0           155 MM AGS AMMO         ASUW         W712         700         105         22.99         0         0         0         0           16 ROUNDS         ASUW         W712         20         54.4         242.5         342         0         0         0         0           11 ROUNDS         ASUW         W721         20         44.2         25         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>7</td><td>STORAGE SUBSYSTEM</td><td>ASUW</td><td>W711</td><td>700</td><td>7.49</td><td>31</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7  | STORAGE SUBSYSTEM                       | ASUW    | W711     | 700       | 7.49      | 31            | 0           | 0       | 0     | 0        |
| 9         HANDLING SYSTEM         ASUW         W712         700         105         22.99         0         0         0         0           155 MM AGS AMMO<br>RUNDSDI         ASUW         WF21         20         54.4         24.25         342         0         0         0           11         BOINDS         ASUW         WF21         20         54.4         24.25         342         0         0         0           11         BOINDS         ASUW         WF21         20         44.2         25         0         0         0         0           15         SMALLERS AMMO<br>LIARMS AMMO<br>LIARMS AMMO<br>CONTROWAGE         ASUW         W760         700         594387         -192024         18.8593         0         0         0         0           13         PRKO STOWAGE         ASUW         W760         700         594387         -192024         18.8593         0         0         0         0         1           14         PKRO STOWAGE         ASUW         W760         700         54487         -192024         18.8533         0         0         0         0         1         1         1         1         1         1         1         1 <td>8</td> <td>155 MM AGS CABLE</td> <td>ASUW</td> <td>W/11</td> <td>/00</td> <td>2.99</td> <td>30</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                            | 8  | 155 MM AGS CABLE                        | ASUW    | W/11     | /00       | 2.99      | 30            | 0           | 0       | 0     | 0        |
| 15 MM AGS AMMO<br>PALLETS 1304         ASUW         WF21         20         54.4         24.25         342         0         0         0           15 SMM AGS AMMO<br>LONDOUT - 304         ASUW         WF21         20         54.4         24.25         342         0         0         0           11         SMARG AMMO<br>LONDOUT - 304         ASUW         WF21         20         44.2         25         0         0         0         0           12         SPARCE RADAR         ASUW         WF21         20         44.2         25         0         0         0         0           12         SPARCE RADAR         ASUW         WF21         20         44.6579         -1.92024         18.8593         0         0         0         0           13         PYRO STOWAGE         ASUW         WF21         20         4.16579         -1.8288         0         0         0         0         0         1.5           14         PYRO         ASUW         W452         400         0.16         10.8         1         0         0         1.5         1.5         3.5         1.2.3         3.4 2.7           16         FLIR         ASUW         W481         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9  | HANDLING SYSTEM                         | ASUW    | W712     | 700       | 105       | 22.99         | 0           | 0       | 0     | 0        |
| PALLETS [304<br>NULLETS [304<br>ASUW         ASUW         WF21         20         54.4         24.25         342         0         0         0           155 MM AGS AMMO<br>[107 D07 - 304<br>SPR573 SIRFACE         ASUW         WF21         20         44.2         25         0         0         0         0           11         ROUNDS         ASUW         W451         400         0.24         9.02818         0         6.50321         0.2         0.2           13         SPACI RADAR         ASUW         W451         400         0.24         9.02818         0         6.50321         0.2         0.2           13         PYRO STOWAGE         ASUW         W760         700         5.94387         -1.92024         18.8593         0         0         0         0           14         PYRO STOWAGE         ASUW         W721         20         4.16579         -1.8288         0         0         0         0         15           15         TISS         ASUW         W452         400         0.16         10.85         0         13.9355         12.3         42.7           18         3X 30M CIGS GUN         ASUW         W452         400         0         15         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 155 MM AGS AMMO                         |         |          |           |           |               |             | -       | -     |          |
| 10         ROUNDS1         ASUW         WF21         20         54.4         24.25         342         0         0         0           15         MAGS AMMO         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 | PALLETS [304                            |         | W IT A I | •         |           |               | 2.12        | 0       | 0     | <u>_</u> |
| IS MM AGS AMMO<br>LOADDUT - 304<br>SPS-73 SURFACE         ASUW         WF21         20         44.2         25         0         0         0         0           12         SPACH RADAR         ASUW         W451         400         0.24         902818         0         6.50321         0.2         0.2           SMALL ARMS AMO<br>SMALL ARMS AMO         ASUW         W760         700         5.94387         -1.92024         18.8593         0         0         0         0           SMALL ARMS AMO         SMAUL ARMS AMO         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 | ROUNDS                                  | ASUW    | WF21     | 20        | 54.4      | 24.25         | 342         | 0       | 0     | 0        |
| I ADADOUT - 304         ASUW         WF21         20         44.2         25         0         0         0           SPS-73 SURFACE         ASUW         W451         400         0.24         9.02818         0         6.50321         0.2         0.2           SMALL ARMS AND         ASUW         W760         700         5.94387         -1.92024         18.8593         0         0         0           SMALL ARMS AMMO-<br>702MM + S0 CAL +         ASUW         W721         20         4.16579         -1.8288         0         0         0         0         0           THERMAL IARMS AMMO-<br>702MM + S0 CAL +         ASUW         W452         400         0.13         10.85         0         0         0         1.5           TISE         ASUW         W452         400         0.16         10.8         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 155 MM AGS AMMO                         |         |          |           |           |               |             |         |       |          |
| I1         RX057SURFACE<br>SEARCH RADAR         RX01V         W121         20         44.2         2.3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 | LOADOUT - 304<br>POUNDS                 | ASUW    | WE21     | 20        | 44.2      | 25            | 0           | 0       | 0     | 0        |
| 12         SEARCH RADAR         ASUW         W451         400         0.24         9.02818         0         6.50321         0.2         0.2           13         SMALL ARMS ANMO-<br>762ML ARMS AMMO-<br>762ML ARMS AMMO AMMO AMMO<br>7762ML ARMS AMMO AMMO<br>7762ML ARMS AMMO AMMO AMMO<br>7762ML ARMS AMMO<br>7762ML ARMS AMMO<br>7762ML ARMS AMMO AMMO AMMO<br>7762ML ARMS AMMO AMMO<br>7777<br>7777<br>7777<br>7777<br>7777<br>7777<br>7777 | 11 | SPS-73 SURFACE                          | ASUW    | WT21     | 20        | 44.2      | 23            | 0           | 0       | 0     | 0        |
| 13         SMALL ARMS ADMO-<br>TOCOM AGE         ASUW         W760         700         5.94387         -1.92024         18.8593         0         0         0           SMALL ARMS ADMO-<br>TOCOM 450 CAL +<br>SENSOR SYSTEM -<br>ST ISS         ASUW         WF21         20         4.16579         -1.8288         0         0         0         0           THERMAL MAGING<br>SENSOR SYSTEM -<br>ST ISS         ASUW         W452         400         0.16         10.8         1         0         0         1.5           16         FLIR         ASUW         W452         400         0.16         10.8         1         0         0         0         0           18         3X 30MM CIGS GUN         ASUW         W481         400         0.76203         -1.8288         0         13.9355         12.3         42.7           18         3X 30MM CIGS GUN         ASUW         W164         100         2.5         14.33         0         0         0         0         0         0           21         SCIGS SYSTEMS         ASUW         W117         700         1.694         37.8         23.84         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 | SEARCH RADAR                            | ASUW    | W451     | 400       | 0.24      | 9.02818       | 0           | 6.50321 | 0.2   | 0.2      |
| SMALL ARMS AMMO-<br>7630MW + 50 CAL +<br>STRUCR SYSTEM -<br>STRUCR SYSTEM -<br>13 TISS         ASUW         WF21         20         4,16579         -1,8288         0         0         0         0           THERMAL IMAGING<br>SENSOR SYSTEM -<br>13 TISS         ASUW         W452         400         0.13         10.85         0         0         0         1           16         FLIR         ASUW         W452         400         0.16         10.85         0         13.9355         12.3         42.7           17         GFCS         ASUW         W481         400         0.76203         -1.8288         0         13.9355         12.3         42.7           18         3 X 30MM CIGS GUN         ASUW         W187         100         9         37.25         0         0         0         0           20         3 X CIGS HOIST         ASUW         W711         700         16.94         37.8         23.84         0         2.0         40           23         X CIGS AMMO HOIST         ASUW         W711         700         0.89         33         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 | PYRO STOWAGE                            | ASUW    | W760     | 700       | 5.94387   | -1.92024      | 18.8593     | 0       | 0     | 0        |
| 14         PYROULL*         ASUW         WF21         20         4.16579         -1.8288         0         0         0           THERMALIMAGING<br>SENSOR SYSTEM-<br>IS         ASUW         W452         400         0.13         10.85         0         0         1           15         TISS         ASUW         W452         400         0.16         10.8         1         0         0         1.5           16         FLIR         ASUW         W481         400         0.76203         -1.8288         0         13.9355         12.3         42.7           18         3X 30MM CIGS GUN         ASUW         W164         100         2.5         14.33         0         0         0         0           90 WDNDATION         ASUW         W184         100         9         37.25         0         0         0         0         0           19 OUNDATION         ASUW         W711         700         16.94         37.8         23.84         0         2.0         400           3 X CIGS AMD HOIST         ASUW         W712         700         4.96         36.47         0         0         0         0           23         XCIGS AMD <td< td=""><td></td><td>SMALL ARMS AMMO -</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | SMALL ARMS AMMO -                       |         |          |           |           |               |             |         |       |          |
| THERMALIMAGING<br>BENSOR SYSTEM-<br>TISS         ASUW         W452         400         0.13         10.85         0         0         1           15         TISS         ASUW         W452         400         0.16         10.85         0         0         0         1.5           16         FLIR         ASUW         W452         400         0.16         10.85         1         0         0         1.5           18         3X 30MM CIGS GUN         ASUW         W441         100         2.5         14.33         0         0         0         0         0           19         FOUNDATION         ASUW         W187         100         9         37.25         0         0         0         0         0           23         X CIGS SYSTEMS         ASUW         W711         700         16.94         37.8         23.84         0         2.0         400           23         X CIGS CASE         SUW         W712         700         4.96         36.47         0         0         0         0           24         AMMO         ASUW         W712         700         4.96         36.47         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 | PYRO                                    | ASUW    | WF21     | 20        | 4.16579   | -1.8288       | 0           | 0       | 0     | 0        |
| SENSOR SYSTEM - IST ITS         ASUW         W452         400         0.13         10.85         0         0         1           16         FLIR         ASUW         W452         400         0.16         10.8         1         0         0         1.5           17         GFCS         ASUW         W452         400         0.76203         -1.8288         0         13.9355         12.3         42.7           18         3X 30MM CIGS GUN         ASUW         W164         100         2.5         14.33         0         0         0         0           19 <foundation< td="">         ASUW         W187         100         9         37.25         0         0         0         0         0           20         3X CIGS SYSTEMS         ASUW         W711         700         0.45         35.5         0         0         0         0         0           21         EXTENTIONS         ASUW         W712         700         0.45         35.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <td< td=""><td>11</td><td>THERMAL IMAGING</td><td>100 11</td><td>0121</td><td>20</td><td>1.10575</td><td>1.0200</td><td></td><td>0</td><td></td><td></td></td<></foundation<>                                                                                                                                                                                                                                                                                                                                                                                            | 11 | THERMAL IMAGING                         | 100 11  | 0121     | 20        | 1.10575   | 1.0200        |             | 0       |       |          |
| 15       TISS       ASUW       W452       400       0.13       10.85       0       0       0       1         16       FLIR       ASUW       W481       400       0.76203       -1.8288       0       13.9355       12.3       42.7         18       3 X 30MM CIGS GUN       ASUW       W164       100       2.5       14.33       0       0       0       0         SWBS 187 2 X 30MM       CIGS GUN       ASUW       W167       100       9       37.25       0       0       0       0       0         19       FOUNDATION       ASUW       W187       100       9       37.25       0       0       0       0       0         20       3 X CIGS SYSTEMS       ASUW       W711       700       16.94       37.8       23.84       0       20       40         21       EXTENTIONS       ASUW       W712       700       0.45       35.5       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | SENSOR SYSTEM -                         |         |          |           |           |               |             |         |       |          |
| 16       FLR       ASUW       W452       400       0.16       10.8       1       0       0       1.5         17       GFCS       ASUW       W481       400       0.76203       -1.8288       0       13.9355       12.3       42.7         18       3 X 30MM CIGS GUN       ASUW       W164       100       2.5       14.33       0       0       0       0         19       FOUNDATION       ASUW       W171       700       16.94       37.8       23.84       0       20       400         3 X CIGS SYSTEMS       ASUW       W711       700       0.89       33       0       0       0       0         21       EXTENTIONS       ASUW       W711       700       0.45       35.5       0       0       0       0         3 X CIGS AMO HOIST       ASUW       W712       700       4.96       36.47       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 | TISS                                    | ASUW    | W452     | 400       | 0.13      | 10.85         | 0           | 0       | 0     | 1        |
| 11       GPCS       ASUW       W481       400       0, //203       -1.8.288       0       13.9355       12.3       42.7         18       3X 30MM CIGS GUN       ASUW       W164       100       2.5       14.33       0       0       0       0         SWBS 187 2 X 30MM<br>CIGS GUN       ASUW       W187       100       9       37.25       0       0       0       0       0         19       FOUNDATION       ASUW       W187       100       9       37.25       0       0       0       0       0         20       3 X CIGS HOIST       ASUW       W711       700       16.94       37.8       23.84       0       20       40         3 X CIGS HOIST       ASUW       W711       700       0.496       36.47       0       0       0       0         3 X CIGS CASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 | FLIR                                    | ASUW    | W452     | 400       | 0.16      | 10.8          | 1           | 0       | 0     | 1.5      |
| 18         3 X 30MM CIGS GUN         ASUW         W164         100         2.5         14.33         0         0         0         0           SWBS 187 Z X 30MM<br>CIGS GUN         ASUW         W187         100         9         37.25         0         0         0         0           20         3 X CIGS SYSTEMS         ASUW         W187         100         9         37.25         0         0         0         0           20         3 X CIGS SYSTEMS         ASUW         W711         700         16.94         37.8         23.84         0         20         40           21         EXTENTIONS         ASUW         W711         700         0.89         33         0         0         0         0           23         X CIGS AMMO HOIST         ASUW         W712         700         4.96         36.47         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17 | GFCS                                    | ASUW    | W481     | 400       | 0.76203   | -1.8288       | 0           | 13.9355 | 12.3  | 42.7     |
| SWBS 187 2X 30MM<br>CIGS GUN         ASUW         W187         100         9         37.25         0         0         0         0           19         FOUNDATION         ASUW         W111         700         16.94         37.8         23.84         0         20         40           3 X CIGS SYSTEMS         ASUW         W711         700         0.89         33         0         0         0         0           21         EXTENTIONS         ASUW         W712         700         0.45         35.5         0         0         0         0         0           3 X CIGS AMMO HOIST         ASUW         W712         700         4.96         36.47         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 | 3 X 30MM CIGS GUN                       | ASUW    | W164     | 100       | 2.5       | 14.33         | 0           | 0       | 0     | 0        |
| 19         FOUNDATION         ASUW         W187         100         9         37.25         0         0         0         0           20         3 X CIGS SYSTEMS         ASUW         W711         700         16.94         37.8         23.84         0         20         40           3 X CIGS HOIST         ASUW         W711         700         0.89         33         0         0         0         0           21         EXTENTIONS         ASUW         W712         700         0.45         35.5         0         0         0         0         0           23         CGS CASE         ASUW         W712         700         4.96         36.47         0         0         0         0         0           24         AMMO         ASUW         WF21         20         4.29         1.5         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | SWBS 187 2 X 30MM                       |         |          |           |           |               |             |         |       |          |
| Description         Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>                                                                                                                                                                                                                                                   | 19 | FOUNDATION                              | ASUW    | W187     | 100       | 9         | 37.25         | 0           | 0       | 0     | 0        |
| 20         20         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 | 3 X CIGS SYSTEMS                        | ASUW    | W711     | 700       | 16.94     | 37.8          | 23.84       | 0       | 20    | 40       |
| 21         EXTENTIONS         ASUW         W711         700         0.89         33         0         0         0         0           22         3 X CIGS AMMO HOIST         ASUW         W712         700         0.45         35.5         0         0         0         0           3 X CIGS CASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 | 3 X CIGS HOIST                          | 1100 11 |          | ,         | 10.5      | 57.0          | 20.01       | Ū       | 20    |          |
| 22         3 X CIGS AMMO HOIST         ASUW         W712         700         0.45         35.5         0         0         0         0         0           3 X CIGS CASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21 | EXTENTIONS                              | ASUW    | W711     | 700       | 0.89      | 33            | 0           | 0       | 0     | 0        |
| 3 X Clos CASE         ASUW         W712         700         4.96         36.47         0         0         0           23         CAPTURE         ASUW         WF21         20         4.29         1.5         0         0         0         0           24         AMMO         ASUW         WF21         20         4.29         1.5         0         0         0         0           25         2 X 7M RHIB         ASUW         W583         500         7         -3         38.02         0         0         0         0           26         1 X MK110 57MM GUN         ASUW         W710         700         18         -1.88976         26.4774         0         36.6         50.2           MK110 57MM GUN HY-         ASUW         WF21         20         16         -8.65632         65.4966         0         0         0           28         0 ARMOR LEVEL II         ASUW         W10         700         37.3905         -1.88976         26.4774         0         36.6         50.2           MK45 SIN AMMO - 600         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0         0 </td <td>22</td> <td>3 X CIGS AMMO HOIST</td> <td>ASUW</td> <td>W712</td> <td>700</td> <td>0.45</td> <td>35.5</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                    | 22 | 3 X CIGS AMMO HOIST                     | ASUW    | W712     | 700       | 0.45      | 35.5          | 0           | 0       | 0     | 0        |
| 22       CATIONE       ASUW       WT12       100       4.30       50.47       0       0       0       0         24       AMMO       ASUW       WF21       20       4.29       1.5       0       0       0       0       0         25       2 X 7M RHIB       ASUW       W583       500       7       -3       38.02       0       0       0       0         26       1 X MK10 57MM GUN       ASUW       W710       700       18       -1.88976       26.4774       0       36.6       50.2         27       600 RDS       ASUW       WF21       20       16       -8.65632       65.4966       0       0       0       0         28       80 ARMOR LEVEL II       ASUW       WF21       20       16       -8.65632       65.4966       0       0       0       0         29       1X MK45 SIN/62 GUN       ASUW       W710       700       37.3905       -1.88976       26.4774       0       36.6       50.2         MK45 SIN/62 GUN HY-       ASUW       W164       100       20.5243       -2.4384       0       0       0       0         30       RDS       ASUW       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 | 3 X CIGS CASE                           | ASUW    | W712     | 700       | 4.96      | 36.47         | 0           | 0       | 0     | 0        |
| 24         AMMO         ASUW         WF21         20         4.29         1.5         0         0         0         0           25         2 X 7M RHIB         ASUW         W583         500         7         -3         38.02         0         0         0         0           26         1 X MK110 57MM GUN         ASUW         W710         700         18         -1.88976         26.4774         0         36.6         50.2           MK110 57MM GUN         ASUW         WF21         20         16         -8.65632         65.4966         0         0         0         0           7         600 RDS         ASUW         WF21         20         16         -8.65632         65.4966         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 | 3 X 30MM CIGS GUN                       | 100 0   | W/12     | 700       | ч.90      | 50.47         | 0           | 0       | 0     | 0        |
| 25       2 X 7M RHIB       ASUW       W583       500       7       -3       38.02       0       0       0         26       1 X MK110 57MM GUN       ASUW       W710       700       18       -1.88976       26.4774       0       36.6       50.2         MK110 57MM AMMO-       ASUW       WF21       20       16       -8.65632       65.4966       0       0       0         27       600 RDS       ASUW       WF21       20       16       -8.65632       65.4966       0       0       0       0         28       80 ARMOR LEVEL II       ASUW       W164       100       10       -2.4384       0       0       0       0       0         29       1X MK45 51N/62 GUN       ASUW       W710       700       37.3905       -1.88976       26.4774       0       36.6       50.2         30       RDS       ASUW       WF21       20       33.6312       -8.65632       65.4966       0       0       0         31       80 ARMOR LEVEL II       ASUW       WF21       20       33.6312       -2.4384       0       0       0       0       0       0       0       0       0       0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 | AMMO                                    | ASUW    | WF21     | 20        | 4.29      | 1.5           | 0           | 0       | 0     | 0        |
| 26         1 X MK110 57MM GUN         ASUW         W710         700         18         -1.88976         26.4774         0         36.6         50.2           MK110 57MM AMMO -<br>27         600 RDS         ASUW         WF21         20         16         -8.65632         65.4966         0         0         0           MK110 57MM GUN HY-<br>28         80 ARMOR LEVEL II         ASUW         W164         100         10         -2.4384         0         0         0         0           29         1X MK45 51N/62 GUN         ASUW         W710         700         37.3905         -1.88976         26.4774         0         36.6         50.2           MK45 51N AMMO - 600         ASUW         W710         700         37.3905         -1.88976         26.4774         0         36.6         50.2           MK45 51N/62 GUN HY-<br>31         80 ARMOR LEVEL II         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0         0           STRUCTURE FRAG         ASUW         W164         100         20.5243         -2.4384         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 | 2 X 7M RHIB                             | ASUW    | W583     | 500       | 7         | -3            | 38.02       | 0       | 0     | 0        |
| MK110 57MM AMMO-<br>600 RDS       ASUW       WF21       20       16       -8.65632       65.4966       0       0       0         MK110 57MM GUN HY-<br>8 0ARMOR LEVEL II       ASUW       W164       100       10       -2.4384       0       0       0       0         29       1X MK45 5IN/62 GUN       ASUW       W164       100       10       -2.4384       0       0       0       0       0         30       RDS       ASUW       W710       700       37.3905       -1.88976       26.4774       0       36.6       50.2         MK45 5IN AMMO - 600<br>RDS       ASUW       WF21       20       33.6312       -8.65632       65.4966       0       0       0         31       80 ARMOR LEVEL II       ASUW       W164       100       20.5243       -2.4384       0       0       0       0       0         31       80 ARMOR LEVEL II       ASUW       W164       100       213.75       25.22       0       0       0       0       0       0       0       0         33       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 | 1 X MK110 57MM GUN                      | ASUW    | W710     | 700       | 18        | -1.88976      | 26.4774     | 0       | 36.6  | 50.2     |
| MK110 57MM GUN HY-<br>28         ASUW         W164         100         10         -2.4384         0         0         0         0         0           29         1X MK45 5IN/62 GUN         ASUW         W710         700         37.3905         -1.88976         26.4774         0         36.6         50.2           MK45 5IN AMMO - 600<br>RDS         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0         0           30         RDS         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>27</td><td>MK110 57MM AMMO -<br/>600 RDS</td><td>ASUW</td><td>WF21</td><td>20</td><td>16</td><td>-8.65632</td><td>65.4966</td><td>0</td><td>0</td><td>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                              | 27 | MK110 57MM AMMO -<br>600 RDS            | ASUW    | WF21     | 20        | 16        | -8.65632      | 65.4966     | 0       | 0     | 0        |
| 29       1X MK45 5IN/62 GUN       ASUW       W710       700       37.3905       -1.88976       26.4774       0       36.6       50.2         30       RDS       ASUW       WF21       20       33.6312       -8.65632       65.4966       0       0       0       0         31       80 ARMOR LEVEL II       ASUW       WF21       20       33.6312       -2.4384       0       0       0       0       0       0       0         31       80 ARMOR LEVEL II       ASUW       W164       100       20.5243       -2.4384       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>28</td> <td>MK110 57MM GUN HY-<br/>80 ARMOR LEVEL II</td> <td>ASUW</td> <td>W164</td> <td>100</td> <td>10</td> <td>-2.4384</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 | MK110 57MM GUN HY-<br>80 ARMOR LEVEL II | ASUW    | W164     | 100       | 10        | -2.4384       | 0           | 0       | 0     | 0        |
| MK45 5IN AMMO - 600<br>RDS         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0           30         RDS         ASUW         WF21         20         33.6312         -8.65632         65.4966         0         0         0         0           31         80 ARMOR LEVEL II         ASUW         W164         100         20.5243         -2.4384         0         0         0         0         0         0           9VLS NON-<br>STRUCTURE FRAG         GMLS         W164         100         213.75         25.22         0         0         0         0         0           33         ARMOR 160 CELLS         GMLS         W164         100         213.75         25.22         0         0         0         0         0           34         ARMOR 128 CELLS         GMLS         W164         100         171         25.22         0         0         0         0         0           35         ARMOR 128 CELLS         GMLS         W164         100         171         25.22         0         0         0         0         0           35         ARMOR 96 CELLS         GMLS         W164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 | 1X MK45 5IN/62 GUN                      | ASUW    | W710     | 700       | 37.3905   | -1.88976      | 26.4774     | 0       | 36.6  | 50.2     |
| MK45 5IN/62 GUN HY-<br>31       ASUW       W164       100       20.5243       -2.4384       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG<br>33       ARMOR 160 CELLS       GMLS       W164       100       213.75       25.22       0       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG<br>34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0       0         STRUCTURE FRAG<br>34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0       0         STRUCTURE FRAG<br>35       ARMOR 96 CELLS       GMLS       W164       100       128.25       25.22       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG<br>35       GMLS       W164       100       128.25       25.22       0       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG<br>35       GMLS       W164       100       128.25       25.22       0       0       0       0       0         9       PVLS FOUNDATIONS       GMLS       W187       100       60.5       28.25       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 | MK45 5IN AMMO - 600<br>RDS              | ASUW    | WF21     | 20        | 33.6312   | -8.65632      | 65.4966     | 0       | 0     | 0        |
| 31       80 ARMOR LEVEL II       ASUW       W164       100       20.5243       -2.4384       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | MK45 5IN/62 GUN HY-                     |         |          | 100       | 0.0.50.40 | <b>a</b> 4004 | <u>^</u>    | 0       | 0     | <u>_</u> |
| 33       ARMOR 160 CELLS       GMLS       W164       100       213.75       25.22       0       0       0       0         34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0         34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0         35       ARMOR 96 CELLS       GMLS       W164       100       128.25       25.22       0       0       0       0         36       I60 CELLS       GMLS       W187       100       60.5       28.25       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31 | 80 ARMOR LEVEL II                       | ASUW    | W164     | 100       | 20.5243   | -2.4384       | 0           | 0       | 0     | 0        |
| 33       ARMOR 160 CELLS       GMLS       W164       100       213.75       25.22       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG       GMLS       W164       100       171       25.22       0       0       0       0       0         34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG       GMLS       W164       100       171       25.22       0       0       0       0         STRUCTURE FRAG       GMLS       W164       100       128.25       25.22       0       0       0       0         35       ARMOR 96 CELLS       GMLS       W164       100       128.25       25.22       0       0       0       0         36       I60 CEULS       GMLS       W187       100       60.5       28.25       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | STRUCTURE FRAG                          |         |          |           |           |               |             |         |       |          |
| PVLS NON-<br>STRUCTURE FRAG       GMLS       W164       100       171       25.22       0       0       0       0         34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0         PVLS NON-<br>STRUCTURE FRAG       GMLS       W164       100       128.25       25.22       0       0       0       0         35       ARMOR 96 CELLS       GMLS       W164       100       128.25       25.22       0       0       0       0         36       160 CELLS       GMLS       W187       100       60.5       28.25       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33 | ARMOR 160 CELLS                         | GMLS    | W164     | 100       | 213.75    | 25.22         | 0           | 0       | 0     | 0        |
| 34       ARMOR 128 CELLS       GMLS       W164       100       171       25.22       0       0       0       0         9VLS NON-<br>STRUCTURE FRAG       STRUCTURE FRAG       100       128.25       25.22       0       0       0       0         35       ARMOR 96 CELLS       GMLS       W164       100       128.25       25.22       0       0       0       0         36       I60 CELLS       GMLS       W187       100       60.5       28.25       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | PVLS NON-                               |         |          |           |           |               |             |         |       |          |
| PVLS NON-<br>STRUCTURE FRAG     GMLS     W104     100     171     23.22     0     0     0     0       35     ARMOR 96 CELLS     GMLS     W164     100     128.25     25.22     0     0     0     0       9VLS FOUNDATIONS     GMLS     W164     100     128.25     25.22     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 | STRUCTURE FRAG                          | GMLS    | W164     | 100       | 171       | 25.22         | 0           | 0       | 0     | 0        |
| STRUCTURE FRAG         GMLS         W164         100         128.25         25.22         0         0         0         0         0           35         ARMOR 96 CELLS         GMLS         W164         100         128.25         25.22         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>54</td> <td>PVLS NON-</td> <td>ONILS</td> <td>W 104</td> <td>100</td> <td>1/1</td> <td>43.44</td> <td>U</td> <td>U</td> <td>U</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54 | PVLS NON-                               | ONILS   | W 104    | 100       | 1/1       | 43.44         | U           | U       | U     | 0        |
| 35         ARMOR 96 CELLS         GMLS         W164         100         128.25         25.22         0         0         0         0           PVLS FOUNDATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | STRUCTURE FRAG                          |         |          |           |           |               |             |         |       |          |
| PVLS FOUNDATIONS         GMLS         W187         100         60.5         28.25         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35 | ARMOR 96 CELLS                          | GMLS    | W164     | 100       | 128.25    | 25.22         | 0           | 0       | 0     | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 | PVLS FOUNDATIONS<br>160 CELLS           | GMI S   | W187     | 100       | 60.5      | 28.25         | 0           | 0       | 0     | 0        |

| <b>Table 12 -</b> | Combat Sy | stem Ship | Synthesis | Characteristics |  |
|-------------------|-----------|-----------|-----------|-----------------|--|

| ID       | NAME                                                       | DV           | WTGRP        | SingleD    | WT<br>(MT)       | HD10<br>(m)    | HAREA<br>(m2) | DHAREA<br>(m2) | CRSKW           | BATKW           |
|----------|------------------------------------------------------------|--------------|--------------|------------|------------------|----------------|---------------|----------------|-----------------|-----------------|
| 37       | PVLS FOUNDATIONS<br>128 CELLS                              | GMLS         | W187         | 100        | 48.4             | 28.25          | 0             | 0              | 0               | 0               |
| 38       | PVLS FOUNDATIONS<br>96 CELLS                               | GMLS         | W187         | 100        | 36.3             | 28.25          | 0             | 0              | 0               | 0               |
| 39       | PVLS COOLING UNIT-<br>VLS MAG 160 CELLS                    | GMLS         | W514         | 500        | 59.48            | -4             | 0             | 0              | 0               | 0               |
| 40       | PVLS COOLING UNIT-<br>VLS MAG 128 CELLS                    | GMLS         | W514         | 500        | 47.58            | -4             | 0             | 0              | 0               | 0               |
| 41       | PVLS COOLING UNIT-<br>VLS MAG 96 CELLS                     | GMLS         | W514         | 500        | 35.69            | -4             | 0             | 0              | 0               | 0               |
| 42       | PVLS COOLING<br>EQUIPMENT<br>OPERATING FLUIDS<br>160 CELLS | GMLS         | W598         | 500        | 27.47            | -4             | 0             | 0              | 0               | 0               |
| 43       | PVLS COOLING<br>EQUIPMENT<br>OPERATING FLUIDS<br>128 CELLS | GMLS         | W598         | 500        | 21.98            | -4             | 0             | 0              | 0               | 0               |
|          | PVLS COOLING<br>EQUIPMENT<br>OPERATING FLUIDS 96           |              |              |            |                  |                |               | _              | _               |                 |
| 44       | CELLS<br>PVLS 160 CELLS                                    | GMLS         | W598         | 500        | 16.48            | -4             | 0             | 0              | 0               | 0               |
| 45<br>46 | PVLS 128 CELLS                                             | GMLS<br>GMLS | W721<br>W721 | 700<br>700 | 628.92<br>503.14 | 28.57<br>28.57 | 1900<br>1520  | 0              | 724.6<br>579.68 | 724.6<br>579.68 |
| 47       | PVLS 96 CELLS                                              | GMLS         | W721         | 700        | 377.35           | 28.57          | 1140          | 0              | 434.76          | 434.76          |
| 48       | PVLS MISSLE<br>HANDLING                                    | GMLS         | W722         | 700        | 0.25             | 14             | 0             | 0              | 0               | 0               |
| 49       | PVLS LOADOUT 160<br>CELLS                                  | GMLS         | WF21         | 20         | 332.375          | 29.13          | 0             | 0              | 0               | 0               |
| 50       | PVLS LOADOUT 128<br>CELLS                                  | GMLS         | WF21         | 20         | 265.9            | 29.13          | 0             | 0              | 0               | 0               |
| 51       | PVLS LOADOUT 96<br>CELLS                                   | GMLS         | WF21         | 20         | 199.43           | 29.13          | 0             | 0              | 0               | 0               |
| 52       | KEI LS FOUNDATIONS<br>8 CELLS                              | GMLS         | W187         | 100        | 12.1             | 28.25          | 0             | 0              | 0               | 0               |
| 53       | KEI LS NON-<br>STRUCTURE FRAG<br>ARMOR 8 CELLS             | GMLS         | W164         | 100        | 42.25            | 25.22          | 0             | 0              | 0               | 0               |
| 54       | KEI LS COOLING UNIT<br>8 CELLS                             | GMLS         | W514         | 500        | 12.69            | -4             | 0             | 0              | 0               | 0               |
|          | KEI LS COOLING<br>EQUIPMENT<br>OPERATING FLUIDS 8          |              |              |            |                  |                |               |                |                 |                 |
| 55       | CELLS<br>KELLS & CELLS                                     | GMLS         | W598         | 500        | 5.4              | -4             | 0             | 0              | 0               | 0               |
| 56       | KEI ES 8 CELES                                             | GMLS         | W721         | 700        | 120              | 28.57          | 1140          | 0              | 434.76          | 434.76          |
| 57       | LOADOUT 8 CELLS<br>TOTAL SHIP                              | GMLS         | WF21         | 20         | 60               | 29.13          | 0             | 0              | 0               | 0               |
| 59       | COMPUTING ENVIR<br>SYSTEM                                  | CCC          | W412         | 400        | 73.38            | -6.93          | 763.6         | 0              | 435.68          | 435.68          |
| 60       | ENHANCED<br>RADIO/EXCOMM                                   | CCC          | W441         | 400        | 101.93           | 11.31          | 0             | 465.17         | 227.89          | 228.19          |
| 61       | BASIC<br>RADIO/EXCOMM                                      | CCC          | W440         | 400        | 32.9098          | -2.42926       | 117.987       | 8.82579        | 93.3            | 96.4            |
| 62       | TOMAHAWK WEAPON<br>CONTROL SYSTEM                          | CCC          | W482         | 400        | 5.70002          | -2.37744       | 0             | 0              | 11.5            | 11.5            |
| 63       | UNDERWATER<br>COMMUNICATIONS                               | CCC          | W442         | 400        | 2.88             | 21.68          | 0             | 0              | 0               | 0               |
| 64       | VISUAL & AUDIBLE<br>SYSTEMS                                | CCC          | W443         | 400        | 0.32             | 27.44          | 0             | 0              | 0               | 0               |
| 65       | SECURITY<br>EQUIPMENT SYSTEMS                              | CCC          | W446         | 400        | 0.88             | 25.63          | 0             | 0              | 0               | 0               |
| 67       | DUAL FREQUENCY<br>BOW ARRAY SONAR<br>DOME STRUCTURE        | ASW          | W165         | 100        | 22.5             | 14.4           | 0             | 0              | 0               | 0               |
|          | DUAL FREQUENCY<br>BOW ARRAY SONAR                          |              |              |            |                  |                |               | -              | -               |                 |
| 68       | ELEX                                                       | ASW          | W463         | 400        | 26.73            | 21.1           | 104.2         | 0              | 94.3            | 94.3            |
| 69       | DUAL FREQUENCY                                             | ASW          | W636         | 600        | 10.1             | 16             | 0             | 0              | 0               | 0               |

MK 36 SRBOC DECOY LAUNCHING SYSTEM -

EWS - ACTIVE ECM -SLQ/32R WF21

W471

AAW

AAW

20

400

3.06

9.88

34.5

34.3

0

0

0

6.5

0

0.32

0

0.32

DLS

99

100

|     |                                      |         |          |         | WT           | HD10     | HAREA   | DHAREA |       |       |
|-----|--------------------------------------|---------|----------|---------|--------------|----------|---------|--------|-------|-------|
| ID  | NAME                                 | DV      | WTGRP    | SingleD | (MT)         | (m)      | (m2)    | (m2)   | CRSKW | BATKW |
|     | BOW ARRAY SONAR<br>HULL DAMP         |         |          |         |              |          |         |        |       |       |
|     | SQS-56 SONAR DOME                    |         |          |         |              |          |         |        |       |       |
| 70  | STRUCTURE                            | ASW     | W165     | 100     | 7.43         | 15.4     | 0       | 0      | 0     | 0     |
| 71  | SQS-56 SONAR ELEX                    | ASW     | W462     | 400     | 5.88         | 21.1     | 126.86  | 0      | 19.7  | 19.7  |
| 72  | SQS-56 SONAR HULL<br>DAMPING         | ASW     | W636     | 600     | 2.01         | 16       | 0       | 0      | 0     | 0     |
| 72  | SQS-53 SONAR DOME                    | ACIU    | W165     | 100     | 057          | 14       | 0       | 0      | 0     | 0     |
| 73  | STRUCTURE                            | ASW     | W165     | 100     | 85.7<br>67.4 | 21.1     | 271.7   | 0      | 100   | 100   |
| / 4 | SOS-53 SONAR ELEX                    | Abw     | W 402    | 400     | U7.7         | 21.1     | 2/1./   | 0      | 100   | 100   |
| 75  | DAMPING                              | ASW     | W636     | 600     | 20.1         | 16       | 0       | 0      | 0     | 0     |
| 76  | MINEHUNTING SONAR                    | ASW     | W462     | 400     | 2.1          | 16.4     | 21      | 0      | 3.7   | 3.7   |
|     | ISUW - INTEGRATED                    |         |          |         |              |          |         |        |       |       |
| 77  | UNDERSEA WARFARE                     | ASW     | W483     | 400     | 4 87703      | -3 3528  | 0       | 0      | 19.5  | 19.5  |
| 78  | SOR-19 TACTAS                        | ASW     | W462     | 400     | 23.6739      | 8.8904   | 43.9431 | 0      | 26.6  | 26.6  |
| 79  | AN/SLQ-25 NIXIE                      | ASW     | W473     | 400     | 3.65777      | 8.8904   | 15.9793 | 0      | 3     | 4.2   |
|     | BATHYTHERMO-<br>GRAPH                |         |          |         |              |          |         |        |       |       |
| 80  |                                      | ASW     | W465     | 400     | 2.63         | 31.65    | 0       | 0      | 0     | 0     |
| 81  | TORPEDO DECOYS                       | ASW     | W473     | 400     | 5.09         | 25.61    | 46      | 0      | 2.4   | 2.4   |
| 82  | C+S OPERATING<br>FLUIDS              | ASW     | W498     | 400     | 72.31        | 16.75    | 0       | 0      | 0     | 0     |
|     | 2X MK32 SVTT ON                      |         |          | -       |              |          | 0       | 0      | 0.6   |       |
| 83  | DECK                                 | ASW     | W750     | 700     | 2.74333      | 0.9144   | 0       | 0      | 0.6   | 1.1   |
|     | LIGHTWEIGHT ASW                      |         |          |         |              |          |         |        |       |       |
| 84  | TORPEDOES                            | ASW     | WF21     | 20      | 1.38182      | 0.9144   | 0       | 0      | 0     | 0     |
| 86  | VOLUME SEARCH<br>RADAR [S BAND]- VSR | AAW     | W456     | 400     | 198          | 7.5      | 0       | 304    | 2100  | 2100  |
|     | GLYCOL WATER                         |         |          |         |              |          |         |        |       |       |
|     | COOLING SYSTEM                       |         |          |         |              |          | 0       | 100    | 1000  | 1000  |
| 8/  | FOR VSR                              | AAW     | W532     | 500     | 54.04        | 4.5      | 0       | 100    | 1900  | 1900  |
|     | RADAR [S BAND]-                      |         |          |         |              |          |         |        |       |       |
| 88  | VSR+                                 | AAW     | W456     | 400     | 256          | 7.5      | 0       | 393    | 2714  | 2714  |
|     | GLYCOL WATER                         |         |          |         |              |          |         |        |       |       |
| 89  | FOR VSR+                             | AAW     | W532     | 500     | 98 76        | 4 5      | 0       | 183    | 2300  | 2300  |
| 07  | VOLUME SEARCH                        | 11111   | 11352    | 500     | 20.70        | ч.5      | 0       | 105    | 2300  | 2500  |
|     | RADAR [S BAND]-                      |         |          |         |              |          |         |        |       |       |
| 90  | VSR++                                | AAW     | W456     | 400     | 398          | 7.5      | 0       | 610    | 4181  | 4181  |
|     | COOLING SYSTEM                       |         |          |         |              |          |         |        |       |       |
| 91  | FOR VSR++                            | AAW     | W532     | 500     | 158.13       | 4.5      | 0       | 293    | 3500  | 3500  |
|     | VOLUME SEARCH                        |         |          |         |              |          |         |        |       |       |
| 02  | RADAR [S BAND]-                      | A A 117 | W/456    | 400     | 125          | 75       | 0       | 651    | 1160  | 1160  |
| 92  | GLYCOL WATER                         | AAW     | w430     | 400     | 423          | 1.3      | U       | 031    | 4402  | 4402  |
|     | COOLING SYSTEM                       |         |          |         |              |          |         |        |       |       |
| 93  | FOR VSR+++                           | AAW     | W532     | 500     | 189.76       | 4.5      | 0       | 352    | 4200  | 4200  |
|     | AN/SPY-3 MFR -                       |         |          |         |              |          |         |        |       |       |
| 94  | RADAR                                | AAW     | W456     | 400     | 75.71        | 10.5     | 0       | 108 68 | 382.7 | 382.7 |
| 71  | GLYCOL WATER                         |         | ., 130   | 100     | , , , , 1    | 10.0     | v       | 100.00 | 502.1 | 502.1 |
| a - | COOLING SYSTEM                       |         |          |         |              | <b>.</b> |         |        |       |       |
| 95  | FOR SPY-3 MFR / EWS                  | AAW     | W532     | 500     | 22.92        | 34.33    | 0       | 25.14  | 300   | 300   |
|     | AEGIS BMD 2014<br>COMBAT SYSTEM      |         |          |         |              | 15.4027  |         |        |       |       |
| 96  | AND CIC                              | AAW     | W411     | 400     | 17.6183      | 2        | 184.784 | 0      | 74.5  | 74.5  |
| 97  | CIFF-SD                              | AAW     | W455     | 400     | 4.47         | 49.12    | 0       | 0      | 2.7   | 2.4   |
|     | MK53 NULKA DECOY                     |         |          |         |              |          |         |        |       |       |
| 00  | LAUNCHING SYSTEM -                   | A A 117 | WE01     | 20      | 0.02         | 31.5     | 0       | 0      | 0     | 0     |
| 20  | DLO                                  |         | VV 1°∠ 1 | 20      | 0.02         | 51.5     | 0       | 0      | 0     | U     |

| _ID | NAME                                                                 | DV      | WTGRP | _SingleD_ | WT<br>(MT) | HD10<br>(m)  | HAREA<br>(m2) | DHAREA<br>(m2) | CRSKW | BATKW |
|-----|----------------------------------------------------------------------|---------|-------|-----------|------------|--------------|---------------|----------------|-------|-------|
| 101 | IRST - INFRARED<br>SENSING & TRACKING                                | AAW     | W459  | 400       | 0          | 37 35        | 0             | 0              | 0     | 0     |
| 101 | DUAL HELO/UAV DET<br>- 2X SH60R HANGAR<br>UPPER LEVEL 17 X 15.7      | LAMPS   | NONE  | 100       | 0          | 16.5         | 0             | 266.9          | 0     | 0     |
| 104 | DUAL HELO/UAV DET<br>- 2X SH60R HANGAR<br>LOWER LEVEL 17 X           | LANDO   | NONE  | 100       | 0          | 165          |               | 266.0          | 0     | 0     |
| 104 | 15.7<br>DUAL HELO/UAV DET                                            | LAMPS   | NONE  | 100       | 0          | 16.5         | 0             | 266.9          | 0     | 0     |
| 105 | - FUEL SYSTEM<br>DUAL HELO/UAV DET                                   | LAMPS   | W542  | 500       | 21         | 23.06        | 0             | 2.77           | 0     | 0     |
| 106 | -<br>HNDLG/SUPPORT/MAI<br>NT/WKSP - AREA<br>ONLY                     | LAMPS   | NONE  | 500       | 0          | 16.5         | 0             | 34.1           | 0     | 0     |
| 107 | DUAL HELO/UAV DET<br>- RAST/RAST<br>CONTROL - AREA<br>ONI Y          | LAMPS   | NONE  | 500       | 0          | 16.5         | 44.4          | 0              | 0     | 0     |
| 107 | DUAL HELO/UAV DET                                                    | Linning | HOILE | 200       | Ŭ          | 10.5         |               |                | Ŭ     | 0     |
| 108 | -<br>HANDLING/SERVICE/S<br>TOWAGE - WEIGHT<br>ONLY                   | LAMPS   | W588  | 500       | 26.04      | 31.21        | 0             | 0              | 0     | 0     |
| 109 | DUAL HELO/UAV DET<br>- MAGAZINE<br>HANDLING                          | LAMPS   | W712  | 700       | 0.001      | 1.45         | 0             | 0              | 0     | 0     |
| 110 | DUAL HELO/UAV DET<br>- MAGAZINE 12-MK46<br>24-HELLFIRE 6-<br>PENQUIN | LAMPS   | WF22  | 20        | 0.001      | 1.5          | 0             | 57.46          | 0     | 0     |
| 111 | DUAL HELO/UAV DET<br>- VTUAV                                         | LAMPS   | WF23  | 20        | 3.47       | 1            | 0             | 0              | 0     | 0     |
| 112 | DUAL HELO/UAV DET<br>- 2X SH60R                                      | LAMPS   | WF23  | 20        | 10.66      | 1            | 0             | 0              | 0     | 0     |
| 113 | DUAL HELO/UAV DET<br>- SUPPORT/SPARES                                | LAMPS   | WF26  | 20        | 0          | 1            | 0             | 158.08         | 0     | 0     |
| 114 | SONOBOUY<br>MAGAZINE STOWAGE<br>- NONE IN PARENT                     | LAMPS   | W713  | 700       | 0.001      | 1.5          | 0             | 0              | 0     | 0     |
| 115 | SONOBOUY<br>MAGAZINE - 300<br>BUOYS - 88 MARKERS                     | LAMPS   | WF22  | 20        | 0.001      | 1.5          | 0             | 10.12          | 0     | 0     |
| 116 | SQQ-28 LAMPS MK III<br>ELECTRONICS                                   | LAMPS   | W460  | 400       | 3.51552    | 0.9144       | 0             | 0              | 5.3   | 5.5   |
| 117 | LAMPS<br>MKIII:AVIATION FUEL<br>[JP-5]                               | LAMPS   | WF42  | 40        | 65.4334    | 20.4624      | 0             | 0              | 0     | 0     |
| 118 | LAMPS MKIII:HELO IN-<br>FLIGHT REFUEL SYS                            | LAMPS   | W542  | 500       | 7.72196    | -4.572       | 4.08773       | 0              | 1.3   | 1.3   |
| 119 | BATHYTHERMOGRAP<br>H PROBES                                          | LAMPS   | WF29  | 20        | 0.21337    | 24.3364<br>1 | 0             | 0              | 0     | 0     |

## 3.2 Design Space

Table 13 shows the complete design space to be explored as represented by 24 design variables (DVs). The design variables are either continuous variables (options 1-8, 15, 18), or discrete options. Each design variable is meant to represent a design space value that would be consistent with a cruiser and the CGX-BMD mission. DVs 1-9 are hullform options and were discussed in section 3.1.1. DVs 10-14 are propulsion and electrical machinery options and were discussed in section 3.1.2. DV 18 represents the automation level of the ship, as discussed in section 3.1.3. DVs 19-24 are combat system options and were discussed in section 3.1.4.

| Table 13 - Design Variables (DV | DVs) |
|---------------------------------|------|
|---------------------------------|------|

| DV<br># | DV Name | Description          | Design Space |
|---------|---------|----------------------|--------------|
| 1       | LWL     | Waterline Length     | 180-300m     |
| 2       | LtoB    | Length to Beam ratio | 7.0-10.0     |

# CGX/BMD Design – VT Team 2

| DV<br># | DV Name    | Description                  | Design Space                                                                                                   |  |  |  |  |
|---------|------------|------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| #       | LtoD       | Length to Depth ratio        | 10 75-17 8                                                                                                     |  |  |  |  |
| 4       | BtoT       | Beam to Draft ratio          | 2 8-3 2                                                                                                        |  |  |  |  |
| 5       | Ср         | Prismatic coefficient        | 0.56 - 0.64                                                                                                    |  |  |  |  |
| 6       | Cx         | Maximum section coefficient  | 0.75 - 0.85                                                                                                    |  |  |  |  |
| 7       | Crd        | Raised deck coefficient      | 0.7 - 0.8                                                                                                      |  |  |  |  |
| 8       | VD         | Deckhouse volume             | 10,000-20,000 m <sup>3</sup>                                                                                   |  |  |  |  |
| 9       | HULLtype   | Hull: Flare or DDG 1000      | 1: flare= 10 deg; 2: flare = DDG 1000                                                                          |  |  |  |  |
| 10      | PGM        | Power Generation Module      | Option 1) 2xLM2500+, AC synchronous, 4160 VAC                                                                  |  |  |  |  |
|         |            |                              | Option 2) 2xLM2500+, AC synchronous, 13800 VAC                                                                 |  |  |  |  |
|         |            |                              | Option 3) 2xLM2500+, SCH generator, 4160 VAC                                                                   |  |  |  |  |
|         |            |                              | Option 5) 3vI M2500+, AC synchronous 4160 VAC                                                                  |  |  |  |  |
|         |            |                              | Option 6) 3xLM2500+, AC synchronous, 13800 VAC                                                                 |  |  |  |  |
|         |            |                              | Option 7) 3xLM2500+, SCH generator, 4160 VAC                                                                   |  |  |  |  |
|         |            |                              | Option 8) 3xLM2500+, SCH generator, 13800 VAC                                                                  |  |  |  |  |
|         |            |                              | Option 9) 2xMT30, AC synchronous, 4160 VAC *(DDG 1000)                                                         |  |  |  |  |
|         |            |                              | Option 10) 2xMT30, AC synchronous, 13800 VAC                                                                   |  |  |  |  |
|         |            |                              | Option 12) 2xM130, SCH generator, 13800 VAC                                                                    |  |  |  |  |
|         |            |                              | Option 12) 2XMT30, SCH generator, 15000 VAC                                                                    |  |  |  |  |
|         |            |                              | Option 14) 3xMT30, AC synchronous, 13800 VAC                                                                   |  |  |  |  |
|         |            |                              | Option 15) 3xMT30, SCH generator, 4160 VAC                                                                     |  |  |  |  |
|         |            |                              | Option 16) 3xMT30, SCH generator, 13800 VAC                                                                    |  |  |  |  |
|         |            |                              | Option 17) 4xMT30, AC synchronous, 4160 VAC                                                                    |  |  |  |  |
|         |            |                              | Option 18) 4xM130, AC synchronous, 13800 VAC                                                                   |  |  |  |  |
|         |            |                              | Option 20) 4xMT30, SCH generator, 13800 VAC                                                                    |  |  |  |  |
| 11      | SPGM       | Secondary Power Generation   | Option 1) none                                                                                                 |  |  |  |  |
|         |            | Module                       | Option 2) 2xLM500G, geared, w/AC sync *(DDG 1000)                                                              |  |  |  |  |
|         |            |                              | Option 3) 2xMC5.0 Fuel Cells                                                                                   |  |  |  |  |
|         |            |                              | Option 4) 2xMC8.5 Fuel Cells                                                                                   |  |  |  |  |
|         |            |                              | Option 5) 2xPEM5.0 Fuel Cells                                                                                  |  |  |  |  |
|         |            |                              | Option 6) 2xPEM8.5 Fuel Cells                                                                                  |  |  |  |  |
|         |            |                              | Option 8) 2xPC 2/18 Diesel                                                                                     |  |  |  |  |
| 12      | PROPtype   | Propulsor Type               | Option 1) 2xFPP *(DDG 1000)                                                                                    |  |  |  |  |
|         |            |                              | Option 2) 2xPods                                                                                               |  |  |  |  |
|         |            |                              | Option 3) 1xFPP + SPU (7.5MW)                                                                                  |  |  |  |  |
| 13      | DISTtype   | Power Distribution Type      | Option 1) AC ZEDS                                                                                              |  |  |  |  |
|         |            |                              | Option 2) DC ZEDS *(DDG 1000)                                                                                  |  |  |  |  |
| 14      | PMM        | Propulsion Motor Module      | Option 1) AIM (Advanced Induction Motor) *(DDG 1000)                                                           |  |  |  |  |
|         |            |                              | Option 2) PMM (Permanent Magnet Motor)                                                                         |  |  |  |  |
| 15      | Тя         | Provisions Duration          | 60-75 days                                                                                                     |  |  |  |  |
| 16      | Ncps       | Collective Protection System | 0 = none, 1 = partial, 2 = full                                                                                |  |  |  |  |
| 17      | Ndegaus    | Degaussing System            | 0 = none, 1 = degaussing system                                                                                |  |  |  |  |
| 18      | CMan       | Manning Reduction and        | 0.5 - 0.1                                                                                                      |  |  |  |  |
|         |            | Automation Factor            |                                                                                                                |  |  |  |  |
| 19      | AAW/BMD/   | Anti-Air Warfare             | Option 1) SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014 Combat                                                        |  |  |  |  |
|         | STK        | Alternatives                 | System, CIFF-SD, SLQ/32(R) improved, MK36 SRBOC with                                                           |  |  |  |  |
|         |            |                              | NULNA<br>Ontion 2) SPY-3/VSR++ DBR IRST AFGIS BMD 2014 Combat                                                  |  |  |  |  |
|         |            |                              | System, CIFF-SD, SLO/32(R) improved. MK36 SRBOC with                                                           |  |  |  |  |
|         |            |                              | NULKA                                                                                                          |  |  |  |  |
|         |            |                              | Option 3) SPY-3/VSR+ DBR, IRST, AEGIS BMD 2014 Combat                                                          |  |  |  |  |
|         |            |                              | System, CIFF-SD, SLQ/32(R) improved, MK36 SRBOC with                                                           |  |  |  |  |
|         |            |                              | NULKA                                                                                                          |  |  |  |  |
|         |            |                              | Option 4) SPY-5/VSK (DDG-1000 3L) DBK, IKST, AEGIS BMD<br>2014 Combat System CIEE SD, SL O/22(D) improved MK24 |  |  |  |  |
|         |            |                              | SRBOC with NULKA                                                                                               |  |  |  |  |
| 20      | ASUW/ NSFS | Anti-Surface Warfare         | Option 1) 1x155m AGS, SPS-73, Small Arms, TISS, FLIR, GFCS,                                                    |  |  |  |  |

| DV<br># | DV Name | Description                | Design Space                                                   |
|---------|---------|----------------------------|----------------------------------------------------------------|
|         |         | Alternatives               | 2x7m RHIB, MK46 Mod2 3x CIGS                                   |
|         |         |                            | Option 2) 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS, FLIR,    |
|         |         |                            | GFCS, 2x7m RHIB, MK46 Mod2 3x CIGS                             |
|         |         |                            | Option 3) 1xMK110 57mm gun, SPS-73, Small Arms, TISS, FLIR,    |
|         |         |                            | GFCS, 2x7m RHIB, MK46 Mod2 3x CIGS                             |
| 21      | ASW/MCM | Anti-Submarine Warfare     | Option 1) Dual Frequency Bow Array, IUSW, NIXIE, 2xSVTT, mine- |
|         |         | Alternatives               | avoidance sonar                                                |
|         |         |                            | Option 2) SQS-53C, NIXIE, SQR-19 TACTAS, IUSW, 2xSVTT,         |
|         |         |                            | mine-avoidance sonar                                           |
|         |         |                            | Option 3) SQS-56, NIXIE, IUSW, 2xSVTT, mine-avoidance sonar    |
|         |         |                            | Option 4) NIXIE, 2xSVTT, mine-avoidance sonar                  |
| 22      | CCC     | Command Control            | Option 1) Enhanced CCC, TSCE                                   |
|         |         | Communication Alternatives | Option 2) Basic CCC, TSCE                                      |
| 23      | LAMPS   | LAMPS Alternatives         | Option 1) 2 x Embarked LAMPS w/Hangar, 2xVTUAV                 |
|         |         |                            | Option 2) LAMPS haven (flight deck), 2xVTUAV                   |
|         |         |                            | Option 3) in-flight refueling, 2xVTUAV                         |
| 24      | GMLS    | Guided Missile Launching   | Option 1) 160 cells MK57 + 8 cells KEI                         |
|         |         | System Alternatives        | Option 2) 160 cells MK57                                       |
|         |         |                            | Option 3) 120 cells MK57                                       |
|         |         |                            | Option 4) 80 cells MK 57                                       |

## 3.3 Ship Synthesis Model

The ship synthesis model was integrated and run in Phoenix Integration's Model Center. The Model Center model is comprised of many different modules. Each module extracts variables from the initial input module or from preceding modules, runs FORTRAN code to calculate more variables, and outputs variables for use by subsequent modules. Figure 24 shows the synthesis model in Model Center. The boxes represent modules, which proceed from top left to bottom right, and the arrows represent variables passed from module to module.



Figure 24 - Ship Synthesis Model in Model Center

The input module simply passes starting design variable values to other modules. These values are a set of selections from the defined design space. There are thirteen other modules: Combat, Propulsion, Hull, Space Available, Electric, Resistance, Weight, Tankage, Space Required, Feasibility, Cost, OMOE and Risk. The Combat module calculates variables relating to combat options (AAW, ASUW, etc.). The Combat module

outputs weight group, vertical center of gravity (VCG), electric power, and area data for the combat systems. The Propulsion module calculates variables relating to propulsion power, required dimensions, required intake/exhaust area, SFC, etc. The Hull module uses a parametric model of the ship, calculating displacement and surface area using simple geometric equations. The Space Available module estimates how much space is available inside the hull form, using key characteristics from the hull module. The Electric module approximates the amount of ship service power and total number of accommodations the ship requires. The Resistance module estimates shaft horsepower needed to move at sustained and endurance speed. It also calculates propeller diameter needed, as well as the sustained speed. The Weight module calculates and estimates the total weight, VCGs, KG and GM of the ship by SWBS group. The Tankage module estimates the total tank space required, and the Space Required module estimates the total space required by the ship's various systems. It also approximates the deckhouse space required and available. The Feasibility module is important because it calculates various feasibility ratio parameters and determines whether or not the ship is a feasible design. The Cost module estimates cost values for the ship including lead and follow ship costs. The OMOE (overall measure of effectiveness) module calculates the overall effectiveness of the ship. The OMOE is further described in section 3.4.1. The Risk systems module calculates a level of risk associated with the ship design.

## **3.4 Objective Attributes**

#### 3.4.1 Overall Measure of Effectiveness (OMOE)

The overall measure of effectiveness is a single parameter ranging from zero to one. This parameter quantifies the performance of a ship with respect to specific mission requirements. To obtain the value of the OMOE, the following equation is used:

$$OMOE = g[VOP_i(MOP_i)] = \sum_i w_i VOP_i(MOP_i)$$
(1)

In this equation, MOP stands for measure of performance, which is a system performance metric in required capabilities which is independent of the mission. VOP stands for value of performance, which is a figure of merit index from zero to one specifying a MOP value to a mission area for a mission type. The variable *w* is a weighting factor that is applied to the measure of performance. It places more emphasis on important components with respect to certain missions. Table 14 lists combat system MOPs with its goal and thresholds for CGX. The threshold value is the minimum components or values a ship must have to perform the mission, and its goal is the best components or value.

| MOP |                    |                   |                      |                       |
|-----|--------------------|-------------------|----------------------|-----------------------|
| #   | MOP                | Metric            | Goal                 | Threshold             |
| 1   | BMD                | AAW, GMLS, CCC    | BMD=1 GMLS=1 CCC=1   | BMD=4 GMLS=4          |
|     |                    |                   |                      | CCC=2                 |
| 2   | AAW                | AAW, GMLS, CCC    | AAW=1 GMLS=1 CCC=1   | AAW=3 GMLS=2          |
|     |                    |                   |                      | CCC=2                 |
| 3   | ASUW/NSFS          | ASUW, LAMPS,      | ASUW=1 LAMPS=1       | ASUW=2 LAMPS=3        |
|     |                    | CCC               | CCC=1                | CCC=2                 |
| 4   | ASW/MCM            | ASW, LAMPS,       | ASW=1 LAMPS=1 CCC=1  | ASW=3 LAMPS=3         |
|     |                    | CCC, MCM          | MCM=1                | CCC=2 MCM=1           |
| 5   | CCC                | CCC               | CCC=1                | CCC=2                 |
| 6   | ISR/SOF            | LAMPS, CCC        | LAMPS=1 CCC=1        | LAMPS=3 CCC=2         |
| 7   | Surge Speed        | knots             | 35 knt               | 20 knts               |
| 8   | Vs                 | knots             | 35 knt               | 30 knts               |
| 9   | Е                  | nm                | 8000nm               | 5000nm                |
| 10  | Ts                 | days              | 75                   | 60                    |
| 11  | Seakeeping         | McCreight index   | 20                   | 10                    |
| 12  | Surge Refuel       | Number of refuels | 2                    | 3                     |
| 13  | VUL                | Redundancy        |                      | IPS                   |
| 14  | NBC                | CPS option        | Ncps=2               | Ncps=0                |
| 15  | RCS                | Deckhouse volume  | $VD=3000m^{3}$       | VD=5000m <sup>3</sup> |
| 16  | Acoustic Signature | SPGM              | SPGM=1               | SPGM=8                |
| 17  | IR Signature       | PGM, SPGM         | PGM=2xTurbine SPGM=1 | PGM=3xTurbine         |
|     |                    |                   |                      | SPGM=2-8              |
| 18  | Magnetic Signature | Degaussing option | Ndegaus = 1          | Ndegaus = 0           |

| Table  | 14 -  | MOP   | Table |
|--------|-------|-------|-------|
| I adic | T.4 - | IVIUI | Lanc  |

Table 15 summarizes each ROC, MOP and DV. Design variables (DVs) correspond with CGX/BMD ROCs which are specified in Table 4. To calculate the weighting factors, an analytical hierarchy process (AHP) is used.

| Table 15 - ROC/MOP/DV Summary |                                                     |              |                   |             |             |  |
|-------------------------------|-----------------------------------------------------|--------------|-------------------|-------------|-------------|--|
| ROCs                          | Description                                         | MOP          | <b>Related DV</b> | Goal        | Threshold   |  |
|                               |                                                     |              |                   | AAW=1       | AAW=3       |  |
| AAW 1                         | Provide anti-air defense                            | AAW          | AAW, GIVILS,      | GMLS=1      | GMLS=2      |  |
|                               |                                                     |              | SEW               | SEW=1       | SEW=1       |  |
|                               |                                                     |              |                   | AAW=1       | AAW=3       |  |
| AAW 1.1                       | Provide area anti-air defense                       | AAW          | AAW, GMLS         | GMLS=1      | GMLS=2      |  |
|                               |                                                     |              | SEW               | SEW=1       | SEW=1       |  |
|                               |                                                     |              |                   | AAW=1       | AAW=3       |  |
| AAW 1.2                       | Support area anti-air defense                       | AAW          | AAW, GMLS         | GMLS=1      | GMLS=2      |  |
|                               | 11                                                  |              | SEW               | SEW=1       | SEW=1       |  |
|                               | D 11 1/ / 1010                                      | AAW, RCS,    | SSD, VD,          | SDS=1       | SDS=2       |  |
| AAW 1.3                       | Provide unit anti-air self defense                  | IR           | PSYS              | 1500m3      | 2000m3      |  |
| A A 117 O                     | Provide anti-air defense in cooperation with other  | A A)A/       | 000               | 000 4       | 000.0       |  |
| AAW 2                         | forces                                              | AAVV         |                   | 000=1       | 000=2       |  |
| AAW 3                         | Support Theater Ballistic Missile Defense (TBMD)    | AAW          | CCC               | CCC=1       | CCC=2       |  |
| A AW 5                        | Drovide persive and soft kill anti-air defense      | AAW, IR,     | SEW, VD,          | SEW=1       | SEW=1       |  |
| AAW 3                         | Provide passive and soft kill anti-all defense      | RCS          | PSYS              | 1500m3      | 2000m3      |  |
| AAWG                          | Detect identify and treak air targets               | AAW, IR,     | SEW, VD,          | SEW=1       | SEW=1       |  |
| AAW 0                         | Detect, identify and track all targets              | RCS          | PSYS              | 1500m3      | 2000m3      |  |
| AAWO                          | Engage airborne threats using surface-to-air        | AAW, IR,     | SEW, VD,          | SEW=1       | SEW=1       |  |
| AAW 3                         | armament                                            | RCS          | PSYS              | 1500m3      | 2000m3      |  |
|                               | Conduct day and night helicopter, Short/Vertical    | AS\N/ ASLIN/ |                   |             |             |  |
| AMW 6                         | Take-off and Landing and airborne autonomous        | FSO (NCO)    | LAMPS             | LAMPS=1     | LAMPS=3     |  |
|                               | vehicle (AAV) operations                            | 100 (1000)   |                   |             |             |  |
| AMW 63                        | Conduct all-weather helo ons                        | ASW, ASUW,   | LAMPS             | LAMPS-1     | LAMPS-3     |  |
| 710700.5                      | Conduct un weuther nero ops                         | FSO (NCO)    |                   | E/ (WII 0=1 | E/ (WI 0=0  |  |
| AMW 64                        | Serve as a helo hangar                              | ASW, ASUW,   | LAMPS             | LAMPS=1     | LAMPS=3     |  |
| 710101 0.1                    | Serve us a nero nungar                              | FSO (NCO)    |                   | E 0=1       | 2, 1111 0-0 |  |
| AMW 6.5                       | Serve as a helo haven                               | ASW, ASUW,   | LAMPS             | LAMPS=1     | LAMPS=3     |  |
|                               |                                                     | FSO (NCO)    | _                 |             |             |  |
| AMW 6.6                       | Conduct helo air refueling                          | ASW, ASUW,   | LAMPS             | LAMPS=1     | LAMPS=3     |  |
|                               |                                                     | FSO (NCO)    | _                 |             |             |  |
| AMW 12                        | Provide air control and coordination of air         | ASW, ASUW,   | LAMPS             | LAMPS=1     | LAMPS=3     |  |
|                               | operations                                          | FSO (NCO)    |                   |             |             |  |
| A N 4337 1 4                  | Support/conduct Naval Surface Fire Support          | NOTO         |                   |             |             |  |
| AMW 14                        | (INSFS) against designated targets in support of an | NSF5         | NSF5              | NSF5=1      | NSF5=4      |  |
|                               |                                                     |              |                   |             |             |  |
| ASU 1                         | Engage surface threats with anti-surface armaments  | ASUW         |                   |             |             |  |
|                               |                                                     |              |                   |             |             |  |
| ASU 1.1                       | Engage surface ships at long range                  | ASUW         |                   |             | ASUW=2      |  |
|                               |                                                     |              |                   |             |             |  |
| ASU 1.2                       | Engage surface ships at medium range                | ASUW         |                   |             |             |  |
| ASU 13                        | Engage surface ships at close range (gun)           |              | NSES              | NSES-1      | NSES-4      |  |
| ASU 1.5                       | Engage surface ships with medium caliber gunfire    |              | NSES              | NSES-1      | NSFS-4      |  |
| ASU 1.5                       | Engage surface ships with minor caliber surfice     |              | NSES              | NSES-1      | NSFS-4      |  |
| ASU 1.0                       | Engage surface ships with small arms surfice        |              | NOFO              | NSES_1      | NGFS_4      |  |
| ASU 1.9                       | Engage surface ships in cooperation with other      | 73011        | 1101.0            | 1010-1      | 101 0-4     |  |
| ASU 2                         | forces                                              | ASUW, FSO    | CCC               | CCC=1       | CCC=2       |  |
|                               | 101003                                              |              | ASLIW             |             | ASI IW/-2   |  |
| ASU 4                         | Detect and track a surface target                   | ASUW         | LAMPS             | LAMPS=1     | LAMPS=3     |  |
|                               |                                                     |              | ASUW              | ASUW/=1     | ASLIW-2     |  |
| ASU 4.1                       | Detect and track a surface target with radar        | ASUW         | LAMPS             | LAMPS=1     | LAMPS=3     |  |
| ASU 6                         | Disengage, evade and avoid surface attack           | ASUW         | ASUW              | ASUW=1      | ASUW=2      |  |
| ASW 1                         | Engage submarines                                   | ASW          | ASW               | ASW=1       | ASW=3       |  |
| ASW 1.1                       | Engage submarines at long range                     | ASW          | ASW               | ASW=1       | ASW=3       |  |
| ASW 1.2                       | Engage submarines at medium range                   | ASW          | ASW               | ASW=1       | ASW=3       |  |
|                               |                                                     |              |                   | ASW=1       | ASW=3       |  |
| ASW 1.3                       | Engage submarines at close range                    | ASW          | ASW, PSYS         | PSYS=5-16   | PSYS=1-4    |  |
| ASW 4                         | Conduct airborne ASW/recon                          | ASW          | LAMPS             | LAMPS=1     | LAMPS=3     |  |
| 1 GW -                        |                                                     | 1014         |                   | LAMPS=1.    | LAMPS=3     |  |
| ASW 5                         | Support airborne ASW/recon                          | ASVV         | LAMPS CCC         | CCC=1       | CCC=2       |  |

to those areas. Figure 25 shows the hierarchy consisting of three different mission types.

AHP breaks up the OMOE into the different missions that the ship will perform. In each mission type, areas (war fighting, mobility, survivability) essential to the mission are listed, and under them are the MOPs that are relevant

# CGX/BMD Design - VT Team 2

| ROCs    | Description                                                                                                                               | MOP                                          | <b>Related DV</b>   | Goal                       | Threshold                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------|----------------------------|----------------------------|
| ASW 7   | Attack submarines with antisubmarine armament                                                                                             | ASW                                          | ASW LAMPS<br>CCC    | ASW=1<br>LAMPS=1<br>CCC=1  | ASW=3<br>LAMPS=3<br>CCC=2  |
| ASW 7.6 | Engage submarines with torpedoes                                                                                                          | ASW                                          | ASW, LAMPS,<br>CCC  | ASW=1<br>LAMPS=1<br>CCC=1  | ASW=3<br>LAMPS=3<br>CCC=2  |
| ASW 8   | Disengage, evade, avoid and deceive submarines                                                                                            | ASW                                          | ASW                 | ASW=1                      | ASW=3                      |
| CCC 1   | Provide command and control facilities                                                                                                    | CCC                                          | CCC                 | CCC=1                      | CCC=2                      |
| CCC 1.6 | Provide a Helicopter Direction Center (HDC)                                                                                               | CCC, ASW,<br>ASUW                            | ССС                 | CCC=1                      | CCC=2                      |
| CCC 2   | Coordinate and control the operations of the task<br>organization or functional force to carry out<br>assigned missions                   | CCC, FSO                                     | CCC                 | CCC=1                      | CCC=2                      |
| CCC 3   | Provide own unit Command and Control                                                                                                      | CCC                                          | CCC                 | CCC=1                      | CCC=2                      |
| CCC 4   | Maintain data link capability                                                                                                             | ASW, ASUW,<br>AAW                            | CCC                 | CCC=1                      | CCC=2                      |
| CCC 6   | Provide communications for own unit                                                                                                       | CCC                                          | CCC                 | CCC=1                      | CCC=2                      |
| CCC 9   | Relay communications                                                                                                                      | CCC                                          | CCC                 | CCC=1                      | CCC=2                      |
| CCC 21  | Perform cooperative engagement                                                                                                            | CCC, FSO                                     | CCC                 | CCC=1                      | CCC=2                      |
| FSO 5   | Conduct towing/search/salvage rescue operations                                                                                           | FSO                                          | LAMPS               | LAMPS=1                    | LAMPS=3                    |
| FSO 6   | Conduct SAR operations                                                                                                                    | FSO                                          | LAMPS               | LAMPS=1                    | LAMPS=3                    |
| FSO 8   | Conduct port control functions                                                                                                            | FSO                                          | CCC, ASUW,<br>LAMPS | CCC=1<br>ASUW=1<br>LAMPS=1 | CCC=2<br>ASUW=3<br>LAMPS=3 |
| FSO 9   | Provide routine health care                                                                                                               | All designs                                  |                     |                            |                            |
| FSO 10  | Provide first aid assistance                                                                                                              | All designs                                  |                     |                            |                            |
| FSO 11  | Provide triage of casualties/patients                                                                                                     | All designs                                  |                     |                            |                            |
| INT 1   | Support/conduct intelligence collection                                                                                                   | INT                                          |                     |                            |                            |
| INT 2   | Provide intelligence                                                                                                                      | INT                                          |                     |                            |                            |
| INT 3   | Conduct surveillance and reconnaissance                                                                                                   | INT                                          | LAMPS               | LAMPS-1                    | LAMPS-3                    |
| INT 8   | Process surveillance and reconnaissance<br>information                                                                                    | INT, CCC                                     |                     |                            |                            |
| INT 9   | Disseminate surveillance and reconnaissance information                                                                                   | INT, CCC                                     |                     |                            |                            |
| INT 15  | Provide intelligence support for non-combatant<br>evacuation operation (NEO)                                                              | INT, CCC                                     |                     |                            |                            |
| MIW 4   | Conduct mine avoidance                                                                                                                    | MIW                                          | Degaus              | Yes                        | Yes                        |
| MIW 6   | Conduct magnetic silencing (degaussing, deperming)                                                                                        | Magnetic<br>Signature                        | Degaus              | Yes                        | Yes                        |
| MIW 6.7 | Maintain magnetic signature limits                                                                                                        | Magnetic<br>Signature                        | Degaus              | Yes                        | Yes                        |
| MOB 1   | Steam to design capacity in most fuel efficient manner                                                                                    | Sustained<br>Speed,<br>Endurance<br>Range    | Hullform<br>PSYS    | Vs = 35 knts<br>E=4000     | Vs = 28 knt E<br>= 5000 nm |
| MOB 2   | Support/provide aircraft for all-weather operations                                                                                       | ASW,<br>ASUW, FSO<br>(NCO)                   | LAMPS               | LAMPS=1                    | LAMPS=3                    |
| MOB 3   | Prevent and control damage                                                                                                                | VUL                                          | Cdhmat              | Cdmat =1<br>Composite      | Cdmat = 3<br>steel         |
| MOB 3.2 | Counter and control NBC contaminants and agents                                                                                           | NBC                                          | CPS                 | CPS=2 (full)               | CPS=0 (none)               |
| MOB 5   | Maneuver in formation                                                                                                                     | All designs                                  |                     |                            |                            |
| MOB 7   | Perform seamanship, airmanship and navigation<br>tasks (navigate, anchor, mooring, scuttle, life<br>boat/raft capacity, tow/be-towed)     | All designs                                  |                     |                            |                            |
| MOB 10  | Replenish at sea                                                                                                                          | All designs                                  |                     |                            |                            |
| MOB 12  | Maintain health and well being of crew                                                                                                    | All designs                                  |                     |                            |                            |
| MOB 13  | Operate and sustain self as a forward deployed unit<br>for an extended period of time during peace and<br>war without shore-based support | provisions                                   | Ts                  | 60 days                    | 45 days                    |
| MOB 16  | Operate in day and night environments                                                                                                     | All designs                                  |                     |                            |                            |
| MOB 17  | Operate in heavy weather                                                                                                                  | Sea-keeping                                  | hullform            | MCR=15                     | MCR=4                      |
| MOB 18  | Operate in full compliance of existing US and international pollution control laws and regulations                                        | Compensated<br>Fuel System/<br>Clean Ballast | BalType             | BalType=1                  | BalType=1                  |
| NCO 3   | Provide upkeep and maintenance of own unit                                                                                                | All designs                                  |                     |                            |                            |
| NCO 19  | Conduct maritime law enforcement operations                                                                                               | NCO                                          | ASUW NSFS           | ASUW =1<br>NSFS=1          | ASUW = 1<br>NSFS = 4       |

| ROCs  | Description                                         | MOP | <b>Related DV</b> | Goal            | Threshold       |
|-------|-----------------------------------------------------|-----|-------------------|-----------------|-----------------|
| SEW 2 | Conduct sensor and ECM operations                   | AAW | SEW               | SEW=1           | SEW=1           |
| SEW 3 | Conduct sensor and ECCM operations                  | AAW | SEW               | SEW=1           | SEW=1           |
| SEW 5 | Conduct coordinated SEW operations with other units | AAW | CCC               | CCC=1           | CCC=2           |
| STW 3 | Support/conduct multiple cruise missile strikes     | STK | GMLS CCC          | GMLS=1<br>CCC=1 | GMLS=2<br>CCC=2 |



AHP uses pairwise comparison to calculate the MOP weights. Appendix C, lists the pairwise comparison results of each MOP. Figure 26 shows the value of each MOP weight.



Figure 26 – Bar Chart Showing MOP Weights

The result of pairwise comparison shows that the highest regarded MOP is BMD, which is the primary purpose of the CGX. Anti-Air Warfare (AAW) is the second highest ranked MOP, which allows the CGX to defend against missiles or any airborne threat. These VOP functions are used to calculate the value of performance for each MOP.

#### 3.4.2 Overall Measure of Risk (OMOR)

To develop the OMOR risk events associated with specific design variables, required capabilities, schedule, and cost are identified. Probability of occurrence of major impact on performance, cost, or schedule (Pi) and consequence of occurrence of major impact on performance, cost, or schedule (Ci) are estimated for each event using Table 16 and Table 17. Then, a quantitative overall measure of risk (OMOR) for a specific design based on the selection of technologies is calculated using Equation (2).

(2)

| Table 16 - Event Probability Estimate |                                                   |  |  |  |
|---------------------------------------|---------------------------------------------------|--|--|--|
| Probability                           | What is the Likelihood the Risk Event Will Occur? |  |  |  |
| 0.1                                   | Remote                                            |  |  |  |
| 0.3                                   | Unlikely                                          |  |  |  |
| 0.5                                   | Likely                                            |  |  |  |
| 0.7                                   | Highly likely                                     |  |  |  |
| 0.9                                   | Near Certain                                      |  |  |  |

Risk (Ri) =  $Pi \cdot Ci$ 

## Table 17 - Event Consequence Estimate

| Consequence Given the Risk is Realized, What Is the Magnitude |                             |                                | of the Impact?       |
|---------------------------------------------------------------|-----------------------------|--------------------------------|----------------------|
| Level                                                         | Level Performance Schedule  |                                | Cost                 |
| 0.1                                                           | Minimal or no impact        | Minimal or no impact           | Minimal or no impact |
| 0.3                                                           | Acceptable with some        | Additional resources required; | <5%                  |
| 0.5                                                           | reduction in margin         | able to meet need dates        |                      |
| 0.5                                                           | Acceptable with significant | Minor slip in key milestones;  | 5-7%                 |
| 0.5                                                           | reduction in margin         | not able to meet need date     |                      |
| 0.7                                                           | Acceptable; no remaining    | Major slip in key milestone or | 7-10%                |
| 0.7                                                           | margin                      | critical path impacted         |                      |
| 0.0                                                           | Unacceptable                | Can't achieve key team or      | >10%                 |
| 0.9                                                           |                             | major program milestone        |                      |

shows the risk table built using a pair-wise comparison to calculate OMOR hierarchy weights. The OMOE formula is listed as:

$$OMOR = W_{perf} \sum_{i} \frac{W_i}{\sum_{i} W_i} P_i C_i + W_{cost} \sum_{j} W_j P_j C_j + W_{sched} \sum_{k} W_k P_k C_k$$

| Related<br>DV # | DV<br>Options | <b>DV</b> Description   | Risk Event (Ei)                                                            | <b>Risk Description</b>                               | Event<br># | Pi  | Ci   | Ri   |
|-----------------|---------------|-------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|------------|-----|------|------|
| DV9             | 2             | Hull Type               | Tumblehome Seakeeping<br>Performance                                       | Seakeeping not satisfactory                           | 1          | 0.6 | 0.8  | 0.48 |
| DV11            | (5-6)         | SPGM                    | PEM Fuel Cell Development<br>and Implementation                            | Reduced reliability<br>and performance<br>(un-proven) | 2          | 0.6 | 0.55 | 0.33 |
| DV11            | (5-6)         | SPGM                    | PEM Fuel Cell Development,<br>acquisition and integration<br>cost overruns | Research and<br>Development cost<br>overruns          | 3          | 0.6 | 0.45 | 0.27 |
| DV11            | (5-6)         | SPGM                    | PEM Fuel Cell Schedule<br>delays impact program                            | In development and test                               | 4          | 0.7 | 0.3  | 0.21 |
| DV11            | 3-4           | SPGM                    | MC Fuel Cell Development<br>and Implementation                             | Reduced reliability<br>and performance<br>(un-proven) | 2          | 0.7 | 0.6  | 0.42 |
| DV11            | 3-4           | SPGM                    | MC Fuel Cell Development,<br>acquisition and integration<br>cost overruns  | Research and<br>Development cost<br>overruns          | 3          | 0.9 | 0.4  | 0.36 |
| DV11            | 3-4           | SPGM                    | MC Fuel Cell Schedule<br>delays impact program                             | In development and test                               | 4          | 0.8 | 0.5  | 0.4  |
| DV12            | 2             | Propeller type          | Development and<br>Implementation of podded<br>propulsion                  | Reduced Reliability<br>(un-proven)                    | 5          | 0.7 | 0.5  | 0.35 |
| DV12            | 2             | Propeller type          | Podded Propulsion<br>Implementation Problems                               | Unproven for USN,<br>large size                       | 7          | 0.6 | 0.45 | 0.27 |
| DV12            | 2             | Propeller type          | Podded Propulsion Schedule<br>delays impact program                        | Unproven for USN,<br>large size                       | 8          | 0.6 | 0.6  | 0.36 |
| DV12            | 3             | Propulsor type          | Development and<br>Implementation of SPU                                   | Reduced Reliability<br>(un-proven)                    | 5          | 0.6 | 0.5  | 0.3  |
| DV12            | 3             | Propulsor type          | SPU Implementation<br>Problems                                             | Unproven for USN,<br>large size                       | 7          | 0.6 | 0.4  | 0.24 |
| DV12            | 3             | Propulsor type          | SPU Schedule delays impact program                                         | Unproven for USN,<br>large size                       | 8          | 0.6 | 0.5  | 0.3  |
| DV13            | 2             | Power distribution type | DC ZEDS Development and                                                    | Reduced Reliability                                   | 9          | 0.4 | 0.7  | 0.28 |

## Table 18 - Risk Register

| Related<br>DV # | DV<br>Options               | DV Description          | Risk Event (Ei)                                                                   | <b>Risk Description</b>                               | Event<br># | Pi  | Ci   | Ri    |
|-----------------|-----------------------------|-------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|------------|-----|------|-------|
|                 |                             |                         | Implementation                                                                    |                                                       |            |     |      |       |
| DV13            | 2                           | Power distribution type | DC ZEDS Development and<br>Implementation                                         | Cost overrun                                          | 9          | 0.5 | 0.5  | 0.25  |
| DV13            | 2                           | Power distribution type | DC ZEDS Development and<br>Implementation                                         | Delay schedule                                        | 9          | 0.5 | 0.4  | 0.2   |
| DV14            | 2                           | propulsion motor module | PMM development and implementation                                                | Reduced Reliability<br>and Performance<br>(un-proven) | 10         | 0.6 | 0.7  | 0.42  |
| DV14            | 2                           | propulsion motor module | PMM development,<br>acquisition and integration<br>cost overruns                  | Unproven for USN,<br>large size                       | 11         | 0.7 | 0.45 | 0.315 |
| DV14            | 2                           | propulsion motor module | PMM schedule delays impact<br>program                                             | Unproven for USN,<br>large size                       | 12         | 0.6 | 0.5  | 0.3   |
| DV14            | 3                           | propulsion motor module | SCH development and implementation                                                | Reduced Reliability<br>and Performance<br>(un-proven) | 10         | 0.7 | 0.75 | 0.525 |
| DV14            | 3                           | propulsion motor module | SCH development,<br>acquisition and integration<br>cost overruns                  | Unproven for USN,<br>large size                       | 11         | 0.8 | 0.7  | 0.56  |
| DV14            | 3                           | propulsion motor module | SCH schedule delays impact<br>program                                             | Unproven for USN,<br>large size                       | 12         | 0.9 | 0.65 | 0.585 |
| DV18            | 0.5                         | Automation              | Automation systems<br>development and<br>implementation                           | Reduced Reliability<br>and Performance<br>(un-proven) | 13         | 0.5 | 0.7  | 0.35  |
| DV18            | 0.5                         | Automation              | Automation systems<br>development, acquisition and<br>integration cost overruns   | Research and<br>Development cost<br>overruns          | 14         | 0.5 | 0.5  | 0.25  |
| DV18            | 0.5                         | Automation              | Automation systems schedule delays impact program                                 | Research and<br>Development<br>schedule delays        | 15         | 0.5 | 0.7  | 0.35  |
| DV19            | 1,2,3                       | AAW/BMD/ STK<br>Systems | SPY-3 and VSR+++ DBR<br>Development and<br>implementation                         | Reduced Reliability<br>and Performance<br>(un-proven) | 16         | 0.4 | 0.5  | 0.2   |
| DV19            | 1,2,3                       | AAW/BMD/ STK<br>Systems | SPY-3 and VSR+++ DBR<br>Development, acquisition and<br>integration cost overruns | Research and<br>Development cost<br>overruns          | 17         | 0.4 | 0.7  | 0.28  |
| DV19            | 1,2,3                       | AAW/BMD/ STK<br>Systems | SPY-3 and VSR+++ DBR<br>Schedule delays impact<br>program                         | Research and<br>Development<br>schedule delays        | 18         | 0.6 | 0.7  | 0.42  |
| DV20            | 1                           | ASUW/NSFS               | AGS performance and reliability                                                   | AGS performance<br>and reliability                    | 19         | 0.3 | 0.6  | 0.18  |
| DV24            | 2,3                         | GMLS                    | KEI development and implementation                                                | Reduced Reliability<br>and Performance<br>(un-proven) | 20         | 0.8 | 0.7  | 0.56  |
| DV24            | 2,3                         | GMLS                    | KEI development, acquisition and integration cost overruns                        | Research and<br>Development cost<br>overruns          | 21         | 0.7 | 0.8  | 0.56  |
| DV24            | 2,3                         | GMLS                    | KEI schedule delays impact program                                                | Research and<br>Development<br>schedule delays        | 22         | 0.7 | 0.8  | 0.56  |
| DV10            | 3,4,7,8,1<br>1,12,15,<br>16 | PGM                     | HSC PGM                                                                           | Research and<br>Development cost<br>overruns          | 3          | 0.8 | 0.6  | 0.48  |
| DV10            | 3,4,7,8,1<br>1,12,15,<br>16 | PGM                     | HSC PGM                                                                           | In development and test                               | 4          | 0.7 | 0.6  | 0.42  |
| DV10            | 3,4,7,8,1<br>1,12,15,<br>16 | PGM                     | HSC PGM                                                                           | Reduced reliability<br>and performance<br>(un-proven) | 2          | 0.7 | 0.6  | 0.42  |

#### 3.4.3 Cost

The cost model used is a weight based cost model, which uses parametric equations to relate weight and other parameters to cost. In the cost model, the inputs are as follows; propulsion system type and power, deck house material, endurance range and speed, fuel volume, SWBS weight groups 100-700, number of personnel, profit margin, inflation rate, number of ships to be built, and base year for cost calculation. The inflation factor is calculated, and then the cost for each SWBS group 100-700 is calculated. This calculation is done by multiplying

the weight of the group by complexity factors. This total is multiplied by margin weight and added to the SWBS 800 and 900 costs to come up with the lead ship basic construction cost. Added to this cost are the profit, change order cost, government costs, and delivery cost, to produce the finial lead ship acquisition cost. Figure 27 shows the naval ship acquisition cost components.



Figure 27 - Naval Ship Acquisition Cost Components

## 3.5 Multi-Objective Genetic Optimization

Model Center is used to perform the Multi-Objective Genetic Optimization (MOGO) through the use of the Darwin optimization plug-in. The objectives for this optimization are effectiveness, risk, and cost; which are discussed in Section 3.4. Figure 28 is a flow chart showing the MOGO process. The optimizer defines a random set of 200 balanced ships to populate the first generation. The ship synthesis model, described in Section 3.3, is used to calculate each ship's measure of effectiveness, measure of risk, and cost. Each design is then assigned a fitness level and ranked according to the design's dominance in the optimization objectives. Designs are penalized for bunching, known as a niche, or for infeasibility before being randomly selected to populate the second generation. These randomly selected designs are weighted to ensure higher selection probabilities for ships with higher fitness levels. Twenty-five percent of the second generation's designs are selected to swap some of their design variable values, known as crossover. A small percentage of randomly selected design variable values are selected for mutation, which replaces it with a new random value. Each generation of ships are spread across the effectiveness/cost/risk three-dimensional design space. After about 300 generations of evolution, a non-dominated frontier forms a surface of designs with the highest effectiveness for a given cost and risk. Figure 30 shows the non-dominated frontier. The optimal design is determined by preferences for effectiveness, cost, and risk.



Figure 28 - Multi-Objective Genetic Optimization (MOGO)
Quantitative objective functions are developed for each optimization objective before performing the optimization. Cost is already quantitative, while an overall measure of effectiveness (OMOE) and overall measure of risk (OMOR) are used to quantify effectiveness and risk. Figure 29 illustrates the development of the OMOR and OMOE which are described in Sections 3.4.1 and 3.4.2.



# 3.6 Multi-Objective Genetic Optimization Results

Figure 30 shows the non-dominated frontier for effectiveness/cost/risk produced by the multi-objective genetic optimization. The plot shows the OMOE for a given cost ship design. The OMOR is displayed by color, blue being the lowest risk and red the highest. The highest OMOR displayed is 0.432. Designs that are most attractive to the customer are often those that occur at extremes of the frontier, or at "knees" in the curve. The "knees" represent a sharp increase in effectiveness with a minimal cost or risk increase.



**Figure 30 - Non-Dominated Frontier** 

The design selected for Team 2 is Design 13. CGX 13 is the high end design with low risk compared to similarly priced ships. The design has a cost of 3.63 billion dollars, a high OMOE of 0.852, and a low OMOR of 0.1715. Table 19 is a comparison table of some of the considered designs. It shows the OMOE, Cfola, OMOR, and some design variables for each design. Better explanations of the design variables are in Table 20. CGX 105 is an example of a ship at a "knee" in the curve with the highest OMOE in its low cost range of 2.5 billion dollars. CGX 5 has the highest OMOE in the same price range as the selected CGX 13. Due to its tumblehome hull it has a higher OMOR of 0.354.

|            | <b>Table 19 – C</b> | omparison Table |               |
|------------|---------------------|-----------------|---------------|
|            | High-end            | High-end,       |               |
|            | tumblehome          | low risk        | Low-cost ship |
| Design     | CGX 5               | CGX 13          | CGX 105       |
| OMOE       | 0.8812502           | 0.8518817       | 0.7178035     |
| Cfola      | 3725.702            | 3781.044        | 2535.864      |
| OMOR       | 0.3543412           | 0.1756953       | 0.1869418     |
| Hull Turno | 2 (DDG-1000         | 1               | 1             |
| Hull Type  | mod-repeat)         | 1               | 1             |
| SPGM       | 5                   | 7               | 5             |
| Prop Type  | 3                   | 3               | 1             |
| DISTtype   | 1                   | 1               | 1             |
| PMM        | 1                   | 1               | 1             |
| Ndegaus    | 1                   | 0               | 1             |
| Ts         | 40                  | 50              | 33            |
| Ncps       | 2                   | 2               | 1             |
| AAW        | 1                   | 1               | 3             |
| ASUW       | 3                   | 2               | 3             |
| ASW        | 1                   | 1               | 4             |
| CCC        | 1                   | 1               | 1             |
| GMLS       | 1                   | 1               | 4             |
| LAMPS      | 1                   | 1               | 1             |
| PGM        | 17                  | 17              | 14            |
| LWL        | 265                 | 240             | 203           |
| LtoB       | 7                   | 9.4             | 9             |
| LtoD       | 16.2                | 15.7            | 15.3          |
| BtoT       | 2.91                | 3.03            | 2.96          |
| Ср         | 0.621               | 0.593           | 0.614         |
| Cx         | 0.751               | 0.849           | 0.815         |
| Crd        | 0.6                 | 0.66            | 0.6           |
| VD         | 15900               | 13000           | 10600         |
| CMan       | 0.69                | 0.94            | 0.84          |

# 3.7 MOGO Baseline Concept Design

Design 13 has the lowest risk for non-dominated designs in the same price and effectiveness range. Its low level of risk is due in large part to its flared hullform. The tumblehome hull drives up the risk. The manning coefficient, ( $C_{MAN}$ ) is also very high for Design 13 and this also reduces risk associated with the design. The high  $C_{MAN}$  means low automation and this also helps keep cost low. Other options that keep cost low are the ASUW option of one MK45 5"/62 gun and two RHIBs and the ASW option.

Because of the importance of the primary mission of BMD, the largest radar available, the SPY-3/VSR+++, is selected along with 160 MK57 cells and 8 KEI cells.

It is important to note that the cost used for optimization was follow ship cost, not total ownership cost. If total ownership cost were used for optimization and to build the non-dominated frontier for comparison of optimized designs, designs with very high  $C_{MAN}$ , such as Design 13, might not have proven to be the best ship choice. This is because high  $C_{MAN}$  means very high manning, which results in a significant life cycle cost penalty. However, for the design process used, Design 13 stands out as a "knee in the curve" and a very capable ship. Table 20 shows design variable values corresponding to the multi-objective genetic optimization results for Design 13.

Other characteristics of the MOGO Baseline design are listed in Table 21 through Table 25.

| Design Variable | Description                                    | Trade-off Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Design<br>Volues      |
|-----------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| DV 1            | LWL - Waterline Length                         | 180-300m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 240 m                 |
| DV 2            | LtoB - Length to Beam ratio                    | 7.0-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.4                   |
| DV 3            | LtoD - Length to Depth ratio                   | 10.75-17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.7                  |
| DV 4            | BtoT - Beam to Draft ratio                     | 2.8-3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.03                  |
| DV 5            | Cp - Prismatic coefficient                     | 0.56 - 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .593                  |
| DV 6            | Cx - Maximum section                           | 0.75 - 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .849                  |
|                 | coefficient                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| DV 7            | Crd - Raised deck coefficient                  | 0.7 - 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .66                   |
| DV 8            | VD - Deckhouse volume                          | 10,000-15,000 m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13000 m <sup>3</sup>  |
| DV 9            | 1000                                           | 1: hare= 10 deg; 2: hare= DDG 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1: mare= 10*          |
| DV 10           | PGM - Power Generation<br>Module               | Option 1) 2xLM2500+, AC synchronous, 4160 VAC<br>Option 2) 2xLM2500+, AC synchronous, 13800 VAC<br>Option 3) 2xLM2500+, SCH generator, 4160 VAC<br>Option 4) 2xLM2500+, SCH generator, 13800 VAC<br>Option 5) 3xLM2500+, AC synchronous, 4160 VAC<br>Option 6) 3xLM2500+, AC synchronous, 13800 VAC<br>Option 7) 3xLM2500+, SCH generator, 4160 VAC<br>Option 8) 3xLM2500+, SCH generator, 13800 VAC<br>Option 9) 2xMT30, AC synchronous, 4160 VAC (DDG 1000)<br>Option 10) 2xMT30, AC synchronous, 13800 VAC<br>Option 11) 2xMT30, SCH generator, 4160 VAC<br>Option 12) 2xMT30, SCH generator, 4160 VAC<br>Option 13) 3xMT30, AC synchronous, 4160 VAC<br>Option 13) 3xMT30, AC synchronous, 4160 VAC<br>Option 14) 3xMT30, AC synchronous, 13800 VAC<br>Option 15) 3xMT30, AC synchronous, 13800 VAC<br>Option 16) 3xMT30, SCH generator, 4160 VAC<br>Option 17) 4xMT30, SCH generator, 13800 VAC<br>Option 18) 4xMT30, AC synchronous, 4160 VAC<br>Option 19) 4xMT30, SCH generator, 13800 VAC | Option 17             |
| DV 11           | SPGM - Secondary Power<br>Generation Module    | Option 1) none<br>Option 2) 2xLM500G, geared, w/AC sync (DDG 1000)<br>Option 3) 2xMC5.0 Fuel Cells<br>Option 4) 2xMC8.5 Fuel Cells<br>Option 5) 2xPEM5.0 Fuel Cells<br>Option 6) 2xPEM8.5 Fuel Cells<br>Option 7) 2xCAT 3618 Diesel<br>Option 8) 2xPC 2/18 Diesel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Option 7              |
| DV 12           | PROPtype - Propulsor type                      | Option 1) 2xFPP *(DDG 1000)<br>Option 2) 2xPods<br>Option 3) 1XFPP + SPU (7.5MW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Option 3              |
| DV 13           | DISTtype - Power distribution type             | Option 1) AC ZEDS<br>Option 2) DC ZEDS *(DDG 1000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Option 1              |
| DV 14           | PMM - Propulsion Motor<br>Module               | Option 1) AIM (Advanced Induction Motor) *(DDG 1000)<br>Option 2) PMM (Permanent Magnet Motor)<br>Option 3) SCH (Superconducting Homopolar Motor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Option 1              |
| DV 15           | Ts - Provisions duration                       | 60-75 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 days               |
| DV 16           | Ncps - Collective Protection<br>System         | 0 = none, 1 = partial, 2 = full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{2} = full$ |
| DV 17           | Ndegaus - Degaussing system                    | 0 = none, $1 = $ degaussing system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 = none              |
| DV 18           | CMan - Manning reduction and automation factor | 0.5 - 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.94                  |
| DV 19           | AAW/BMD/STK - Anti-Air<br>Warfare alternatives | Option 1) SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014<br>Combat System, CIFF-SD, SLQ/32(R) improved, MK36<br>SRBOC with NULKA<br>Option 2) SPY-3/VSR++ DBR, IRST, AEGIS BMD 2014<br>Combat System, CIFF-SD, SLQ/32(R) improved, MK36<br>SRBOC with NULKA<br>Option 3) SPY-3/VSR+ DBR, IRST, AEGIS BMD 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Option 1              |

| Table 20 Darter Ma   |                 | £   | D 1      | 2  |
|----------------------|-----------------|-----|----------|----|
| Table 20 - Design Va | riables Summary | for | Design 1 | .3 |

| Design Variable | Description                                            | Trade-off Range                                                                                                                                                                                                                                                                                       | Design<br>Values |
|-----------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                 |                                                        | Combat System, CIFF-SD, SLQ/32(R) improved, MK36<br>SRBOC with NULKA<br>Option 4) SPY-3/VSR (DDG-1000 3L) DBR, IRST, AEGIS<br>BMD 2014 Combat System, CIFF-SD, SLQ/32(R)<br>improved, MK36 SRBOC w/ NULKA                                                                                             |                  |
| DV 20           | ASUW/NSFS - Anti-Surface<br>Warfare alternatives       | Option 1) 1x155m AGS, SPS-73, Small Arms, TISS, FLIR,<br>GFCS, 2x7m RHIB, MK46 Mod1 3x CIGS<br>Option 2) 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS,<br>FLIR, GFCS, 2x7m RHIB, MK46 Mod1 3x CIGS<br>Option 3) 1xMK110 57mm gun, SPS-73, Small Arms, TISS,<br>FLIR, GFCS, 2x7m RHIB, MK46 Mod1 3x CIGS | Option 2         |
| DV 21           | ASW/MCM - Anti-Submarine<br>Warfare alternatives       | Option 1) Dual Frequency Bow Array, IUSW, NIXIE,<br>2xSVTT, mine-hunting sonar<br>Option 2) SQS-53C, NIXIE, SQR-19 TACTAS, IUSW,<br>2xSVTT, mine-hunting sonar<br>Option 3) SQS-56, NIXIE, IUSW, 2xSVTT, mine-hunting<br>sonar<br>Option 4) NIXIE, 2xSVTT, mine-hunting sonar                         | Option 1         |
| DV 22           | CCC - Command Control<br>Communication alternatives    | Option 1) Enhanced CCC, TSCE<br>Option 2) Basic CCC, TSCE                                                                                                                                                                                                                                             | Option 1         |
| DV 23           | LAMPS - LAMPS alternatives                             | Option 1) 2 x Embarked LAMPS w/Hangar, 2xVTUAV<br>Option 2) LAMPS haven (flight deck), 2xVTUAV<br>Option 3) in-flight refueling, 2xVTUAV                                                                                                                                                              | Option 1         |
| DV 24           | GMLS - Guided Missile<br>Launching System alternatives | Option 1) 160 cells MK57 + 8 cells KEI<br>Option 2) 160 cells MK57<br>Option 3) 128 cells MK 57<br>Option 4) 96 cells MK 57                                                                                                                                                                           | Option 1         |

# Table 21 - MOGO Design 13 Weights and Vertical Center of Gravity Summary

| Group              | Weight (MT) | VCG (m) |
|--------------------|-------------|---------|
| SWBS 100           | 7791.51     | 37.53   |
| SWBS 200           | 1799.18     | 4.12    |
| SWBS 300           | 1685.76     | 7.50    |
| SWBS 400           | 1256.69     | 21.90   |
| SWBS 500           | 2378.11     | 20.36   |
| SWBS 600           | 1389.48     | 29.63   |
| SWBS 700           | 818.33      | 40.75   |
| Loads              | 5610.40     | 32.04   |
| Lightship          | 18831       | 10.71   |
| Lightship w/Margin | 20542       | 10.77   |
| Full Load w/Margin | 24441       | 9.71    |

# Table 22 – MOGO Design 13 Area Summary

| Area              | <b>Required</b> (m <sup>2</sup> ) | Available (m <sup>2</sup> ) |  |  |
|-------------------|-----------------------------------|-----------------------------|--|--|
| Total Arrangeable | 13,941.80                         | 14,037.80                   |  |  |
| Deck House        | 2,130.98                          | 4,683.50                    |  |  |
| Hull              | 127,131.10                        | 100689.2                    |  |  |

# Table 23 – MOGO Design 13 Ship Service Electric Power Summary

| Group         | Description              | Power (kW) |
|---------------|--------------------------|------------|
| SWBS 200      | Propulsion               | 158400.0   |
| SWBS 300      | Electric Plant, Lighting | 511.4      |
| SWBS 430, 475 | Miscellaneous            | 101.4      |
| SWBS 521      | Firemain                 | 269.9      |
| SWBS 540      | Fuel Handling            | 337.1      |
| SWBS 530, 550 | Miscellaneous Auxiliary  | 261.3      |
| SWBS 561      | Steering                 | 149.6      |

| Group              | Description                    | Power (kW) |
|--------------------|--------------------------------|------------|
| SWBS 600           | Services                       | 158.8      |
| CPS                | CPS                            | 324.1      |
| KW <sub>NP</sub>   | Non-Payload Functional Load    | 2749.5     |
| KW <sub>MFLM</sub> | Max. Functional Load w/Margins | 18989.6    |
| KW <sub>24</sub>   | 24 Hour Electrical Load        | 9481.4     |

# Table 24 – MOGO Design 13 MOP/ VOP/ OMOE/ OMOR Summary

| Measure | Description                      | Related Design<br>Variable Selected | Value of<br>Performance |
|---------|----------------------------------|-------------------------------------|-------------------------|
|         |                                  | BMD=1                               |                         |
| MOP 1   | BMD                              | GMLS=1                              | 1.0                     |
|         |                                  | CCC=1                               |                         |
|         |                                  | AAW=1                               |                         |
| MOP 2   | AAW                              | GMLS=1                              | 1.0                     |
|         |                                  | CCC=1                               |                         |
|         |                                  | ASUW=2                              |                         |
| MOP 3   | ASUW/NSFS                        | LAMPS=1                             | 0.851                   |
|         |                                  | CCC=1                               |                         |
|         |                                  | ASW=1                               |                         |
| MOP 4   | ASW/MCM                          | LAMPS=1                             | 1.0                     |
|         |                                  | CCC=1 MCM=1                         |                         |
| MOP 5   | CCC                              | CCC=1                               | 1.0                     |
| MOP 6   | ISR/SOF                          | LAMPS=1                             | 0.08                    |
| MOP 0   |                                  | CCC=1                               | 0.98                    |
| MOP 7   | Surge Speed                      | 32.2 knt                            | 0.616                   |
| MOP 8   | Vs                               | 32.2 knt                            | 0.989                   |
| MOP 9   | Е                                | 8000nm                              | 1.0                     |
| MOP 10  | Ts                               | 50                                  | 0.0                     |
| MOP 11  | Seakeeping                       | 15.5                                | 0.435                   |
| MOP 12  | VUL                              |                                     | 0.683                   |
| MOP 13  | NBC                              | Ncps=2                              | 1.0                     |
| MOP 14  | RCS                              | VD=13000m <sup>3</sup>              | 0.616                   |
| MOP 15  | Acoustic Signature               | SPGM=7                              | 1.0                     |
| MOD 16  | ID Cignotyna                     | PGM=4xTurbine                       | 1.0                     |
| MOP 16  | ik Signature                     | SPGM=7                              | 1.0                     |
| MOP 17  | Magnetic Signature               | Ndegaus = 1                         | 0.149                   |
| OMOE    | Overall Measure of Effectiveness |                                     | 0.852                   |
| OMOR    | Overall Measure of Risk          |                                     | 0.1715                  |

| - ···································· |
|----------------------------------------|
|----------------------------------------|

| Characteristic                               | Baseline Value |
|----------------------------------------------|----------------|
| Hull form                                    | Flared         |
| $\Delta$ (MT)                                | 24441.4        |
| LWL (m)                                      | 221.7          |
| Beam (m)                                     | 23.48          |
| Draft (m)                                    | 7.59           |
| D10 (m)                                      | 13.64          |
| Displacement to Length Ratio, $C_{\Delta L}$ | 0.000073       |
| $(\text{lton/ft}^3)$                         |                |
| Beam to Draft Ratio, C <sub>BT</sub>         | 3.09           |
| W1 (MT)                                      | 7791.51        |
| W2 (MT)                                      | 1799.18        |
| W3 (MT)                                      | 1685.76        |
| W4 (MT)                                      | 1256.69        |
| W5 (MT)                                      | 2378.11        |
| W6 (MT)                                      | 1389.48        |
| W7 (MT)                                      | 818.33         |

| Characteristic                        | Baseline Value                                          |
|---------------------------------------|---------------------------------------------------------|
| Wp (MT)                               | 439.75                                                  |
| Lightship $\Delta$ (MT)               | 18831                                                   |
| KG (m)                                | 9.71                                                    |
| GM/B=                                 | 0.06                                                    |
| Propulsion system                     | 1XFPP + SPU (7.5MW)                                     |
| MCM system                            | Dual Frequency Bow Array, IUSW, NIXIE, 2xSVTT, mine-    |
|                                       | hunting sonar                                           |
| ASW system                            | Dual Frequency Bow Array, IUSW, NIXIE, 2xSVTT           |
| ASUW system                           | 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS, FLIR, GFCS, |
|                                       | 2x7m RHIB, MK46 Mod1 3x CIGS                            |
| AAW system                            | SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014 Combat System,   |
|                                       | CIFF-SD, SLQ/32(R) improved, MK36 SRBOC with NULKA      |
| Average deck height (m)               | 3                                                       |
| Total Officers                        | 31                                                      |
| Total Enlisted                        | 421                                                     |
| Total Manning                         | 452                                                     |
| Number of VTUAVs                      | 2                                                       |
| Number of LAMPS                       | 2                                                       |
| Follow Ship Acquisition Cost (million | 3629.54                                                 |
| dollars)                              |                                                         |
| Life Cycle Cost (million dollars)     | 4543.6                                                  |
| McCreight Index                       | 57.3                                                    |

# 3.8 Single Objective Re-Optimization

With Design 13 chosen from the non-dominated frontier created by multi-objective genetic optimization, another step is taken to further optimize the design. Model Center is reconfigured with a single objective gradient optimizer in place of the multi-objective genetic optimizer. The model is first seeded with the design variables of Design 13 from the non-dominated results. Next, the gradient optimizer is configured to vary only the continuous design variables. The discrete variables, such as combat systems, remain unchanged. The gradient optimizer is set to optimize the design for maximum overall measure of effectiveness (OMOE). The optimizer runs until it converges on a feasible, optimal design. The Model Center gradient optimizer is moderately dependent on starting point. After some trial-and-error, a starting point was found that led to an improved design.

The results of this optimization are shown in the figures and tables below. Figure 31 shows OMOE versus run number, and Figure 32 shows follow ship cost (Cfola) versus run number. These figures show the progression of the single objective optimization process. After single objective optimization, the OMOE and Cfola both improved. improved design (Design 131) is because of the significant cost reduction obtained by shortening the ship



Table 26 shows the continuous variables before and after single objective optimization. The most striking change is the decrease in waterline length from 240m to 221.7m. This decrease in length was made possible by the selection

of 4xMT30 turbines as the powering option and a significant increase in prismatic coefficient. With this significant decrease in length comes a significant decrease in cost, and this was the driving factor in the optimization. Cost and Risk from Design 13 were constraints. The manning coefficient (CMan) actually increased to a very conservative 0.9831. Correspondingly, overall risk (OMOR) decreased slightly. The reason such a large change is seen in Single Objective Optimization from Design 13 to the



Figure 32 – Run Number versus Cfola

Table 26 - Single Objective Optimization Results

| Design | Design 13 | Design 13I |
|--------|-----------|------------|
| OMOE   | 0.8518817 | 0.852061   |
| Cfola  | 3781.044  | 3629.538   |
| OMOR   | 0.1756953 | 0.171502   |
| LWL    | 240       | 221.7      |
| LtoB   | 9.4       | 9.442073   |
| LtoD   | 15.7      | 16.24692   |
| BtoT   | 3.03      | 3.092869   |
| Ср     | 0.593     | 0.677651   |
| Cx     | 0.849     | 0.87049    |
| Crd    | 0.66      | 0.521754   |
| VD     | 13000     | 14050.47   |
| CMan   | 0.94      | 0.9831     |

#### 3.9 Design 13I Feasibility Study in ASSET

The ship modeling and synthesis tool, ASSET, is next used to study the feasibility of the ship design chosen in optimization. ASSET consists of many "modules" which perform various calculations. The modules work with data input into the "Editor." The Editor is a large spreadsheet-like space where all information pertaining to the ship is stored. For this design, ASSET is first populated with variables from a standard "cruiser" baseline ship from the ASSET databank. Next, principle hullform characteristics resulting from the single objective re-optimization of the chosen ship design are input and the ASSET hullform modules are run. DDG-51 is used as a parent hullform for ASSET to stretch and modify based on specific design characteristics.

Next, ASSET's Editor is populated with the Design 13I variable values, such as combat systems and machinery options, specific to the ship chosen in optimization. Payloads and Adjustments are specified in ASSET according to combat options chosen in optimization. Deck and bulkhead spacing, as well as machinery room location, propulsion type, and many other details must be specified by the user. All of this information is used by ASSET's modules to perform calculations and produce reports.

Each of ASSET's modules are first run one by one in order and adjustments are made to variables in the Editor until the modules are running properly, without errors. Special add-on wizards, such as the ASSET ZEDS wizard, are run to adjust the model's payload and adjustments appropriately. Once all of the modules are running correctly, ASSET "synthesis" is run to converge all the modules results to a single feasible point. Successful convergence implies a feasible design.

After ASSET successfully converged, results were compared to the calculated results from the Model Center optimization. In order to gain close agreement between the optimization results and the ASSET results, some tweaking of the ASSET model was necessary. For example, the structural material properties were corrected to gain agreement on structural weight, and the fuel tankage was reduced. Some other changes were made to improve the layout of the ship. One such change was the movement of the raised deck back to 0.60 of the length of the ship. This was done to ease arrangement of the intake and exhaust stacks for the aft main machinery room.



Figure 33 – ASSET 13IA Hullform Isometric View



Figure 34 – ASSET Design 13IA Hullform Body Plan View



Figure 35 – ASSET Design 13IA Machinery Module Profile View

The results of ASSET modeling are shown below. Figure 33 shows the Hull Geometry Module isometric view of the hullform. This hullform will be further developed in Concept Development. Figure 34 shows the body plan view from the same module. Figure 35 shows the profile view from the Machinery Module. This view shows the primary and secondary propulsion generators in the main machinery rooms and the emergency diesel generators in fore and aft machinery rooms. Table 27 shows the design summary report from ASSET, which includes a SWBS weight summary. The hull structures weight is very high in this ASSET study. This was reduced to 8000 tons in Concept Development. The results of the ASSET study (Design 13IA) serve as the Final Baseline Design. Table 28 shows a comparison between the MOGO results (Design 13), Single Object results (Design 13I), and ASSET results (13IA). The key parameters such as displacement and waterline, agree closely between 13I and 13IA, but deckhouse volume and depth were changed for geometry and arrangement reasons.

#### Table 27 – ASSET Design Summary

| PRINCIPAL CHARACTERISTIC<br>LBP<br>HULL LOA<br>BEAM, DWL<br>DEPTH @ STA 10<br>DRAFT TO KEEL DWL<br>DRAFT TO KEEL LWL<br>FREEBOARD @ STA 3<br>GMT<br>CP<br>CX | S - M<br>221.7<br>232.0<br>23.5<br>16.0<br>7.6<br>7.6<br>10.2<br>1.9<br>0.678<br>0.871                                                           | WEIGHT SUM<br>GROUP 1 - F<br>GROUP 2 - F<br>GROUP 3 - E<br>GROUP 4 - C<br>GROUP 5 - A<br>GROUP 6 - C<br>GROUP 7 - A<br>SUM GROUF<br>DESIGN MAR | MMARY - MTON<br>IULL STRUCTU<br>ROP PLANT<br>ELECT PLANT<br>COMM + SURVE<br>UX SYSTEMS<br>JUTFIT + FURN<br>RMAMENT<br> | RE 9455.7<br>1038.7<br>1039.2<br>31L 1202.2<br>2207.4<br>1553.4<br>848.5<br>18245.1<br>2282.9 |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|
| LIGHTSHIP WEIGHT<br>SPEED(KT):<br>ENDURANCE:<br>FULL LOAD DISPLACEMENT<br>TRANSMISSION TYPE:<br>MAIN ENG:<br>SEC ENG:<br>SHAFT POWER/SHAFT:<br>PROPULSORS:   | 20528.0<br>MAX= 34.0, SUST= 32.2<br>8158.7 NM AT 20.0 KTS<br>24938.8<br>IPS<br>4 GT @ 36000.0 KW<br>2 D DIESEL<br>51999.1 KW<br>2 - FP 6.1 M DIA | LOADS<br>FULL LOAD I<br>MILITARY PA<br>USABLE FUE                                                                                              | KG: M<br>AYLOAD WT- M'<br>EL WT - MTON                                                                                 | 4410.8<br>9.1<br>TON 2798.7<br>3500.0                                                         |            |
| SEP GEN:<br>PD GEN:<br>OFF CPO ENL<br>24-HR LOAD<br>MAX MARG ELECT LOAD                                                                                      | 2 D DIESEL @ 500.0 KW<br>6 DC-BUS @ 5000.0 KW<br>TOTAL<br>13531.4<br>28425.2                                                                     | MANNING<br>ACCOM                                                                                                                               | 31 (<br>31 (                                                                                                           | 35 386<br>35 386                                                                              | 452<br>452 |
| REQUIRED AREA SUMMARY -<br>OTHER AREA<br>SUPERSTRUCTURE AREA                                                                                                 | M2<br>14159.<br>4362.                                                                                                                            | AVAILABLE A<br>HULL AREA<br>SUPERSTRU                                                                                                          | AREA SUMMAR<br>ICTURE AREA                                                                                             | Y - M2<br>13248.<br>5758.                                                                     |            |
| TOTAL AREA                                                                                                                                                   | 18521.                                                                                                                                           | TOTAL AREA                                                                                                                                     | Α                                                                                                                      | 19006.                                                                                        |            |
| REQUIRED VOLUME SUMMAR<br>OTHER VOLUME<br>SUPERSTRUCTURE VOLUME                                                                                              | Y - M3<br>61315.<br>12213.                                                                                                                       | AVAILABLE V<br>HULL VOLUN<br>SUPERSTRU                                                                                                         | /OLUME SUMM<br>//E<br>ICTURE VOLUN                                                                                     | IARY - M3<br>60115.<br>/IE 17046.                                                             |            |
| TOTAL VOLUME                                                                                                                                                 | 73528.                                                                                                                                           | TOTAL VOLU                                                                                                                                     | JME                                                                                                                    | 77161.                                                                                        |            |

#### **Table 28 – Baseline Design Comparisons**

| Characteristic         | 13     | 13I    | 13IA   |
|------------------------|--------|--------|--------|
| OMOE                   | 0.852  | 0.852  | 0.852  |
| Cfola (\$M)            | 3,780  | 3,630  | 3,630  |
| OMOR                   | 0.176  | 0.171  | 0.171  |
| LWL (m)                | 240    | 221.7  | 221.7  |
| Beam (m)               | 25.5   | 23.5   | 23.5   |
| Depth (m)              | 15.3   | 13.7   | 16.0   |
| Draft (m)              | 8.43   | 7.59   | 7.6    |
| Ср                     | 0.593  | 0.678  | 0.678  |
| Cx                     | 0.849  | 0.871  | 0.871  |
| VD (m <sup>3</sup> )   | 13,000 | 14,050 | 17,040 |
| Full Load Displacement |        |        |        |
| (MTON)                 | 28,590 | 24,440 | 24,940 |

The final requirements developed to constrain concept development are listed in Table 29. It must be a very capable ship, being able to carry a large armament load, attain 32.2 knots sustained speed, and have a range of over 8000 nm. It will carry a large DBR system and dual embarked LAMPS and RHIBs.

| Key Performance Parameter    |                                                                                                             |
|------------------------------|-------------------------------------------------------------------------------------------------------------|
| (KPP)                        | Development Threshold or Requirement                                                                        |
| AAW/BMD/STK                  | SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014 Combat System,<br>CIFF-SD, SLQ-32(R) improved, MK36 SRBOC with NULKA |
| ASUW/NSFS                    | 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS, FLIR, GFCS, 2x7m RHIB, MK46 Mod2 3xCIGS                         |
| ASW/MCM                      | Dual Frequency Bow Array, ISUW, NIXIE, 2xSVTT, Mine-<br>Avoidance Sonar                                     |
| CCC                          | Enhanced CCC                                                                                                |
| LAMPS                        | 2xEmbarked LAMPS w/Hangar, 2xVTUAV                                                                          |
| SDS                          | SLQ-32(V) 3, SRBOC, NULKA, ESSM                                                                             |
| GMLS                         | 160 cells MK57, 8 cells KEI                                                                                 |
| Hull                         | Flare - 10 deg.                                                                                             |
| Power and Propulsion         | 2 shaft, 2 pods FPP                                                                                         |
| Endurance Range (nm)         | 8000                                                                                                        |
| Sustained Speed (knts)       | 32.2                                                                                                        |
| Endurance Speed (kts)        | 20                                                                                                          |
| Stores Duration (days)       | 50                                                                                                          |
| Collective Protection System | full                                                                                                        |
| Crew Size                    | 452                                                                                                         |
| RCS (m3)                     | 14100                                                                                                       |
| Maximum Draft (m)            | 7.6                                                                                                         |
| Vulnerability (material)     | Steel                                                                                                       |
| Ballast/Fuel System          | Clean, Separate Ballast Tanks                                                                               |
| McCreight Seakeeping Index   | 15.5                                                                                                        |

| $1 \text{ able } \Delta J = \text{Key I citor mance I at a meter}$ | Table | 29 - | Kev | Performance | Parameters |
|--------------------------------------------------------------------|-------|------|-----|-------------|------------|
|--------------------------------------------------------------------|-------|------|-----|-------------|------------|

# 4 Concept Development (Feasibility Study)

Concept Development of CGX/BMD follows the design spiral in sequence after Concept Exploration. In Concept Development the general concepts for the hull, systems, and arrangements are developed. These general concepts are refined into specific systems and subsystems that meet the CDD requirements. Design risk is reduced by this analysis and parametrics used in Concept Exploration are validated.

# 4.1 Preliminary Arrangement (Cartoon)

As a preliminary step in finalizing hull form geometry, deck house geometry, and all general arrangements, an arrangement cartoon was developed for areas supporting mission operations, propulsion, and other critical constrained functions. Mission operation areas include the helo hanger and dual RHIB stern launch/recovery, as well as spaces for the KEI, VLS and Mk 45 5". Propulsion areas are comprised of two main machinery rooms (MMR) and two auxiliary machinery rooms (AMR). Since we are using pods for propulsion, space for the shaft is not necessary. Figure 36 shows the preliminary arrangement drawing.



# 4.2 Hull Form and Deck House

# 4.2.1 Hullform

The DDG-51 parent hullform was imported directly from ASSET to the RHINO 3D modeling environment to develop a new CGX hullform. No changes were made below the waterline except for shaping the sonar dome, which can be seen in Figure 37. At 3 meters above the waterline, the topsides were angled in 10 degrees for reduced radar cross section. This angle was established in the Zumwalt Class Destroyer Program to provide minimal radar reflection. The resulting geometry of the hull is shown in Figure 38.



Figure 37 – Bow with Sonar Dome

|                 | MOGO   | Baseline |
|-----------------|--------|----------|
| LWL             | 240    | 221.7    |
| В               | 25.5   | 23.5     |
| Т               | 8.43   | 7.59     |
| D <sub>10</sub> | 15.3   | 16       |
| Δ               | 28,590 | 24,940   |
| Ср              | 0.59   | 0.68     |
| Cx              | 0.85   | 0.87     |

#### **Table 30 - CGXBMD Hullform Characteristics**



#### **Figure 38 – Final Hull Geometry**

The hybrid flare/tumblehome hullform was chosen for this design to limit the degradation of stability caused by a purely tumblehome hullform, while maintaining a stealthy profile. It is believed that the semi-wave piercing tumblehome hullform will significantly improve seakeeping performance over DDG 1000 type hullforms. Current seakeeping codes only consider the hullform below the waterline, so to determine seakeeping characteristics for this hull type, the application of more advanced codes or model testing is needed.

The 10 degree tumblehome from 3m above the waterline also simplifies the geometry of the hull. From 3m up, the hull is only single curvature plating or flat plating, which should increase producibility of the hull. The shear of the decks in the original hullform was also eliminated. The flat decks should increase producibility as well. Table 30 shows some principle characteristics for the hull. The depth at station 10 was set at 16.0 m for the hull to maintain a constant deck height.



Figure 39 - Floodable Length Curve

Figure 39 shows the floodable length curve for the ship. The transverse bulkheads were placed in the ship so that the ship could survive a 15% damage case. The final damage stability assessment is described in Section 4.9.2. Figure 40 is the sectional area curve for the hull. Curves of form and lines drawing are included in the ship drawings.



**Figure 40 – Hullform Sectional Area** 

# 4.2.2 Deck House

After doing machinery arrangements, the deckhouse had to be changed in order to allow for the intake/exhaust stacks to be located inside the deckhouse and with a low radar cross section. The deckhouse was made longer so that the stacks would not penetrate the bulkheads in the deckhouse. In order to reduce the radar cross section of the ship, the composite deckhouse was created to be one unit, as shown in Figure 41, and is located amidships.

The 6 levels within the deckhouse accommodate the aviation hangar, aviation control, CO berthing, bridge, navigation and radio. The low bridge, navigation and radio accommodate the visual and IR sensors up top to maximize the radar height. Also included is the weapons shop and electronics shop. Officer's wardroom and galley is located on the first level, along with XO berthing space and berthing spaces for some department heads. Most of the upper levels contain radar and fan spaces for the SPY-3/VSR+++ DBR. Figure 42 shows detailed level arrangements.



Figure 41 - Deckhouse





Figure 42 - Deckhouse Arrangements

# 4.3 Structural Design and Analysis

The iterative process that drives the structural design of the CG(X)-BMD is illustrated in, Figure 43. After initial stresses, modes of failure, and strengths are determined, scantlings are modified and the process is repeated. MAESTRO is used to solve the stresses on the hull and optimize the scantlings. MAESTRO is a coarse-mesh finite element solver that has the ability to evaluate individual modes of failure.



**Figure 43 - Structural Design Process** 

# 4.3.1 Geometry, Components and Materials

Three midship modules of parallel midbody were modeled, analyzed, and optimized in MAESTRO and are illustrated in Figure 44. For simplicity, the aft section was modeled with a top deck that mirrors that of the fore section. To model the sections a logical number of endpoints are taken from the Rhino model and entered into MAESTRO. These endpoints are then connected with strakes that represent individual plates between girders. Properties for frames, girders, stiffeners, and plating that are produced by the ASSET Structures module must be entered for each strake. Transverse bulkheads are added to each section using quad and tri elements that only

connect four or three points, rather than extending the whole length of a section. Longitudinal and transverse floors in the innerbottom are created using compounds of quad and tri elements that do extend the whole length of the section. Stanchions can be defined and added using rod elements. The completed MAESTRO model is illustrated in Figure 45 and Figure 46.



Figure 44 – Sections Modeled in MAESTRO



#### Figure 45 – MAESTRO Model

Once the model is completed load conditions are established by entering loads to each of the bulkheads and shear and moment to either end. The load conditions and process for implementing them in MAESTRO is described in more depth in the next section. The solver is run for the finite element analysis and scantling optimization iterations are begun. This is described better in section 4.3.3. Figure 47 is the final midship section drawing. The materials used are HSS and HY-80 whose properties are shown in Table 32. Table 31 is an enlarged version of the stiffener, girder, frame, and plate property chart found on the midship section drawing. Stanchion properties are shown in Table 33. Maximum Von Mises stresses calculated for each load case are shown in Table 34. In all of the tables any numbered sections are numbered from top to bottom and from the centerline outward.



Figure 46 - MAESTRO Model, Alternate View



| Figuro | 47  | Midchin  | Section | Drowing |
|--------|-----|----------|---------|---------|
| rigure | 4/- | · wnusmp | Section | Drawing |

| Table 31 – | Stiffener. | Girder. | Frame.           | and | Plate  | Propertie | s |
|------------|------------|---------|------------------|-----|--------|-----------|---|
| rabic 31 - | summer,    | on ucr, | , <b>r</b> rame, | anu | 1 latt | roperne   | 0 |

| Stiffeners | Web Height (mm) | Web Thickness (mm) | Flange Width (mm) | Flange Thickness (mm) | Material |
|------------|-----------------|--------------------|-------------------|-----------------------|----------|
| S1         | 177.8           | 9.525              | 101.6             | 12.7                  | HSS      |
| S2         | 203.2           | 9.525              | 127               | 12.7                  | HY-80    |
| S3         | 100.1           | 6.35               | 100.1             | 6.35                  | HY-80    |
| S4         | 203.2           | 9.525              | 127               | 12.7                  | HSS      |
| S5         | 195.2           | 6.35               | 100.1             | 6.35                  | HSS      |
| S6         | 145.7           | 6.35               | 100.8             | 6.35                  | HSS      |
| <b>S</b> 7 | 144.4           | 6.35               | 100.1             | 6.35                  | HSS      |
| S8         | 203.2           | 9.525              | 101.6             | 12.7                  | HSS      |
| S9         | 203.2           | 6.35               | 127               | 9.525                 | HSS      |
| S10        | 397.9           | 10.033             | 260.1             | 16.891                | HSS      |
| S11        | 95.1            | 6.35               | 100.1             | 6.35                  | HSS      |

P10

P11

9.525

12.7

| S12     | 120.1           | 6.35               | 100.6             | 6.35                  | HSS      |
|---------|-----------------|--------------------|-------------------|-----------------------|----------|
| S13     | 198             | 6.223              | 102.1             | 8                     | HSS      |
| S10     | 397.9           | 10.033             | 260.1             | 16.891                | HSS      |
| Frames  | Web Height (mm) | Web Thickness (mm) | Flange Width (mm) | Flange Thickness (mm) | Material |
| F1      | 177.8           | 9.525              | 101.6             | 12.7                  | HSS      |
| F2      | 203.2           | 9.525              | 127               | 12.7                  | HY-80    |
| F3      | 200.2           | 6.35               | 100.6             | 9.525                 | HY-80    |
| F4      | 200.12          | 6.35               | 100.6             | 9.525                 | HY-80    |
| F5      | 340.5           | 6.35               | 127               | 9.525                 | HY-80    |
| F6      | 392.2           | 9.525              | 254               | 12.7                  | HY-80    |
| F7      | 391.9           | 7.493              | 177.5             | 10.922                | HY-80    |
| F8      | 304.8           | 9.525              | 203.2             | 12.7                  | HY-80    |
| F9      | 355.6           | 12.7               | 254               | 15.875                | HSS      |
| F10     | 203.2           | 6.35               | 127               | 9.525                 | HSS      |
| Girders | Web Height (mm) | Web Thickness (mm) | Flange Width (mm) | Flange Thickness (mm) | Material |
| G1      | 738.1           | 13.97              | 266.2             | 19.304                | HSS      |
| G2      | 738.4           | 14.986             | 266.7             | 23.622                | HSS      |
| G3      | 517.5           | 10.16              | 209.3             | 15.621                | HSS      |
| G4      | 664.2           | 12.446             | 253.7             | 19.05                 | HSS      |
| G5      | 824             | 16.256             | 293.1             | 26.924                | HSS      |
| G6      | 888.5           | 16.51              | 304.8             | 25.908                | HSS      |
| G7      | 879.3           | 19.558             | 418.3             | 32.004                | HSS      |
| G8      | 887.2           | 21.844             | 421.3             | 39.878                | HSS      |
| Plates  | Thickness (mm)  | Material           |                   |                       |          |
| P1      | 34.925          | HSS                |                   |                       |          |
| P2      | 38.1            | HSS                |                   |                       |          |
| Р3      | 44.45           | HY-80              |                   |                       |          |
| P3      | 44.45           | HY-80              |                   |                       |          |
| P4      | 15.875          | HSS                |                   |                       |          |
| P5      | 19.05           | HSS                |                   |                       |          |
| P6      | 25.4            | HSS                |                   |                       |          |
| P7      | 31.75           | HSS                |                   |                       |          |
| P8      | 38.1            | HSS                |                   |                       |          |
| Р9      | 44.45           | HSS                |                   |                       |          |

# **Table 32 – Material Properties**

HSS

HSS

| Material                          | HSS      | HY-80    |
|-----------------------------------|----------|----------|
| Young's Modulus (N/m^2)           | 2.04E+11 | 2.04E+11 |
| Poisson Ratio                     | 0.30     | 0.3      |
| Density (kg/m^2)                  | 7833.42  | 7833.42  |
| Yield Stress (N/m^2)              | 3.52E+08 | 5.52E+08 |
| Ultimate Tensile Strength (N/m^2) | 5.39E+08 | 6.89E+08 |

# **Table 33 – Stanchion Properties**

|            | Outside<br>Diameter | Wall<br>Thickness |          |
|------------|---------------------|-------------------|----------|
| Stanchions | (mm)                | (mm)              | Material |
| All        | 304.8               | 25.4              | HSS      |

160

Sagging

#### 4.3.2 Loads

The load data including section weights at the bulkheads, bending moment, and shear force on the model ends was gathered using the strength summary report in HECSALV. The lightship distribution was developed using the lightship distribution generator for a container ship, with weights representative of the deckhouse and inlet/exhaust hardware in the proper position. The lightship distribution is shown in Figure 48. The Full Load condition was modeled in the stillwater, hogging wave, and sagging wave conditions. The bending moment and shear force data and plots for these cases are shown in Table 35/Figure 49, Table 36/Figure 50 and Table 37/Figure 51, respectively. The wave height criterion is a sinusoidal wave with height equal to LWL/20. Yellow highlighted values in the tables are those corresponding to the bulkhead positions that were modeled in MAESTRO. The bending moment and shear forces at the ends were also used as input.



Figure 48 – Lightship Weight Distribution

|                   | Location             |                     |                     | Shear            | Bending Moment      |
|-------------------|----------------------|---------------------|---------------------|------------------|---------------------|
| _Strength Station | _(m-A FP)            | Weight (MT)         | Buoyancy (MT)       | (MT)             | ( <b>m-MT</b> )     |
| 32                | 221.700A             | 46                  | 3                   | 43               | 91H                 |
| 31                | 210.000A             | 391                 | 343                 | 49               | 781H                |
| 30                | 203.000A             | 742                 | 693                 | 49               | 1,155H              |
| 29                | 196.000A             | 1,161               | 1,158               | 4                | 1,356H              |
| 28                | 189.000A             | 1,651               | 1,738               | -87              | 1,211H              |
| 27                | 182.000A             | 2,317               | 2,429               | -113             | 622H                |
| 26                | 175.000A             | 3,049               | 3,218               | -169             | 364S                |
| 25                | 168.000A             | 3,834               | 4,094               | -259             | 1,981S              |
| 24                | 161.000A             | 4,673               | 5,043               | -371             | 4,180S              |
| 23                | 154.000A             | 5,801               | 6,054               | -254             | 6,3358              |
| 22                | 147.000A             | 7,012               | 7,113               | -101             | 7,477S              |
| 21                | 140.000A             | 8,157               | 8,204               | -47              | 8,174S              |
| TBHD 10           | 132.000A             | <mark>9,551</mark>  | <mark>9,476</mark>  | <mark>75</mark>  | <mark>8,3298</mark> |
| 19                | 126.000A             | 10,426              | 10,441              | -15              | 8,076S              |
| 18                | 119.000A             | 11,456              | 11,576              | -120             | 8,367S              |
| TBHD 9            | 112.000A             | <mark>12,710</mark> | <mark>12,716</mark> | -6               | 9,047S              |
| 16                | 105.000A             | 14,392              | 13,856              | 536              | 7,197S              |
| TBHD 8            | <mark>98.000A</mark> | <mark>15,725</mark> | <mark>14,991</mark> | 734              | 3,002S              |
| 14                | 91.000A              | 16,754              | 16,118              | 637              | 1,698H              |
| 13                | 84.000A              | 17,775              | 17,232              | 543              | 6,084H              |
| TBHD 7            | 78.000A              | <mark>18,640</mark> | <mark>18,171</mark> | <mark>470</mark> | <mark>9,547H</mark> |
| 11                | 70.000A              | 19,696              | 19,385              | 310              | 13,169H             |
| 10                | 63.000A              | 20,574              | 20,402              | 172              | 14,814H             |
| 9                 | 56.000A              | 21,399              | 21,360              | 39               | 15,090H             |

 Table 35 – Full Load Still Water Weight Distribution Summary

|                  | Location |             |                      | Shear | Bending Moment |
|------------------|----------|-------------|----------------------|-------|----------------|
| Strength Station | (m-A FP) | Weight (MT) | <b>Buoyancy</b> (MT) | (MT)  | (m-MT)         |
| 8                | 49.000A  | 22,168      | 22,246               | -78   | 14,478H        |
| 7                | 42.000A  | 22,849      | 23,042               | -193  | 13,405H        |
| 6                | 35.000A  | 23,397      | 23,731               | -334  | 11,564H        |
| 5                | 28.000A  | 23,874      | 24,288               | -415  | 8,880H         |
| 4                | 21.000A  | 24,285      | 24,700               | -415  | 5,935H         |
| 3                | 14.000A  | 24,623      | 24,961               | -339  | 3,247Н         |
| 2                | 7.000A   | 24,878      | 25,085               | -207  | 1,301H         |
| 1                | 0        | 25.042      | 25,110               | -69   | 351H           |



# Figure 49 – Full Load Stillwater Shear and Moment Curves

|                  | Location          |                     |                      |                    | Bending Moment        |
|------------------|-------------------|---------------------|----------------------|--------------------|-----------------------|
| Strength Station | ( <b>m-A FP</b> ) | Weight (MT)         | <b>Buoyancy</b> (MT) | Shear (MT)         | ( <b>m-MT</b> )       |
| 32               | 221.700A          | 46                  | 0                    | 46                 | 91H                   |
| 31               | 210.000A          | 391                 | -2                   | 393                | 2,565H                |
| 30               | 203.000A          | 742                 | -4                   | 745                | 6,520Н                |
| 29               | 196.000A          | 1,161               | 0                    | 1,162              | 13,138H               |
| 28               | 189.000A          | 1,651               | 66                   | 1,585              | 22,681H               |
| 27               | 182.000A          | 2,317               | 271                  | 2,045              | 35,113H               |
| 26               | 175.000A          | 3,049               | 662                  | 2,387              | 50,623H               |
| 25               | 168.000A          | 3,834               | 1,272                | 2,562              | 68,328H               |
| 24               | 161.000A          | 4,673               | 2,123                | 2,550              | 86,741H               |
| 23               | 154.000A          | 5,801               | 3,215                | 2,586              | 105,049H              |
| 22               | 147.000A          | 7,012               | 4,515                | 2,497              | 122,992H              |
| 21               | 140.000A          | 8,157               | 5,987                | 2,171              | 138,983H              |
| TBHD 10          | 132.000A          | <mark>9,551</mark>  | <mark>7,841</mark>   | <mark>1,710</mark> | <mark>154,156H</mark> |
| 19               | 126.000A          | 10,426              | 9,326                | 1,100              | 163,082H              |
| 18               | 119.000A          | 11,456              | 11,124               | 331                | 169,402H              |
| Mx               | 114.995A          | 12,098              | 12,172               | -74                | 170,507H              |
| TBHD 9           | 112.000A          | <mark>12,710</mark> | <mark>12,958</mark>  | -248               | 170,290H              |
| 16               | 105.000A          | 14,392              | 14,786               | -394               | 167,646H              |
| TBHD 8           | 98.000A           | 15,725              | <mark>16,561</mark>  | -836               | 161,932H              |
| 14               | 91.000A           | 16,754              | 18,234               | -1,480             | 152,520H              |
| 13               | 84.000A           | 17,775              | 19,759               | -1,984             | 139,791H              |
| TBHD 7           | 78.000A           | 18 640              | 20.927               | -2 287             | 127 014H              |

| Table 36 – Full Load Hogging | Wave Weight         | Distribution | Summarv |
|------------------------------|---------------------|--------------|---------|
| Tuble Co Tun Loud Hogging    | , that the strength | Distribution | Summary |
|                              |                     |              |         |

| 11 | 70.000A | 19,696 | 22,270 | -2,574 | 107,884H |
|----|---------|--------|--------|--------|----------|
| 10 | 63.000A | 20,574 | 23,228 | -2,655 | 89,674H  |
| 9  | 56.000A | 21,399 | 23,978 | -2,579 | 71,100H  |
| 8  | 49.000A | 22,168 | 24,521 | -2,353 | 53,464H  |
| 7  | 42.000A | 22,849 | 24,858 | -2,008 | 38,015H  |
| 6  | 35.000A | 23,397 | 25,025 | -1,629 | 25,263Н  |
| 5  | 28.000A | 23,874 | 25,093 | -1,219 | 15,315H  |
| 4  | 21.000A | 24,285 | 25,108 | -823   | 8,169H   |
| 3  | 14.000A | 24,623 | 25,109 | -486   | 3,653H   |
| 2  | 7.000A  | 24,878 | 25,110 | -232   | 1,190H   |
| 1  | 0       | 25,042 | 25,111 | -70    | 188H     |



Figure 50 – Full Load Hogging Wave Shear and Moment Curves

|                  | Location          |                     |                      |                      | Bending Moment  |
|------------------|-------------------|---------------------|----------------------|----------------------|-----------------|
| Strength Station | ( <b>m-A FP</b> ) | Weight (MT)         | <b>Buoyancy</b> (MT) | Shear (MT)           | ( <b>m-MT</b> ) |
| 32               | 221.700A          | 46                  | 15                   | 1                    | 90H             |
| 31               | 210.000A          | 391                 | 1,340                | 7,005                | 4,4558          |
| 30               | 203.000A          | 742                 | 2,312                | 19,837               | 13,3398         |
| 29               | 196.000A          | 1,161               | 3,368                | 40,056               | 26,982S         |
| 28               | 189.000A          | 1,651               | 4,466                | 67,478               | 44,580S         |
| 27               | 182.000A          | 2,317               | 5,565                | 102,274              | 65,5558         |
| 26               | 175.000A          | 3,049               | 6,628                | 144,894              | 89,427S         |
| 25               | 168.000A          | 3,834               | 7,622                | 195,111              | 115,5838        |
| 24               | 161.000A          | 4,673               | 8,523                | 251,936              | 142,662S        |
| 23               | 154.000A          | 5,801               | 9,317                | 314,495              | 168,719S        |
| 22               | 147.000A          | 7,012               | 10,008               | 382,145              | 191,506S        |
| 21               | 140.000A          | 8,157               | 10,605               | 454,273              | 210,5608        |
| TBHD 10          | 132.000A          | <mark>9,551</mark>  | <mark>11,176</mark>  | <mark>541,425</mark> | 227,001S        |
| 19               | 126.000A          | 10,426              | 11,541               | 609,893              | 235,5428        |
| 18               | 119.000A          | 11,456              | 11,929               | 692,900              | 241,971S        |
| Mx               | 114.708A          | 12,156              | 12,157               | 745,076              | 243,5708        |
| TBHD 9           | 112.000A          | <mark>12,710</mark> | <mark>12,300</mark>  | 778,360              | 243,1918        |
| 16               | 105.000A          | 14,392              | 12,681               | 865,538              | 235,3628        |
| TBHD 8           | 98.000A           | 15,725              | 13,106               | 954,939              | 219,3488        |
| 14               | 91.000A           | 16,754              | 13,615               | 1,047,482            | 198,2118        |
| 13               | 84.000A           | 17,775              | 14,241               | 1,144,097            | 173,9678        |
| TBHD 7           | 78.000A           | 18,640              | 14,881               | 1,230,894            | 151,514S        |

Table 37 – Full Load Sagging Wave Weight Distribution Summary

|                  | Location          |             |                      |            | Bending Moment  |
|------------------|-------------------|-------------|----------------------|------------|-----------------|
| Strength Station | ( <b>m-A FP</b> ) | Weight (MT) | <b>Buoyancy</b> (MT) | Shear (MT) | ( <b>m-MT</b> ) |
| 11               | 70.000A           | 19,696      | 15,878               | 1,353,507  | 120,748S        |
| 10               | 63.000A           | 20,574      | 16,882               | 1,468,316  | 94,586S         |
| 9                | 56.000A           | 21,399      | 17,995               | 1,590,823  | 70,1588         |
| 8                | 49.000A           | 22,168      | 19,195               | 1,721,343  | 48,158S         |
| 7                | 42.000A           | 22,849      | 20,458               | 1,860,182  | 29,3348         |
| 6                | 35.000A           | 23,397      | 21,717               | 2,007,796  | 15,046S         |
| 5                | 28.000A           | 23,874      | 22,869               | 2,163,982  | 5,748S          |
| 4                | 21.000A           | 24,285      | 23,836               | 2,327,538  | 710S            |
| 3                | 14.000A           | 24,623      | 24,546               | 2,497,108  | 945H            |
| 2                | 7.000A            | 24,878      | 24,963               | 2,670,562  | 795H            |
| 1                | 0                 | 25.042      | 25 107               | 2 845 946  | 185H            |



Figure 51 – Full Load Sagging Wave Shear and Moment Curves



Figure 52 – Overall Minimum Adequacy of Plates for All Load Cases

All LoadCases



#### 4.3.3 Adequacy

MAESTRO's Scalable Solver compares stresses for each of the stiffened panels and beams from load to limit state values for different failure modes to create a strength ratio, r. To evaluate the adequacy of scantlings an adequacy parameter is defined as: (1-r)/(1+r). This value ranges from negative one to positive one and is negative when an element is inadequate for preventing failure and positive when an element is over-adequate for preventing failure. A view of the overall minimum adequacy of plates for all load cases is illustrated in Figure 52 and of beams for all load cases in Figure 53. Table **38** shows the minimum adequacy in each load case. The minimum adequacy for plates is -0.1 for the stillwater condition, 0.236 for the hogging condition, and 0 for the sagging condition. The minimum adequacy for beams is 0.498 in the stillwater condition, 0 in the hogging condition, and 0.185 in the sagging condition.

|                   | avy for Baen Bona c |
|-------------------|---------------------|
| Condition         | Min Adequacy        |
| Plate: Stillwater | -0.01               |
| Plate: Hogging    | 0.236               |
| Plate: Sagging    | 0                   |
| Beam: Stillwater  | 0.498               |
| Beam: Hogging     | 0                   |
| Beam: Sagging     | 0.185               |

| Table 38 – Minimum | Adequacy | for        | Each | Load | Case |
|--------------------|----------|------------|------|------|------|
| <b>O</b> 1:4:      | ٦        | <b>/</b> : | A -1 |      |      |

# 4.4 Power and Propulsion

The CGX/BMD uses an electric drive system for propulsion. This electric drive system includes two pods, fixed pitch propellers, integrated power system (IPS) driven by four MP30's. In addition, there are two CAT 3616's.

#### 4.4.1 Resistance

Resistance calculations were performed in a MathCAD file that implements the Holtrop-Mennen method. This calculation requires inputs of length of the waterline, beam, draft, prismatic coefficient, block coefficient, endurance speed, and propeller diameter. These inputs are then used to calculate the viscous, wave making drag, and bare hull resistance. Figure 54 displays these resistances versus speed. From this calculation, the total effective horsepower

was calculated at speeds from 20 to 35 knots. The values of effective horsepower for these speeds are shown in Table 39 and a plot is shown in Figure 55. The complete calculation is found in Appendix H.





|     |    | 1  |      |       |    | 1      |     |
|-----|----|----|------|-------|----|--------|-----|
|     | 1  | 20 |      |       | 1  | 17165  |     |
|     | 2  | 21 |      |       | 2  | 20301  |     |
|     | 3  | 22 |      |       | 3  | 23885  |     |
|     | 4  | 23 |      |       | 4  | 28071  |     |
|     | 5  | 24 |      |       | 5  | 32945  |     |
|     | 6  | 25 |      |       | 6  | 38379  |     |
|     | 7  | 26 |      |       | 7  | 44073  |     |
| V = | 8  | 27 | ∙knt | EHP = | 8  | 49805  | ∙hp |
|     | 9  | 28 |      |       | 9  | 55622  |     |
|     | 10 | 29 |      |       | 10 | 61811  |     |
|     | 11 | 30 |      |       | 11 | 68751  |     |
|     | 12 | 31 |      |       | 12 | 76822  |     |
|     | 13 | 32 |      |       | 13 | 86382  |     |
|     | 14 | 33 |      |       | 14 | 97763  |     |
|     | 15 | 34 |      |       | 15 | 111255 |     |
|     | 16 | 35 |      |       | 16 | 127082 |     |



Figure 55 - Effective Horsepower

#### 4.4.2 Propulsion

Two fixed pitch propellers in a pod configuration are used for propulsion of CGX/BMD. Each of these propellers has a diameter of 7.0 meters. The efficiency of the propeller was optimized at endurance speed. The POP program from the University of Michigan was used to calculate the efficiency, RPM, and BHP.

Endurance calculations included propulsive efficiency and operating conditions resulting in endurance range and used the previous input, KW<sub>MFLM</sub> and KW<sub>24AVG</sub>. Thrust deduction fraction, wake deduction fraction, and hull efficiency were also calculated. Principal Characteristics are shown in Table 40.

| Tuble to Timelpui enu         |       |
|-------------------------------|-------|
| Thrust deduction fraction (t) | 0.129 |
| Wake fraction (w)             | 0.098 |
| Hull efficiency               | 0.966 |
| $KW_{MFLM}$ (kW)              | 28425 |
| KW <sub>24AVG</sub> (kW)      | 13531 |

Table 40 – Principal Characteristics for CGX/BMD



Figure 56 – Performance Curve for the MP30 and CAT 3618

Next, the engine operating characteristics were determined for the PGM and SPGM engines to determine the specific fuel consumption (SFC) for a specific engine speed. The load fraction of the engines was used with Figure 56 to determine the SFC for endurance and sustained speeds. Values for endurance and sustained speed are shown in Table 41. This calculation is shown in Appendix I.

| Characteristic     | Endurance | Sustained  |
|--------------------|-----------|------------|
| SFCPE (lb/hp*hr)   | 0.375     | 0.304      |
| No. PGM online     | 1         | 4          |
| PGM load fraction  | 0.95      | 1.0        |
| No. SPGM online    | 1         | 2          |
| SPGM load fraction | 0.90      | 1.0        |
| Speed              | 20 knots  | 32.7 knots |
| Range              | 8007 nm   |            |

Table 41 - Propulsion Characteristics at Endurance and Sustained Speeds

# 4.4.3 Electric Load Analysis (ELA)

The values for the connected loads were largely taken from ASSET. There are five different conditions to be calculated; battle, cruise, anchor, in port and emergency. The electric loads are found by multiplying the connected load by a power factor for each case. The power factor represents the average to which each system is loaded and the equipment online. There are different power factors for different systems in each operating condition. Power generation and systems online are also different in each condition. In the battle condition, all power generation modules are running to capacity. In cruise, there is one loaded MT30 and one 3616 running to provide the necessary power for cruise loads. At anchor, the radar system is still operated in a defensive role with the rest of the combat system requiring two 3616 diesels to be online. In port, most systems are shut down so only one 3616 diesel is necessary. In the emergency operating condition, power is provided via two 5MW fuel cells. The ship has relatively high emergency power modules. It is important to note that auxiliary power requirements are very high, this is due to the large amount of cooling required for the VSR+++ radar.

# 4.4.4 Fuel Calculation

A fuel calculation was performed for endurance range in accordance with DDS 200-1. In this process, the specified fuel rate was determined for operating at endurance speed. The endurance range and fuel volume was determined. This calculation is found in Appendix I. From these calculations, it was determined the fuel volume of the ship was 4720 cubic meters which translates to an endurance range of 8007 nautical miles.

# 4.5 Mechanical and Electrical Systems

Mechanical and electrical systems are selected based on mission requirements, standard naval requirements for combat ships, and expert opinion. The Machinery Equipment List (MEL) of major mechanical and electrical systems includes quantities, dimensions, weights, and locations. The complete MEL is provided in Appendix E. The major components of the mechanical and electrical systems and the methods used to size them are described in the following two subsections. The arrangement of these systems is detailed in Section 4.7.2.

# 4.5.1 Integrated Power System (IPS)

The IPS system is powered by four primary generation modules which consist of an MT30 gas turbine powering a 35.5 MW generator. The secondary power generation modules are 3616 CAT diesels which power 5MW generators; there are 2 SPGM in the system. Emergency power is provided by two 5MW fuel cells. During cruising conditions, one PGM and one SPGM are online both are loaded to approximately 95%. For survivability reasons, our emergency power generation modules (EPGM) are located in the AMRs at either end of the ship. They provided enough power to run our combat system at 10% power and the propulsion at 3% power. This allows for a speed of 10 knots to be achieved. Figure 57 shows the online electrical diagram.

|      |                     |        | Battle          |        | Cruise          |       | Anchor          |       | In Port         |      | Emergency       |      |
|------|---------------------|--------|-----------------|--------|-----------------|-------|-----------------|-------|-----------------|------|-----------------|------|
| SWBS | Description         | (kW)   | Power<br>Factor | (kW)   | Power<br>Factor | (kW)  | Power<br>Factor | (kW)  | Power<br>Factor | (kW) | Power<br>Factor | (KW) |
| 100  | Deck Machinery      | 790    | 1.00            | 790    | 1.0             | 790   | 1.00            | 790   | 0.0             | 0    | 0.0             | 0    |
| 200  | Propulsion          | 139962 |                 | 139653 |                 | 21699 |                 | 879   |                 | 0    |                 | 4527 |
|      | Propulsion Direct   | 138033 | 1.00            | 138033 | 0.2             | 21394 | 0.01            | 828   | 0.0             | 0    | 0.0             | 4141 |
|      | Propulsion support  | 1929   | 0.84            | 1620   | 0.2             | 305   | 0.03            | 51    | 0.0             | 0    | 0.2             | 386  |
| 300  | Electric            | 939    | 0.67            | 629    | 0.2             | 228   | 0.15            | 137   | 0.4             | 376  | 0.1             | 141  |
| 400  | ССС                 | 27862  |                 | 12973  |                 | 7852  |                 | 2786  |                 | 290  |                 | 2786 |
|      | Combat Systems      | 24963  | 0.45            | 11233  | 0.3             | 7019  | 0.10            | 2496  | 0.0             | 0    | 0.1             | 2496 |
|      | Miscellaneous       | 2899   | 0.60            | 1739   | 0.3             | 833   | 0.10            | 290   | 0.1             | 290  | 0.1             | 290  |
| 500  | Auxiliary           | 17498  |                 | 8370   |                 | 8409  |                 | 4610  |                 | 2703 |                 | 2207 |
| 510  | CPS                 | 1690   | 0.36            | 608    | 0.4             | 658   | 0.39            | 658   | 0.0             | 0    | 0.1             | 122  |
| 510  | HVAC                | 4729   | 0.35            | 1675   | 0.4             | 2110  | 0.35            | 1655  | 0.4             | 1892 | 0.2             | 793  |
| 520  | Sea Water Systems   | 665    | 0.34            | 225    | 0.3             | 196   | 0.29            | 195   | 0.4             | 266  | 0.3             | 225  |
| 530  | Fresh Water System  | 9129   |                 | 4818   |                 | 5214  |                 | 1852  |                 | 516  |                 | 1067 |
| 531  | Distilling Unit     | 95     | 0.00            | 0      | 0.55            | 52    | 0.55            | 52    | 0.00            | 0    | 0.00            | 0    |
| 532  | Radar Cooling Water | 8200   | 0.56            | 4592   | 0.56            | 4592  | 0.15            | 1230  | 0.01            | 82   | 0.10            | 820  |
| 533  | Potable Water       | 425    | 0.05            | 21     | 0.86            | 366   | 0.86            | 366   | 0.54            | 230  | 0.10            | 43   |
| 536  | Aux Freshwater      | 409    | 0.50            | 205    | 0.50            | 205   | 0.50            | 205   | 0.50            | 205  | 0.50            | 205  |
| 540  | Fuel Handling       | 289    | 0.34            | 98     | 0.2             | 49    | 0.24            | 69    | 0.1             | 29   | 0.0             | 0    |
| 550  | Air System          | 996    | 0.95            | 946    | 0.2             | 181   | 0.18            | 181   | 0.0             | 0    | 0.0             | 0    |
| 600  | Services            | 910    | 0.10            | 94     | 0.4             | 328   | 0.36            | 325   | 0.4             | 364  | 0.0             | 4    |
| 700  | Weapons             | 3701   | 0.34            | 1251   | 0.3             | 1217  | 0.15            | 555   | 0.0             | 0    | 0.0             | 90   |
|      |                     |        |                 |        |                 |       |                 |       |                 |      |                 |      |
|      | Total Required      | 53629  |                 | 163760 |                 | 40523 |                 | 10083 |                 | 3732 |                 | 9755 |
|      | 24 Hour Average     | 13531  |                 | 149674 |                 | 29365 |                 | 4643  |                 | 1718 |                 | 6703 |

| Table 42 - H | Electric Loa | d Analysis | Summary |
|--------------|--------------|------------|---------|
|--------------|--------------|------------|---------|

| Number | Generator      | Rating (kW) | Average<br>Connected<br>(kW) | Online | (kW)   | Online | (kW)  | Online | (kW)  | Online | (kW) | Online | (KW)  |
|--------|----------------|-------------|------------------------------|--------|--------|--------|-------|--------|-------|--------|------|--------|-------|
| 4      | MT30           | 36000.0     | 144000                       | 4      | 144000 | 1      | 36000 | 0      | 0     | 0      | 0    | 0      | 0     |
| 2      | CAT 3616       | 5060.0      | 10120                        | 2      | 10120  | 1      | 5060  | 2      | 10120 | 1      | 5060 | 2      | 0     |
| 2      | Fuel Cell 5 MW | 5000.0      | 10000                        | 2      | 10000  | 0      | 0     | 0      | 0     | 0      | 0    | 0      | 10000 |
|        | Total          |             | 164120                       |        | 164120 |        | 41060 |        | 10120 |        | 5060 |        | 10000 |
|        |                |             | Available Power              |        | 360    |        | 537   |        | 37    |        | 1328 |        | 245   |

# 4.5.2 Service and Auxiliary Systems

The ship has standard service and auxiliary systems. These systems include: lube oil service, fuel service and transfer, air condition and refrigeration, fire main, potable water, JP-5 service and transfer, compressed air, hydraulics, and environmental systems. Due to the large VSR+++ radar system, there is significantly more cooling machinery required than would normally be required for a ship of this size. All service and auxiliary systems are listed in the MEL in Appendix E.

# 4.5.3 Ship Service Electrical Distribution

The electrical distribution system is a DC zonal electrical distribution system (DC ZEDS). The primary and secondary power generation modules provide power at 4160 VAC. The emergency generator fuel cells provide power at 1000VCD For each PGM and SPGM there is a PCM-4 which converters the 4160 VAC from the generators to 1000 VDC. Power is then supplied the port and starboard buses at 1000 VDC. In each of the 16 zones,

Page 64

there is one PCM-1 per bus to convert the power from 1000 VDC to 375-800 VDC for DC loads. The PCM-1's also supply power to the PCM-2's which convert 800 VDC to 450 VAC for AC loads. There is one PCM-2 per zone on each bus. All vital loads are connected to both the port and starboard buses for survivability reasons. The one-line electrical diagram is shown in Figure 57.



Figure 57 - One-Line Electrical Diagram

# 4.6 Manning

CGX/BMD has 5 departments and 17 divisions. The departments are: executive/admin, operations, weapons, engineering and supply. The department/division breakdown is shown in Figure 58. Because of the medium risk model that was chosen, our manning automation factor was .98, which means only current, standard automation is used on the ship. The level of automation is approximately equivalent to current naval vessels. Since the automation is low, the crew size is large at 452 men. This breaks down into 31 officers, 35 chief petty officers, and 386 enlisted personnel. The break down for each department and division is found in **Table 43**. Weapons and engineering are the largest departments.



Figure 58 – Manning Organization

| Departments     | partments Division    |    | CPO | Enlisted | Total<br>Department |
|-----------------|-----------------------|----|-----|----------|---------------------|
|                 | CO/XO                 | 2  |     |          | 2                   |
|                 | Department Heads      | 4  |     |          | 4                   |
| Executive/Admin | Executive/Admin       |    | 1   | 3        | 4                   |
| Operations      | Communications        | 1  | 1   | 18       | 76                  |
|                 | Navigation & Control  |    | 1   | 18       |                     |
|                 | Electronic Repair     | 1  | 1   | 16       |                     |
|                 | CIC, EW, Intelligence | 1  | 2   | 16       |                     |
| Weapons         | Air                   | 3  | 1   | 18       | 123                 |
|                 | Boat & Vehicle        |    | 1   | 20       |                     |
|                 | Deck                  | 1  | 2   | 24       |                     |
|                 | Ordinance/Gunnery     | 1  | 2   | 24       |                     |
|                 | ASW/MCM               | 1  | 1   | 24       |                     |
| Engineering     | Main Propulsion       | 1  | 2   | 40       | 131                 |
|                 | Electrical/IC         | 1  | 1   | 24       |                     |
|                 | Auxilaries            | 1  | 2   | 30       |                     |
|                 | Repair/DC             | 1  | 1   | 30       |                     |
| Supply          | Stores                | 1  | 1   | 10       | 48                  |
|                 | Material/Repair       | 1  | 1   | 18       |                     |
|                 | Mess                  | 1  | 1   | 16       |                     |
|                 | Total                 | 22 | 22  | 349      | 388                 |
|                 | MOGO totals           | 31 | 35  | 386      | 452                 |
|                 | Accomodations         | 30 | 30  | 400      | 460                 |

# Table 43 - Manning Summary

# 4.7 Space and Arrangements

HECSALV and RHINO was used to generate and assess subdivision and arrangements. HECSALV is used for primary subdivision, tank arrangements and loading. RHINO is used to construct 2-D drawings of the inboard and outboard profiles, deck and platform plans, detailed drawings of berthing, sanitary, and messing spaces, and a 3-D model of the ship. A profile showing the internal arrangements is shown in Figure 59 and Figure 60.

ELEX STOWAGE

FLAG OFFICER STOWAGE

BRIDGE & NAVIGATION

XO & DEPT. HEAD BERTH

ADMIN OFFICES

CIC

MMR 1

|                |               |              |            |             |              |                           | RADAR COOLING    |
|----------------|---------------|--------------|------------|-------------|--------------|---------------------------|------------------|
|                |               |              |            |             |              |                           | RADAR COOLING    |
|                |               |              |            |             |              |                           | OPERATIONS DEPT. |
|                |               |              |            |             |              |                           | WEAPONS SHOP     |
|                |               |              |            |             |              |                           | AVIATION CONTROL |
|                |               |              |            | +           |              |                           | HELO HANGER      |
| STEERING       | STOWAGE       | ENG. SHOP    | VLS        | DCC & CBR   | CPO BERTH    | GALLEY                    | CREW MESS        |
|                | BOAT STOW.    | AMR 2        | VLS        | CREW BERTH  | CREW BERTH   | FOOD STORAGE              | MMR 2            |
|                | STOWAGE       | mFH          | VLS        | CREW BERTH  | CREW BERTH   | CREW BERTH                |                  |
|                |               | DFM          | DFM        | STOWAGE     | STOWAGE      | CREW BERTH                |                  |
|                |               |              |            | DFM         | DFM          | DFM                       | DFM              |
| 221.25 m<br>AP | 208 m 196     | in 184       | m '        | 172 m 10    | L<br>60 m 14 | k8 m <sup>METERS</sup> 1: | 1                |
|                | F             | igure 59 - P | rofile Vie | w Showing A | rrangemen    | ts (Aft)                  |                  |
|                |               | _            |            |             |              |                           |                  |
| SLQ-32 LAUNCH  | RADAR COOLING | Ι            |            |             |              |                           |                  |
| FAN SPACE      | RADAR COOLING | 7            |            |             |              |                           |                  |

| 1 | OREW BERTHING |    |    |   | ORE DERTIN | OILE II BEILIN | BILLIN BEILIN |      | U.W. BALDAUT | 0.11. 0/1 |        |
|---|---------------|----|----|---|------------|----------------|---------------|------|--------------|-----------|--------|
|   | STOWAGE       |    |    |   | LAUNDRY    | ARMORY         | SONAR ELEX.   | FT m | S.W. BALLAST | S.W. BAI  | LAST ( |
| Ι | DFM           | DI | FM |   | DFM        | DFM            | DFM           | DFM  | S.W. BALLAST | SONAR     |        |
|   |               |    |    |   |            |                |               |      |              |           |        |
|   |               |    |    |   |            |                |               |      |              |           |        |
| ı |               |    |    | 1 |            |                |               |      |              |           |        |

OFFICER

DCC & CBR

CREW BERTH

CREW BERTH

MOORING

MOORING

AMR 1

(FR)

OFFICER LIVING

MEDICAL

TRAINING

CREW BERTH

щ

OFFICER BERTH

DCC & CBR

CREW BERTH

CREW/REDTH



Figure 60 - Profile View Showing Arrangements (Forward)

# 4.7.1 Volume

ELECTRICAL SHOP

DEPT. HEAD BERTH

CO BERTH

WARDROOM

AVIATION SHOP

DCC & CBR

REC. FACILITIES

Initial space requirements and availability in the ship are determined in the ship synthesis model. Arrangeable area estimates and requirements are refined in concept development arrangements and discussed in Sections 4.7.2 through 4.7.4. Table 44 compares required versus actual tankage volume.

| Variable              | Required | Final Concept<br>Design |
|-----------------------|----------|-------------------------|
| Waste Oil             | 24       | 26                      |
| Lube Oil              | 24       | 26                      |
| Potable Water         | 69       | 155                     |
| Sewage                | 20       | 20                      |
| Helicopter Fuel (JP5) | 65       | 65                      |
| Clean Ballast         | 1,280    | 930                     |
| Propulsion Fuel (DFM) | 4,650    | 4,770                   |

Table 44 – Required vs. Available Tankage Volume

BOS'N STOWAGE

SONAR ELEX.

SW BALLAST

BOS'N STOWAG

SVTT

BOS'N STOWAGE

BOS'N STOWAGE

HAZ. MAT.

C W DALLACT

## 4.7.2 Main and Auxiliary Machinery Spaces and Machinery Arrangement

There are four machinery spaces in the ship; MMR1, MMR2, AMR1, AMR2 as seen in Figure 61. The AMR's are located at the ends of the ship for survivability. All machinery rooms share the electrical equipment, 2 PCM-1, PCM-2, 1 switchboard and 1 PCM-4 per PGM. The electrical components are primarily placed on the upper levels of the machinery rooms. The PGM's and SPGM's are located in the MMR's on deck 5, the EPGM is located in the AMR's on decks 4 and 5. All lube oil and fuel service and transfer systems are located in the MMR's on deck 5. All air conditioning and potable water systems are located in the AMR's on decks 3, 4 and 5. Refrigeration systems for food storage are located in MMR2 on deck 3 near the galley. Compressed air systems are primarily located in the MMR's on deck 4; ship service air receivers are also located in the AMR's on decks 4 and 5. All environmental systems are in the MMR's on deck 5. The hydraulics for steering is located above the PODS on deck 2. Plan views for each level in the machinery rooms are found in Figure 62 - Figure 72 below.



Figure 63 - Plan View Showing MMR1 Deck 4



Figure 64 - Plan View Showing MMR1 Deck 5



Figure 65 - Plan View Showing MMR2 Deck 3



Figure 66 - Plan View Showing MMR2 Deck 4



Figure 67 - Plan View Showing MMR2 Deck 5



Figure 68 - Plan View Showing AMR1 Deck 3

- 3. Fuel Cell 20. Ladders
- 21. Escape Trunk
- 36. AC Plant
- 37. Chilled Water
- 46. Distiller
- 47. Brominator Proportioning
- 48. Brominator Recirculation
- 49. Potable Water Pump
- 54. Receiver



Figure 69 - Plan View Showing AMR1 Deck 4

3. Fuel Cell 20. Ladders 21. Escape Trunk 25. Space Fan 20. 26. Seawater Pump 41. 41. Pump Fire 43. Pump Bilge 49. 🖂 46. Distiller 47. Brominator Proportioning 3. 47. 46. 48. Brominator Recirculation 48. 49. Potable Water Pump 49. 3. 47. 46. 48. 21. 26. 43.



- 3. Fuel Cell
- 15. PCM4
- 16. PCM1
- 17. PCM2
- 19. EMR Switchboard
- 20. Ladders
- 21. Escape Trunk
- 25. Space Fan
- 36. AC Plant
- 37. Chilled Water
- 46. Distiller
- 47. Brominator Proportioning
- 48. Brominator Recirculation
- 49. Potable Water Pump



Figure 71 - Plan View Showing AMR2 Deck 3



Figure 72 - Plan View Showing AMR2 Deck 4



Figure 73 – 3D View Showing MMR1 Deck 3


Figure 74 – 3D View Showing MMR1 Deck 4



Figure 75 – 3D View Showing MMR1 Deck 5



Figure 76 – 3D View Showing AMR1 Deck 3



Figure 77 – 3D View Showing AMR1 Deck 4



Figure 78 – 3D View Showing AMR1 Deck 5

#### 4.7.3 Internal Arrangements

CGX/BMD is internally arranged using the four major space classification categories: Mission Support, Human Support, Ship Support, and Machinery Spaces. Approximate minimum areas and volume summaries for these spaces are listed in Appendix F - SSCS.

Mission Support includes CG(X) mission operations as well as combat systems and communications. This includes bridge spaces, navigation, aviation control, aviation hangar, and other spaces vital to combat missions. Human Support comprises of living spaces for all crew members, officers and enlisted. It also includes gallery spaces, mess spaces, recreation centers, and general ship spaces for all living on board. Ship Support systems generally include the daily operations of the ship, such as ship administration, ship control, damage control, deck auxiliaries, maintenance, stowage, and tankage. Ship administration is comprised of general ship administration, executive, engineering, supply and operations department offices. Damage control is located on the second deck, with spaces forward, mid and aft for firefighting stations and repair centers. Easy access to ladders is an advantage to these spaces. Ship Support also includes accessibility, including ship passageways and machinery room escape trunks. All major passageways are 1.55 meters wide, which accommodates medical passageways. Transverse passageways are situated about every two compartments. Each passageway through compartments has watertight bulkheads. There are two escape trunks in the main and auxiliary machinery rooms. Machinery spaces are described in the previous section. Figure 79 shows detailed general arrangement drawings.





|        |       |            |             |        |       | PASSA                       | GE          |          |      |    |             |
|--------|-------|------------|-------------|--------|-------|-----------------------------|-------------|----------|------|----|-------------|
|        |       |            |             | SANITA | RY    | REPAIR<br>STATION           | CPO<br>MEBS | SANITARY |      | Ē  |             |
| DECK 2 |       | MOORING    |             | VIS    | CPOL  | FIRE<br>FIGHTING            | CPO LIVING  |          |      | 1  |             |
|        |       | FACILITIES | ENGINEERING | VLO    | IVING | CBR<br>DEFENSE<br>EQUIPMENT | SANITARY    | GALLEY   |      | 1  |             |
|        | NIXIE | MOORING    |             | SANITA |       | CBR<br>DECON<br>STATION     |             |          | STOP | ₹E | C<br>D<br>S |



 221.35 m
 208 m
 196 m
 184 m
 172 m
 160 m
 METERS
 148 m
 132 m
 112 m



m ſ





PASSAGE



La construction de la constructi

| ] | DFM   |     | DFM | DFM | DFM | DFM | SONAR | INNER BOTTOM |
|---|-------|-----|-----|-----|-----|-----|-------|--------------|
|   | DFM   | DFM | DFM | DFM | DFM | DFM |       |              |
|   | WASTE |     |     |     | -   |     |       |              |

 112 m
 98 m
 METERS
 78 m
 66 m
 54 m
 44 m
 28 m
 16 m
 8 m
 0 m

 FP
 FP
 54 m
 54 m
 54 m
 56 m<



 221.35 m
 208 m
 196 m
 184 m
 172 m
 160 m
 METERS
 148 m
 132 m
 112 m

**Figure 79-Detailed General Arrangement Drawings** 

| Tank     | Capacity (m <sup>3</sup> ) | Tank      | Capacity (m <sup>3</sup> ) |
|----------|----------------------------|-----------|----------------------------|
| 6-57-2-F | 229                        | 6-16-1-F  | 86                         |
| 6-57-1-F | 229                        | 6-16-2-F  | 86                         |
| 6-51-2-F | 191                        | 6-67-1-F  | 30                         |
| 6-51-1-F | 191                        | 6-67-2-F  | 30                         |
| 6-43-2-F | 272                        | 5-47-3-F  | 286                        |
| 6-43-1-F | 272                        | 5-47-4-F  | 286                        |
| 6-37-2-F | 170                        | 3-80-0-W  | 359                        |
| 6-37-1-F | 170                        | 6-0-1-W   | 97                         |
| 6-29-2-F | 258                        | 6-0-2-W   | 97                         |
| 6-29-1-F | 258                        | 6-5-1-W   | 289                        |
| 6-19-1-F | 119                        | 6-5-2-W   | 289                        |
| 6-19-2-F | 119                        | 3-43-0-AF | 65                         |
| 6-25-1-F | 136                        | 6-11-1-WO | 14                         |
| 6-25-2-F | 136                        | 6-11-2-WO | 12                         |
| 6-63-1-F | 77                         | 6-11-2-LO | 14                         |
| 6-63-2-F | 77                         | 6-11-1-LO | 12                         |
| 5-57-3-F | 530                        | 5-36-0-W  | 37                         |
| 5-57-4-F | 530                        | 5-37-0-W  | 37                         |

#### Table 45 - Tank Capacity Plan

#### 4.7.4 Living Arrangements

Living space requirements were initially estimated based on the initial crew size from the ship synthesis model, then refined using the manning estimate. CG(X) final areas are necessary to support a highly capable and versatile crew. Table 46 lists the accommodation space for the crew.

Galley, crew's mess, laundry and medical spaces are located on the main deck. The Officer's Wardroom is located in the deckhouse. The CO and Flag Officer have the largest berthing and sanitary facility on the ship, followed by the XO. The CO, Flag Officer and XO quarters are located in the deckhouse. Department Head berthing is also located in the deckhouse, and CPO berthing is along the main deck. Living space for the enlisted crew members are located mainly on the third deck and a various other spaces. All living spaces are intended to

contain both men and women berthing and sanitary facilities. The recreational space is located on the third deck as well. Figure 80 - Figure 83 show typical officer and enlisted berthing and mess areas.

| Table 40 - Accommodation Space |                           |           |                     |                      |                       |  |  |  |
|--------------------------------|---------------------------|-----------|---------------------|----------------------|-----------------------|--|--|--|
| Item                           | Accommodation<br>Quantity | Per Space | Number of<br>Spaces | Area<br>Each<br>(m2) | Total<br>Area<br>(m2) |  |  |  |
| CO                             | 1                         | 1         | 1                   | 15                   | 15                    |  |  |  |
| XO                             | 1                         | 1         | 1                   | 10                   | 10                    |  |  |  |
| Flag Officer                   | 1                         | 1         | 1                   | 15                   | 15                    |  |  |  |
| Department Head                | 4                         | 1         | 4                   | 8                    | 32                    |  |  |  |
| Other Officer                  | 33                        | 2         | 17                  | 8                    | 136                   |  |  |  |
| CPO                            | 50                        | 6         | 9                   | 15                   | 135                   |  |  |  |
| Enlisted                       | 425                       | 12        | 36                  | 15                   | 540                   |  |  |  |
| Officer Sanitary               | 33                        | 6         | 6                   | 30                   | 180                   |  |  |  |
| CPO Sanitary                   | 50                        | 6         | 9                   | 25                   | 225                   |  |  |  |
| Enlisted Sanitary              | 425                       | 12        | 36                  | 20                   | 720                   |  |  |  |
| Total                          |                           |           | 120                 |                      | 2008                  |  |  |  |

**Table 46 - Accommodation Space** 



**Figure 80-Typical Officer Berthing** 



Figure 81-Typical Enlisted Berthing



**Figure 82-Typical Officer Mess** 



**Figure 83-Typical Enlisted Mess** 

#### 4.7.5 External Arrangements

Minimizing Radar Cross Section (RCS) is a major consideration in the design of the ship. All sides starting at three meters above the waterline are flared at a negative ten degree angle to offer a good RCS signature. An advanced enclosed mast structure is located at the top of the deckhouse to conceal various antennas and other arrays. Triple tubes which are normally mounted on deck are now mounted internally and fire through door openings in the hull. Conventional ship anchors were replaced by anchors similar to those found onboard submarines which tuck up into the hull, in the mooring spaces fore and aft.





Figure 85-Arcs of Fire for MK45 5" Gun and 30mm CIGS

The dual stern ramp for the seven meter RHIBs is enclosed to reduce RCS. Three CIGS are located on top of the deckhouse, and provide 360° protection. SPY-3/VSR+++ have three locations on the sides of the deckhouse, also to provide 360° protection. The MK-45 gun located in front of the deckhouse allow for protection out of range of the CIGS. CGX/BMD is equipped with 80 cells MK-57 PVLS located along the bow. 80 cells MK-57 VLS cells are located behind the helo hangar and flight deck. Figure 84 shows a profile view of the combat mission systems and Figure 85 shows profile and plan coverage zone covered by the gun systems located on the CG(X).

#### 4.8 Weights and Loading

#### 4.8.1 Weights

Ship weights are grouped by SWBS. Some weights are obtained from manufacturer information. ASSET parametrics and the ship synthesis model were used when this information was unavailable. The VCGs and LCGs of the weights are determined from the general ship and machinery arrangements. These values are used to calculate mass moments and the lightship centers of gravity. A summary of lightship weights and centers of gravity by SWBS group is listed in Table 47. The weights spreadsheet is provided in Appendix G.

| SWBS Group | Weight (MT) | VCG (m-Abv BL) | LCG (m-Aft FP) |
|------------|-------------|----------------|----------------|
| 100        | 9430.10     | 8.23           | 112.70         |
| 200        | 1861.06     | 5.07           | 140.33         |
| 300        | 1039.2      | 9.25           | 116.33         |
| 400        | 1202.10     | 17.08          | 67.88          |
| 500        | 2207.20     | 11.99          | 121.94         |
| 600        | 1553.50     | 7.61           | 101.03         |
| 700        | 848.50      | 10.92          | 107.31         |
| Margin     | 1814.17     | 9.08           | 112.64         |
| Total (LS) | 19955.83    | 9.08           | 112.64         |

Table 47 - Lightship Weight Summary

#### 4.8.2 Loading Conditions

As defined in DDS 079-1, the Full Load condition includes the lightship weights and LCG plus the full allowance of variable loads and cargo. This includes all liquid tankage at 95% capacity, ammunition, ship's force, provisions for endurance, and other miscellaneous cargoes. The Minimum Operating (MinOps) condition corresponds to a condition after some time at sea. Provisions, stores, ammunition, and fuel are considered to have one third of full capacity. Ballast tanks are filled to adjust trim appropriately. A summary of the weights for the Full Load condition is provided in Table 48. A summary for the Minimum Operating condition is provided in Table 49.

| Table 40 - Weight Summary: Full Load Condition |             |            |            |  |  |  |  |  |  |
|------------------------------------------------|-------------|------------|------------|--|--|--|--|--|--|
| Item                                           | Weight (MT) | VCG (m-BL) | LCG (m-FP) |  |  |  |  |  |  |
| Lightship w/ Margin                            | 18141.66    | 9.08       | 112.64     |  |  |  |  |  |  |
| Ships Force                                    | 51.10       | 11.47      | 104.20     |  |  |  |  |  |  |
| Total Weapons Loads                            | 438.3       | 12.44      | 113.71     |  |  |  |  |  |  |
| Aircraft                                       | 14.1        | 14.29      | 127.00     |  |  |  |  |  |  |
| Provisions                                     | 53.5        | 8.40       | 119.72     |  |  |  |  |  |  |
| General Stores                                 | 12.0        | 9.51       | 119.72     |  |  |  |  |  |  |
| Diesel Fuel Marine                             | 3767.00     | 2.45       | 118.30     |  |  |  |  |  |  |
| JP-5                                           | 50.00       | 8.81       | 134.00     |  |  |  |  |  |  |
| Lubricating Oil                                | 23.00       | 1.55       | 105.16     |  |  |  |  |  |  |
| SW Ballast                                     | 0.00        | 0.00       | 0.00       |  |  |  |  |  |  |
| Fresh Water                                    | 154.00      | 3.38       | 105.00     |  |  |  |  |  |  |
| Total                                          | 24518.83    | 8.09       | 113.53     |  |  |  |  |  |  |

| Item                | Weight (MT) | VCG (m-BL) | LCG (m-FP) |
|---------------------|-------------|------------|------------|
| Lightship           | 18141.66    | 9.08       | 112.64     |
| Ships Force         | 51.10       | 11.47      | 104.20     |
| Total Weapons Loads | 144.64      | 12.44      | 113.71     |
| Aircraft            | 14.10       | 14.29      | 127.00     |
| Provisions          | 17.66       | 8.40       | 119.72     |
| General Stores      | 3.96        | 9.51       | 119.72     |
| Diesel Fuel Marine  | 1308.00     | 1.51       | 118.10     |
| JP-5                | 17.00       | 7.95       | 134.00     |
| Lubricating Oil     | 8.00        | 1.23       | 105.21     |
| SW Ballast          | 843.00      | 4.74       | 104.70     |
| Fresh Water         | 103.00      | 2.92       | 105.00     |
| Total               | 22466.28    | 8.48       | 112.65     |

#### Table 49 - Weight Summary: Minop Condition

#### Table 50 - Minop Trim and Stability Summary

|                    | Weight | VCG    | LCG      | TCG    | FSMom |  |
|--------------------|--------|--------|----------|--------|-------|--|
| Item               | MT     | m      | m-MS     | m-CL   | m-MT  |  |
| Light Ship         | 20,528 | 10.220 | 112.500A | 0      |       |  |
| Constant           | 0      | 0      | 0        | 0      | 0     |  |
| Lube Oil           | 8      | 1.227  | 105.212A | 0.243P | 8     |  |
| Fresh Water        | 103    | 2.921  | 105.000A | 0      | 75    |  |
| SW Ballast         | 843    | 4.842  | 104.704A | 0      | 1,993 |  |
| Fuel (JP5)         | 17     | 7.954  | 134.000A |        | 59    |  |
| Comp. Fuel/Ballast | 0      | 0      | 0        | 0      | 0     |  |
| Fuel (DFM)         | 1,322  | 1.513  | 118.112A | 0      | 9,013 |  |
| Waste Oil          | 16     | 1.572  | 105.253A | 0.486S | 17    |  |
| Sewage             | 15     | 1.522  | 115.234A | 0      | 14    |  |
| Displacement       | 22,998 | 9.975  | 111.533A | 0.001S | 1,993 |  |

| Stability Calculation  |        |   | Trim Calculation    |          |         |
|------------------------|--------|---|---------------------|----------|---------|
| KMt                    | 11.761 | m | LCF Draft           | 7.205    | m       |
| VCG                    | 9.432  | m | LCB (even keel)     | 112.503A | m-MS    |
| GMt (Solid)            | 2.329  | m | LCF                 | 122.369A | m-MS    |
| FSc                    | 0406   | m | MT1cm               | 609      | m-MT/cm |
| GMt (Corrected)        | 1.922  | m | Trim                | 0.063    | m-A     |
|                        |        |   | List                | 0.0      | deg     |
| Specific Gravity       | 1.0250 |   |                     |          |         |
| Hull calcs from tables |        |   | Tank calcs from tab | les      |         |
|                        |        |   |                     |          |         |

| Drafts             |       |   | Strength Calculations | 3       |      |
|--------------------|-------|---|-----------------------|---------|------|
| Draft at A.P.      | 7.170 | m | Bending Moment        | 47,003H | m-MT |
| Draft at M.S.      | 7.201 | m | Shear                 | -968    | MT   |
| Draft at F.P.      | 7.233 | m |                       |         |      |
| Draft at Aft Marks | 7.169 | m |                       |         |      |
| Draft at Mid Marks | 7.201 | m |                       |         |      |
| Draft at Fwd Marks | 7.232 | m |                       |         |      |

#### 4.9 Hydrostatics and Stability

The hydrostatic properties of the CGX/BMD hullform were analyzed using the HECSALV software suite. First the section geometry was imported from RHINO into the HECSALV Ship Project Editor. Tankage and lightship distribution were established in the Ship Project Editor and bulkheads were arranged early on to set the floodable length curve. Once the ship's loads were balanced, the intact stability and damaged stability were analyzed in HECSALV and the Damaged Stability Module. The initial hydrostatics was calculated at a number of drafts, and the curves of form were also calculated. Intact stability was calculated in accordance with the U.S. Navy Design Sheet DDS 079-1. The damaged conditions were calculated for a number of possible scenarios with damage of 15% LWL or greater, then the three worst scenarios were modeled with the DDS 079-1 criteria for stability.

#### 4.9.1 Intact Stability

In each condition, trim, stability and righting arm data were calculated. All conditions were assessed using DDS 079-1 stability standards for beam winds with rolling. There are two criteria which must be fulfilled in order to have satisfactory intact stability: (1) the magnitude of the heeling arm at the intersection of the righting arm and wind heel arm curves must be less than six-tenths of the maximum GZ, and (2) the area under the righting arm curve and above the heeling arm curve (A1) must be greater than 1.4 times the area under the heeling arm curve and above the righting arm curve (A2).

|                        | Table 31 - Full |        | and Stability | Summary     |          |       |
|------------------------|-----------------|--------|---------------|-------------|----------|-------|
|                        | Weight          | VCG    | LCG           | TCG         | FSMom    |       |
| Item                   | MT              | m      | m-MS          | m-CL        | m-MT     |       |
| Light Ship             | 20,528          | 10.220 | 112.500A      | 0.000       |          |       |
| Constant               | 0               | 0.000  | 113.540A      | 0.000       | 0        |       |
| Lube Oil               | 24              | 1.572  | 105.159A      | 0.259P      | 0        |       |
| Fresh Water            | 154             | 3.375  | 105.000A      | 0.000       |          |       |
| SW Ballast             | 0               |        |               |             |          |       |
| Fuel (JP5)             | 52              | 8.875  | 134.000A      | 0.000       | 0        |       |
| Comp. Fuel/Ballast     | 0               |        |               |             |          |       |
| Fuel (DFM)             | 3,807           | 2.351  | 117.292A      | 0.000P      | 5,930    |       |
| Waste Oil              | 0               |        |               |             |          |       |
| Misc. Weights          | 550             | 11.954 | 113.863A      | 0.000       | 0        |       |
| Displacement           | 25,115          | 8.933  | 113.298A      | 0.000P      | 5,930    |       |
|                        |                 |        |               |             | ·        |       |
| Stability Calculation  |                 |        | Trim Calcul   | ation       |          |       |
| KMt                    | 11.630          | m      | LCF Draft     |             | 7.682    | m     |
| VCG                    | 8.847           | m      | LCB (even     | keel)       | 113.347A | m-FP  |
| GMt (Solid)            | 2.783           | m      | LCF           |             | 122.490A | m-FP  |
|                        |                 |        |               |             |          | m-    |
| FSc                    | 0.236           | m      | MT1cm         |             | 624      | MT/cm |
| GMt (Corrected)        | 2.547           | m      | Trim          |             | 0.064    | m-A   |
|                        |                 |        | List          |             | 0.0P     | deg   |
| Specific Gravity       | 1.0250          |        |               |             |          |       |
| Hull calcs from tables |                 |        | Tank calcs    | from tables | i        |       |
|                        |                 |        |               |             |          |       |
| Drafts                 |                 |        | Strength Ca   | alculations |          |       |
| Draft at F.P.          | 7.927           | m      | Bending Mo    | ment        | 14,963   | m-MT  |
| Draft at M.S.          | 7.955           | m      | Shear Force   |             | 734      | MT    |
| Draft at A.P.          | 7.982           | m      |               |             |          |       |
| Draft at Aft Marks     | 7.927           | m      |               |             |          |       |
| Draft at Mid Marks     | 7.954           | m      |               |             |          |       |
| Draft at Fwd Marks     | 7 981           | m      |               |             |          |       |

Table 51 - Full Load Trim and Stability Summary



Figure 86-MinOps Righting Arm Curve

| Table 52 - Righting Arm (GZ) and Heeling Arm Data for Minop Condition | n |
|-----------------------------------------------------------------------|---|
| Beam Wind with Rolling Stability Evaluation (per US Navy DDS079-1)    |   |

|                      | 0           |                      |            |
|----------------------|-------------|----------------------|------------|
| Displacement         | 22,998 MT   | Angle at Maximum GZ  | 39.1 deg   |
| GMt (corrected)      | 1.922 m     | Wind Heeling Arm Lw  | 0.095 m    |
| Mean Draft           | 7.201 m     | Angle at Intercept   |            |
| Projected Sail Area  | 1,729.29 m2 | Wind Heel Angle      | 2.8 deg    |
| Vertical Arm         | 11.058 m    | Maximum GZ           | 1.175 m    |
| Wind Pressure Factor | .0035       | Righting Area A1     | 0.74 m-rad |
| Wind Pressure        | 0.02 bar    | Capsizing Area A2    | 0.19 m-rad |
| Wind Velocity        | 100 kts     | Heeling Arm at 0 deg | 0095 m     |
| Roll Back Angle      | 25 deg      |                      |            |



In this case, both criteria are met. (1) The maximum heeling arm ratio is 0.08, well below the limit of 0.6, and (2) the area A1 is greater than 0.26, which is 1.4 times the area A2. The intact stability is satisfactory in the MinOps condition.

| Dealli Willu with    | r Koning Stability | Evaluation (per US Navy DDS073-1) |            |
|----------------------|--------------------|-----------------------------------|------------|
| Displacement         | 25,115 MT          | Angle at Maximum GZ               | 41.3 deg   |
| GMt (corrected)      | 2.547 m            | Wind Heeling Arm Lw               | 0081 m     |
| Mean Draft           | 7.95 m             | Angle at Intercept                |            |
| Projected Sail Area  | 1,584 m2           | Wind Heel Angle                   | 1.8 deg    |
| Vertical Arm         | 11.396 m           | Maximum GZ                        | 1.57 m     |
| Wind Pressure Factor | .0035              | Righting Area A1                  | 1.05 m-rad |
| Wind Pressure        | 0.02 bar           | Capsizing Area A2                 | 0.25 m-rad |
| Wind Velocity        | 100 kts            | Heeling Arm at 0 deg              | 0.081 m    |
| Roll Back Angle      | 25                 |                                   |            |

| Table 53 - Righting Arm (GZ) and Heeling Arm Data for Full Load Conditio | n |
|--------------------------------------------------------------------------|---|
| Beam Wind with Rolling Stability Evaluation (ner US Navy DDS079-1)       |   |

In the Full Load condition both DDS 079-1 criteria are met. (1) The maximum heeling arm ratio is 0.05, well below the limit of 0.6, and (2) the area A1 is greater than 0.34, which is 1.4 times the area A2. The intact stability is satisfactory in the Full Load condition.

#### 4.9.2 Damage Stability

To assess the vulnerability of CGX/BMD to damage, twenty-six individual damage cases were modeled in the HECSALV Damaged Stability Module. These cases involved three and four compartment flooding to the waterline determined by the creating damage scenarios with a 15% LWL damage event on the starboard side. Since the ship is largely symmetrical in loading and tankage, it was safe to consider only damage to the starboard side. The DDS 079-1 criteria for righting arm and area ratio as discussed before is applied here as well.

|                      | Intact | Damage 26<br>(trim 10.189A m) | Damage 20<br>(heel 8.5 S deg) |
|----------------------|--------|-------------------------------|-------------------------------|
| Draft AP (m)         | 7.710  | 14.124                        | 9.325                         |
| Draft FP (m)         | 7.646  | 3.797                         | 10.712                        |
| Trim on LBP (m)      | 0.064A | 10.189A                       | 1.387F                        |
| Total Weight (MT)    | 25,115 | 25,115                        | 25,115                        |
| Static Heel (deg)    | 0      | 0                             | 8.5                           |
| $GM_t$ (upright) (m) | 2.544  | 1.770                         | 2.140                         |
| Maximum GZ           | 1.570  | 0.74                          | 0.764                         |
| Maximum GZ Angle     | 41.5   | 39.2                          | 39.9                          |

Damage Case 20 in Figure 88 through Figure 90 was considered as a limiting state for extreme heel. The damage length in this scenario is 34m, which is just above the 15% LWL damage criteria. The aft diesel wing tank is also flooded in consideration of the damage potentially occurring further aft and as a worst case scenario. In the full load condition the weight of the fuel cargo on the port side helps to offset the lost of buoyancy on the starboard side. This can be seen in the sectional view in Figure 89. This case was a driving factor to boost the power in the auxiliary machinery spaces in the event of a large damage event at amidships.



Figure 88 - Damage Case 20 – Four compartment flooding extreme aft case



Figure 89 - Damage Case 20 - Sectional View of Starboard Flooding Amidships



Figure 90 - Damage Case 20 – Full Load Righting Arm Curve

Damage Case 26 in Figure 91 and Figure 92 represents a 24m damage length along the aft starboard side, and is the limiting case for trim. The margin line is submerged by 1.5 m at the transom. This case shows an extreme vulnerability to aft damage. Considering the propulsion pods and AMR2 are located in this damage region, the effects of an attack here would deal a major blow to ship capability. This issue should be examined more in depth in the next cycle of the design spiral. The equilibrium condition after damage might be affected by neglecting the added buoyancy of the pods in stability calculations.



Figure 91 - Damage Case 26 – Four compartment flooding extreme aft case.



Figure 92 - Damage Case 26 - Full Load Righting Arm Curve

#### 4.10 Cost and Risk Analysis

#### 4.10.1 Cost and Producibility

As part of the multi-objective optimization performed at the end of concept exploration (see sections 3.4.3, 3.5, and 3.6), cost was estimated for both lead and follow ship using parametric mathematical models. These models use, primarily, the rough estimates for weight (by SWBS group) determined by other parametric math models to estimate the basic cost of construction. Other factors considered included endurance range, brake horsepower, propulsion system type, and engine type. Estimates for shipbuilder profit, government costs and change orders, and a variety of other capital-consuming aspects were added to this cost to come up with the final cost estimates.

In concept development, many of the assumptions and estimates on which the cost estimate was based were changed, or re-calculated as firm numbers presented themselves or as the design changed. Therefore, a new estimation of cost is in order at the end of concept development.

#### 4.10.2 Risk Analysis

In Concept Development, changes were made to the design that affected the Overall Measure of Risk for the ship. The key technology changes made are the selection of permanent magnet motors (PMMs) for the pods and PEM fuel cells as emergency power generators. The motors were changed to PMMs because the pods, with induction motors, were determined to be too large and heavy, presenting structural and survivability dangers. The fuel cells were added as emergency generators in place of small diesel generators in the AMRs to increase survivability. The fuel cells provide enough power to drive the propellers in the event of flooding damage to both MMRs, while the small diesels did not.

It was determined that the change in motors would cause a change in overall risk, due to the uncertainty of the technology being available, but the addition of fuel cells would not increase risk, because they don't replace the large CAT 3616 diesels as SGPMs, they only supplement them. After recalculation, OMOR was found to have increased from 0.171 to 0.286. This is a moderate increase, but overall the design remains a low-risk option.

| Characteristic               | Concept Baseline  | Final Concept Design |
|------------------------------|-------------------|----------------------|
| Design Variables             |                   |                      |
| Hull Structure Material      | Steel             | Steel                |
| Deck House Material          | Composite         | Composite            |
| Hull Form                    | Monohull – Flared | Monohull –Flared     |
| Sustained Speed              | 20.0 knots        | 20.0                 |
| Endurance Speed              | 32.2 knots        | 32.9                 |
| Endurance Range              | 8158.7 nm         | 8007 nm              |
|                              | 2 Shaft FPP       | 2 Shaft FPP          |
|                              | IPS               | IPS                  |
| Propulsion and Power         | 4xMT30            | 4xMT30               |
|                              | 2xCAT 3616        | 2xCAT 3616           |
| BHP                          | 52.0 MW           | 103.0 MW             |
| Fuel Volume                  | 4652 m3           | 4720 m3              |
| Weights (MT)                 |                   |                      |
| Lightship Weight             | 18245.1           | 18141.66             |
| Full Load Displacement       | 24938.8           | 24518.83             |
| 100 (hull structures)        | 9455.7            | 9430.10              |
| 200 (propulsion plant)       | 1938.7            | 1861.06              |
| 300 (electrical)             | 1039.2            | 1039.20              |
| 400 (command and             | 1202.2            | 1202.10              |
| surveillance)                |                   |                      |
| 500 (auxiliary)              | 2207.4            | 2207.20              |
| 600 (outfit)                 | 1553.4            | 1553.50              |
| 700 (armament)               | 848.5             | 848.50               |
| Internal communications      |                   |                      |
| Ordinance Loads Weight       |                   |                      |
| Operating and support        |                   |                      |
| Number of Officer Crew       | 31                |                      |
| Number of Enlisted Crew      | 421               |                      |
| Total Crew                   | 452               | 452                  |
| Fuel Usage (Gal./Yr.)        |                   |                      |
| Service Life (Years)         | 35                | 35                   |
| Cost Elements                |                   |                      |
| Number of Ships to be Built  | 18                | 18                   |
| Shipbuilder                  |                   | \$1.03 Bil           |
| Government Furnished         |                   | \$2.599 Bil          |
| Equipment (a)                |                   |                      |
| Other Costs                  |                   | \$105.128 Mil        |
| Follow Ship Acquisition Cost | \$3.630 Bil       | \$3.676 Bil          |

| Table | 55 - | Cost | Com   | narison  |
|-------|------|------|-------|----------|
| 14010 | ~~   | 0000 | 00111 | 241 1001 |

#### 5 Conclusions and Future Work

#### 5.1 Assessment

Table 56 compares the CDD KPPs to the performance of baseline designs.

| Technical Performance Measure | CDD KPP<br>(Threshold)              | Original<br>Goal                    | Concept BL                          | Final<br>Concept BL              |
|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|
| Endurance Range (nm)          | 8000 nm                             | 8000 nm                             | 8000 nm                             | 8007 nm                          |
| Sustained Speed (knots)       | 32.2 knots                          | 32.2 knots                          | 32.2 knots                          | 32.7 knots                       |
| Endurance Speed (knots)       | 20 knots                            | 20 knots                            | 20 knots                            | 20 knots                         |
| Stores Duration (days)        | 50                                  | 50                                  | 50                                  | 50                               |
| Collective Protection System  | full                                | full                                | full                                | full                             |
| Crew Size                     | 452                                 | 452                                 | 452                                 | 388                              |
| RCS (m <sup>3</sup> )         | 14100                               | 14100                               | 14100                               | 14100                            |
| Maximum Draft (m)             | 7.58 m                              | 7.58 m                              | 7.58 m                              | 7.9 m                            |
| Vulnerability (Hull Material) | Steel                               | Steel                               | Steel                               | Steel                            |
| Ballast/fuel system           | Clean,<br>separate<br>ballast tanks | Clean,<br>separate<br>ballast tanks | Clean,<br>separate<br>ballast tanks | Clean, separate<br>ballast tanks |

| Tuble compliance with operational requirements | Table 56 - | Compliance | with ( | Operational | Requirements |
|------------------------------------------------|------------|------------|--------|-------------|--------------|
|------------------------------------------------|------------|------------|--------|-------------|--------------|

#### 5.2 Future Work

There are a number of concerns and issues that should be addressed in future design spirals. Vulnerability is a major concern in this design, and efforts have been made to minimize them. However, in future designs, some steps to minimize vulnerability should be assessed. Sympathetic vibrations of the hull due to long slender hull girder should be investigated. Alternative propulsor arrangements should be assessed. Pods located close together present a vulnerable target. Viability of a secondary Forward Propulsion Unit (FPU) should be investigated.

The need for sustained speed on the order of 33 knots should be reevaluated. For this ship's mission, it may not need the ability to travel at carrier speed.

The ability of the ZEDS system to carry the amperage demanded of it at the specified voltage should be investigated. The voltage currently in the design may not be high enough. Also, the electromagnetic interference of communications and radars should be investigated.

Fuel cells take a long time to power on. In a battle situation, all power generators would be powered on for safety, but if the ship were to take unexpected damage to both MMRs and the fuel cells in the AMRs were not powered on, the ship would be temporarily without power. Because of this, changing the fuel cells to a secondary power generation role and the CAT 3616 diesels to an emergency role should be investigated. This may have an impact on arrangements, because if the large CAT 3616 diesels are placed in the AMRs, additional inlet/exhaust stacks might be needed on deck. This would also affect radar cross-section.

The ship structures weight as estimated seems high (9430 MT). This weight should probably be on the order of 8000 MT. This should be revisited in future work.

Arrangements could be adjusted in future work. The size of the ship in terms of length, depth, and deckhouse volume could possibly be reduced. Also, as many VLS cells aft of the deckhouse as possible could be placed in a peripheral arrangement, and the remaining cells could be placed forward, so that two helicopter landing pads could be placed aft, making use of all the deck area aft. To accomplish this, significant rearranging internally would be required.

#### **5.3 Conclusions**

The CGX/BMD design presented in this report represents a feasible, highly effective solution to the BMD capability gap presented by the ADM. The design is highly effective at its primary mission of BMD due to its very large DBR and missile outfit. The design also fits the vision of the future of the navy by incorporating IPS. With ample power generation and full IPS the ship is flexible for future growth. The ship also has multi-mission capability, incorporating LAMPS and boat ramps, and guns for fire support. CGX/BMD fulfills the projected needs for strategic ballistic missile defense of the homeland, with an innovative yet realistic design

#### References

- 1. *Advanced Enclosed Mast/Sensor (AEM/S)*. 2004. The Federation of American Scientists. <a href="http://www.fas.org/man/dod-101/sys/ship/aems.htm">http://www.fas.org/man/dod-101/sys/ship/aems.htm</a>
- 2. Beedall, Richard. "Future Surface Combatant." September 10, 2003. <a href="http://www.geocities.com/Pentagon/Bunker/9452/fsc.htm">http://www.geocities.com/Pentagon/Bunker/9452/fsc.htm</a>
- Brown, Dr. Alan and LCDR Mark Thomas, USN. "Reengineering the Naval Ship Concept Design Process." 1998.
- 4. Brown, A.J., "Ship Design Notes", Virginia Tech AOE Department, 2004.
- Comstock, John P., ed. <u>Principles of Naval Architecture</u>, New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1967.
- Harrington, Roy L, ed. <u>Marine Engineering</u>. New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1992.
- 7. Storch, Richard Lee. Ship Production. Maryland: Cornell Maritime Press, 1988.
- 8. U.S. NavyFact File. 2004. U.S. Navy Home Page. http://www.chinfo.navy.mil/navpalib/factfile/ffiletop.html
- 9. Kennell, Colen, "Design Trends in High-Speed Transport", *Marine Technology*, Vol. 35, No. 3, pp. 127-134, July 1998.
- 10. Brown, A.J., "IPS and ZEDS", .PDF, Virginia Tech AOE Department, 2007.
- 11. Raytheon Integrated Defense Systems, "Dual Band Radar (DBR), Zumwalt Class Destroyer Program", Raytheon, Tewksbury, Mass. 2007
- 12. Doerry, Capt. N. and Clayton, D.. "Shipboard Electrical Power Quality of Service", IEEE Electric Ship Technologies Symposium. Proceedings, pp. 275-279, 2005.

#### **Appendix A – Initial Capabilities Document (ICD)**

### UNCLASSIFIED

# INITIAL CAPABILITIES DOCUMENT

# **Ballistic Missile Defense Cruiser (CGX/BMD)**

#### **1 PRIMARY JOINT FUNCTIONAL AREA**

• Force and Homeland Protection

The range of military application for the functions in this ICD includes: force protection and awareness at sea; and protection of homeland and critical bases from the sea. Timeframe considered: 2015-2050. This extended timeframe demands flexibility in upgrade and capability over time.

#### 2 REQUIRED FORCE CAPABILITY(S)

- Project defense around friends, joint forces and critical bases of operations at sea.
- Provide a sea-based layer of homeland defense.
- Provide persistent surveillance and reconnaissance.

#### **3 CONCEPT OF OPERATIONS SUMMARY**

Current Aegis ships are to be configured to intercept short and medium-range BM threats, but can not counter long-range intercontinental ballistic missiles that could target the US from China, North Korea and Iran. Current ships are also fully multi-mission ships. The radar and missile capabilities of the CGX/BMD are to be greater than the Navy's current Aegis ships. Some multi-mission capabilities may have to be sacrificed to control cost.

Potential strengths of CGX/BMD include the ability to conduct BMD operations from advantageous locations at sea that are inaccessible to ground-based systems, the ability to operate in forward locations in international waters without permission from foreign governments, and the ability to readily move to new maritime locations as needed. CGX/BMD could operate over the horizon from observers ashore, making it less visible and less provocative. CGX/BMD could readily move to respond to changing demands for BMD capabilities or to evade detection and targeting by enemy forces, and could do so without placing demands on other assets. Better locations might lie along a ballistic missile's potential flight path which can facilitate tracking and intercepting the attacking missile. Better locations would permit the CGX/BMD radar to view a ballistic missile from a different angle than other U.S. BMD sensors, which would allow CGX systems to track the attacking missile more effectively. If a potential adversary's ballistic missile launchers are relatively close to its coast, CGX/BMD could defend a large down-range territory against potential attack by ballistic missiles fired from those launchers. One to four BMD ships operating in the Sea of Japan could defend most or all of Japan against theater-range ballistic missiles (TBMs) fired from North Korea. CGX/BMD could be equipped with very fast interceptors (i.e., interceptors faster than those the Navy is currently deploying), and could intercept ballistic missiles fired from launchers during the missiles' boost phase of flight — the initial phase, during which the ballistic missiles' rocket engines are burning. A ballistic missile in the boost phase of flight is a relatively large, hot-burning target, is easier to intercept (in part because the missile is flying relatively slowly and is readily seen by radar), and the debris from a missile intercepted during its boost phase is more likely to fall on the adversary.

Potential limitations of a CGX/BMD include possible conflicts with performing other ship missions, and vulnerability to attack when operating in forward locations. Typical cruiser multi-mission capabilities and self-defense capabilities may have to be traded to control cost. CGX/BMD may require other surface combatant and submarine support to operate safely in high-risk environments. Conducting BMD operations may require CG(X) to operate in a location that is unsuitable for performing one or more other missions. Conducting BMD operations may reduce the ability to conduct air-defense operations against aircraft and cruise missiles due to limits on ship radar capacity. BMD interceptors may occupy ship weapon-launch tubes that might otherwise be used for air-defense, land-attack, or antisubmarine weapons. Maintaining a standing presence of a BMD ship in a location where other Navy missions do not require deployment, and where there is no nearby U.S. home port, can require a total commitment of several ships, to maintain ships on forward deployment.

Critical capabilities for CGX/BMD include high-altitude long-range search and track (LRS&T), and missiles with robust ICBM BMD terminal, mid-course, and potentially boost-phase capability. A ship with both of these is considered an ICBM engage-capable ship. The extent of these capabilities will have a significant impact on the CGX/BMD Concept of Operations.

CGX/BMD high-altitude long-range search and track radar will be much larger and more capable than current SPY-1B, 1D and 3 radars. It will be a mid-course fire-control radar designed to support long range BMD systems. Its principal functions are to detect and establish precise tracking information on ballistic missiles, discriminate missile warheads from decoys and debris, provide data for updating ground-based interceptors in flight, and assess the results of intercept attempts. It will be a large, powerful, phased-array radar operating in the X band, the frequency spectrum that is necessary for tracking missile warheads with high accuracy. It will have significant power and cooling requirements.

SM-3 Block IA missile is equipped with a kinetic (i.e., non-explosive) warhead designed to destroy a ballistic missile's warhead by colliding with it outside the atmosphere, during the enemy missile's midcourse phase of flight. It is intended to intercept SRBMs and MRBMs. An improved version, the Block IB, is to offer some capability for intercepting intermediate-range ballistic missiles (IRBMs). The Block IA and IB do not fly fast enough to offer a substantial capability for intercepting ICBMs. A faster-flying version of the SM-3, the Block II/IIA, is being developed. Block II/IIA is intended to give Aegis BMD ships a capability for intercepting certain ICBMs. The Block II version of the SM-3 will be available around 2013, and the Block IIA version in 2015. In contrast to the Block IA/1B version of the SM-3, which has a 21-inchdiameter booster stage but is 13.5 inches in diameter along the remainder of its length, the Block II/IIA version would have a 21-inch diameter along its entire length. The increase in diameter to a uniform 21 inches gives the missile a burnout velocity (a maximum velocity, reached at the time the propulsion stack burns out) that is 45% to 60% greater than that of the Block IA/IB version. The Block IIA version also includes an improved kinetic warhead. MDA states that the Block II/IIA version will "engage many [ballistic missile] targets that would outpace, fly over, or be beyond the engagement range" of earlier versions of the SM-3, and that the net result, when coupled with enhanced discrimination capability, is more types and ranges of engageable [ballistic missile] targets; with greater probability of kill, and a large increase in defended "footprint". Block II/IIA can be launched from Mk 57 VLS.

Despite the improved capabilities of Block II/IIA, CGX/BMD will require a more robust ICBM defense missile capability. Possibilities include a system using a modified version of the Army's Patriot Advanced Capability-3 (PAC-3) interceptor or a system using a modified version of the SM-6 Extended Range Active Missile (SM-6 ERAM) air defense missile being developed by the Navy. These missiles could also provide a terminal phase capability. A full capability for intercepting missiles in the terminal phase could prove critical for intercepting missiles fired along depressed trajectories that do not fly high enough to exit the atmosphere and consequently cannot be intercepted by the SM-3. They could also provide a more robust ability to counter potential Chinese TBMs equipped with maneuverable reentry vehicles (MaRVs) capable of hitting moving ships at sea.

The Kinetic Energy Interceptor (KEI) is a potential ballistic missile interceptor that, although large, could be used as a sea-based interceptor. Compared to the SM-3, the KEI would be much larger (perhaps 40 inches in diameter and 36 feet in length) and would have a much higher burnout velocity. Because of its much higher burnout velocity, it might be possible to use a KEI to intercept ballistic missiles during the boost and early ascent phases of their flights. The KEI would require missile-launch tubes that are much larger than MK 57 VLS.

#### 4 CAPABILITY GAP(S)

The overarching capability gap addressed by this ICD is to provide a robust sea-based terminal and/or boost phase ICBM defense platform:

| Priority | Capability<br>Description | Threshold Systems<br>or metric    | Goal Systems or<br>metric |
|----------|---------------------------|-----------------------------------|---------------------------|
| 1        | LRS&T Radar               | SPY-3 X-band<br>radar; S-Band VSR | Big!                      |
| 2        | BMD Missile Cell          | SM-3/MK-57 VLS<br>only            | KEI and SM-3/MK-57<br>VLS |
| 3        | BMD Missile<br>Capacity   | 96 SM-3                           | 128 SM-3, 16 KEI          |

Specific capability gaps and requirements in this ICBMD platform include:

| Priority | Capability<br>Description                                 | Threshold Systems<br>or metric       | Goal Systems or<br>metric                                                             |
|----------|-----------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------|
| 4        | BMD Platform<br>Mobility                                  | 30knt, full SS4,<br>4000 nm, 60 days | 35knt, full SS5, 6000<br>nm, 75 days                                                  |
| 5        | Platform Passive<br>Susceptibility                        | DDG-51 signatures                    | DDG1000 signatures                                                                    |
| 6        | Platform<br>Vulnerability and<br>Recoverability           | AFSS                                 | AFSS                                                                                  |
| 7        | Platform Self and<br>Area Defense, Other<br>Multi-Mission | CIGS, LAMPS<br>haven, TSCE           | 1xAGS, IUSW, SOF<br>and ASUW stern<br>launch, Embarked<br>LAMPS/AAV<br>w/hangar, TSCE |

#### **5 THREAT AND OPERATIONAL ENVIRONMENT**

Ballistic missiles armed with WMD payloads pose a strategic threat to the United States. This is not a distant threat. A new strategic environment now gives emerging ballistic missile powers the capacity, through a combination of domestic development and foreign assistance, to acquire the means to strike the U.S. within about five years of a decision to acquire such a capability. During several of those years, the U.S. might not be aware that such a decision had been made. Available alternative means of delivery can shorten the warning time of deployment nearly to zero. The threat is exacerbated by the ability of both existing and emerging ballistic missile powers to hide their activities from the U.S. and to deceive the U.S. about the pace, scope and direction of their development and proliferation programs.

Twenty-first-century threats to the United States, its deployed forces, and its friends and allies differ fundamentally from those of the Cold War. An unprecedented number of international actors have now acquired – or are seeking to acquire – missiles. These include not only states, but also non-state groups interested in obtaining missiles with nuclear or other payloads. The spectrum encompasses the missile arsenals already in the hands of Russia and China, as well as the emerging arsenals of a number of hostile states. The character of this threat has also changed. Unlike the Soviet Union, these newer missile possessors do not attempt to match U.S. systems, either in quality or in quantity. Instead, their missiles are designed to inflict major devastation without necessarily possessing the accuracy associated with the U.S. and Soviet nuclear arsenals of the Cold War.

The warning time that the United States might have before the deployment of such capabilities by a hostile state, or even a terrorist actor, is eroding as a result of several factors, including the widespread availability of technologies to build missiles and the resulting possibility that an entire system might be acquired. Would-be possessors do not have to engage in the protracted process of designing and building a missile. They could purchase and assemble components or reverse-engineer a missile after having purchased a prototype, or immediately acquire a number of assembled missiles. Even missiles that are primitive by U.S. standards might suffice for a rogue state or terrorist organization seeking to inflict extensive damage on the United States.

A successfully launched short or long range ballistic missile has a high probability of delivering its payload to its target compared to other means of delivery. Emerging powers therefore see ballistic missiles as highly effective deterrent weapons and as an effective means of coercing or intimidating adversaries, including the United States. The basis of most missile developments by emerging ballistic missile powers is the Soviet Scud missile and its derivatives. The Scud is derived from the World War II-era German V-2 rocket. With the external help now readily available, a nation with a well-developed, Scud-based ballistic missile infrastructure would be able to achieve first flight of a long range missile, up to and including intercontinental ballistic missile (ICBM) range (greater than 5,500 km), within about five years of deciding to do so. During several of those years the U.S. might not be aware that such a decision had been made. Early production models would probably be limited in number. They would be unlikely to meet U.S. standards of safety, accuracy and reliability. But the purposes of these nations would not require such standards. A larger force armed with scores of missiles and warheads and meeting higher operational standards would take somewhat longer to test, produce and deploy. But meanwhile, even a few of the simpler missiles could be highly effective for the purposes of those countries.

The extraordinary level of resources North Korea and Iran are now devoting to developing their own ballistic missile capabilities poses a substantial and immediate danger to the U.S., its vital interests and its allies. While these nations' missile programs may presently be aimed primarily at regional adversaries, they inevitably and inescapably engage the vital interests of the U.S. as well. Their targeted adversaries include key U.S. friends and allies. U.S. deployed forces are already at risk from these nations' growing arsenals. Each of these nations places a high priority on threatening U.S. territory, and each is even now pursuing advanced ballistic missile capabilities to pose a direct threat to U.S. territory.

Since many potentially unstable nations are located on or near geographically constrained (littoral) bodies of water, the tactical picture may be at smaller scales relative to open ocean warfare. Threats in such an environment include: (1) technologically advanced weapons - cruise missiles like the Silkworm and Exocet, land-launched attack aircraft, fast gunboats armed with guns and smaller missiles, and diesel-electric submarines; and (2) unsophisticated and inexpensive passive weapons – mines (surface, moored and bottom), chemical and biological weapons. Encounters may occur in shallow water which increases the difficulty of detecting and successfully prosecuting targets.

The sea-based environment for BMD varies greatly depending on the most strategic and effective location necessary to counter a particular threat. It includes:

- Open ocean (sea states 0 through 9) and littoral
- Shallow and deep water
- Noisy and reverberation-limited
- Degraded radar picture
- Crowded shipping
- Dense contacts and threats with complicated targeting
- Biological, chemical and nuclear weapons
- All-Weather

#### 6 FUNCTIONAL SOLUTION ANALYSIS SUMMARY

- a. Ideas for Non-Materiel Approaches (DOTMLPF Analysis).
- Sea-based only SPY-3/MK-57 VLS DDG1000 technology, use space-based and land-based systems for terminal phase and robust ICBMD, no CGX/BMD
- Increase reliance on foreign BMD support (Japan, etc.) to meet the interests of the U.S.
- b. Ideas for Materiel Approaches
- Design and build new large (25000 lton) nuclear CGNX for BMD
- Design and build modified LPD-17 for BMD
- Upgrade and extend service life of CG-52 ships with increased BMD capability
- Design and build entire new CGX/BMD ship with limited multi-mission capability
- Design and build new CGX/BMD ship with maximum DDG1000 commonality

#### 7 FINAL RECOMMENDATIONS

- a. Non-material solutions are not consistent with national policy.
- b. The secondary mission for this ship is CBG AAW and escort. The LPD-17 option does not support CBG requirements.
- c. CG-52 ships do not have sufficient stability, margin or large object space to support robust BMD radar and missile requirements.
- d. The options of a new CGX/BMD ship with limited multi-mission capability and new CGX/BMD ship with maximum DDG1000 commonality should both be explored and compared. A full range of multi-mission options should be considered from threshold to goal. Trade-offs and costs associated with such options as wave-piercing tumblehome hull form, IUSW and embarked LAMPS should be clearly identified and assessed.
- e. The nuclear option should be studied separately and possibly as a separate acquisition.

#### Appendix B– Acquisition Decision Memorandum (ADM)

 Virginia
 Aerospace and Ocean Engineering

 VIRGINIA POLYTECHNIC INSTITUTE
 215 Randolph Hall

 Mail Stop 0203, Blacksburg, Virginia 24061
 Phone # 540-231-6611 Fax: 540-231-9632

August 21, 2007

From: Virginia Tech Naval Acquisition Executive To: CGXBMD Design Teams

Subject: ACQUISITION DECISION MEMORANDUM FOR a Ballistic Missile Defense Cruiser

Ref: (a) Virginia Tech CGXBMD Initial Capabilities Document (ICD)

 This memorandum authorizes concept exploration of two material alternatives proposed in Reference (a) to the Virginia Tech Naval Acquisition Board on 21 August 2007. Additional material and non-material alternatives supporting this ICD may be authorized in the future.

2. Concept exploration is authorized for a CG(X) Ballistic Missile Defense Cruiser consistent with the mission requirements and constraints specified in Reference (a), with particular emphasis on providing robust ICBM defense. Missile options should include SM-3 Block II/IIA, systems providing improved terminal phase capability, and systems providing boost phase capability (Kinetic Energy Interceptor). A range of increasingly powerful dual X/S-band radars should be considered beyond SPY-3 w/VSR. Ship options should range from a new CGX/BMD ship with limited multi-mission capability to a fully multi-mission ship with maximum DDG-1000 commonality. A full range of multi-mission options should be considered. Trade-offs and costs associated with such options as wave-piercing tumblehome hull form, IUSW and embarked LAMPS should be clearly identified and assessed. The design must minimize personnel vulnerability in combat through automation. Concepts shall include moderate to high-risk alternatives. Average follow-ship acquisition cost shall not exceed \$3B (FY2012) with lead ship acquisition cost less than \$4B. It is expected that 18 ships of this type will be built with IOC in 2018.

A.J. Brown VT Acquisition Executive

A Land-Grant University The Commonwealth Is Our Campus An Equal Opportunity/Affirmative Action Institution

#### **Appendix C-Pairwise Comparison Results**









| Priorities with respect to:<br>Goal: Maximize OMOE<br>>MISSION - BMD<br>>Survivability<br>>MOP13 - NBC                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| full CPS                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                        |
| partial CPS                                                                                                                                                                                                                                                                                                                                                                                                         | 1.000       15       .845       .214   tency = 0.0019 a missing judgments. is with respect to: iaze 0M0E ON - BMD vivability OP14 - RCS 1.000 .841 .664 .392 |
| no CPS                                                                                                                                                                                                                                                                                                                                                                                                              | .214                                                                                                                                                         |
| Inconsistency = 0.00019<br>with 0 missing judgments.<br>Priorities with respect to:<br>Goal: Maximize 0MOE<br>>MISSION = BMD<br>>Survivability<br>>MOP14 - RCS<br>11000 m3 1.000<br>12000 m3 .644<br>13000 m3 .528<br>15000 m3 .392<br>Inconsistency = 0.0044<br>with 0 missing judgments.<br>Priorities with respect to:<br>Goal: Maximize 0MOE<br>>MISSION = BMD<br>>Survivability<br>>MOP15 - Acoustic Signature |                                                                                                                                                              |
| Priorities with respect to:<br>Goal: Maximize OMOE<br>>MISSION - BMD<br>>Survivability<br>>MOP14 - RCS                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |
| 11000 m3                                                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                        |
| 12000 m3                                                                                                                                                                                                                                                                                                                                                                                                            | .841                                                                                                                                                         |
| 13000 m3                                                                                                                                                                                                                                                                                                                                                                                                            | .664                                                                                                                                                         |
| 14000 m3                                                                                                                                                                                                                                                                                                                                                                                                            | .528                                                                                                                                                         |
| 15000 m3                                                                                                                                                                                                                                                                                                                                                                                                            | .392                                                                                                                                                         |
| Inconsistency = 0.0044                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |
| with 0 missing judgments.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |
| Priorities with respect to<br>Goal: Maximize OMOE<br>>MISSION - BMD<br>>Survivability<br>>MOP15 - Acoustic Sign                                                                                                                                                                                                                                                                                                     | :<br>nature                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                              |
| SPGM Fuel Cell                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                                                                                                                        |
| SPGM Gas Turbine                                                                                                                                                                                                                                                                                                                                                                                                    | .165                                                                                                                                                         |
| Jaconsistency = 0.04                                                                                                                                                                                                                                                                                                                                                                                                | .095                                                                                                                                                         |
| with 0 missing iudaments.<br>Priorities with respect to:                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |
| Goal: Maximize OMOE<br>>MISSION - BMD<br>>Survivability<br>>MOP16 - IR Signature                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              |
| SPGM Fuel Cell                                                                                                                                                                                                                                                                                                                                                                                                      | 1.000                                                                                                                                                        |
| SPGM Diesel                                                                                                                                                                                                                                                                                                                                                                                                         | .123                                                                                                                                                         |
| SPGM Gas Turbine                                                                                                                                                                                                                                                                                                                                                                                                    | .094                                                                                                                                                         |
| Inconsistency = 0.01                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |
| with 0 missing judgments.                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |
| Priorities with respect                                                                                                                                                                                                                                                                                                                                                                                             | to:                                                                                                                                                          |
| Goal: Maximize OMOE<br>>MISSION - BMD<br>>Survivability<br>>MOP17 - Magnetic S                                                                                                                                                                                                                                                                                                                                      | Signature                                                                                                                                                    |
| Degaussing                                                                                                                                                                                                                                                                                                                                                                                                          | 1.000                                                                                                                                                        |
| No degaussing                                                                                                                                                                                                                                                                                                                                                                                                       | .149                                                                                                                                                         |
| Inconsistency = 0.                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                              |
| with 0 missing judgment                                                                                                                                                                                                                                                                                                                                                                                             | s.                                                                                                                                                           |

## UNCLASSIFIED

# **CAPABILITY DEVELOPMENT DOCUMENT**

#### FOR

# BALLISTIC MISSILE DEFENSE CRUISER Variant #13 VT Team 2

#### **1** Capability Discussion.

The Initial Capabilities Document (ICD) for this CCD was issued by the Virginia Tech Acquisition Authority on 21 August 2007. The range of military application for the functions in this ICD includes: force protection and awareness at sea; and protection of homeland and critical bases from the sea. Timeframe considered: 2015-2050. This extended timeframe demands flexibility in upgrade and capability over time.

Current Aegis ships are to be configured to intercept short and medium-range BM threats, but can not counter long-range intercontinental ballistic missiles that could target the US from China, North Korea and Iran. Current ships are also fully multi-mission ships. The radar and missile capabilities of the CGX/BMD are to be greater than the Navy's current Aegis ships. Some multi-mission capabilities have to be sacrificed to control cost.

Specific capability gaps resulting from insufficient BMD capabilities with adequate inherent core capabilities include: <u>AAW/BMD</u>; blue/green water ASW. Additional capabilities include mine countermeasures, ISR, ASUW, special operations.

| Priority | Capability Description                                 | Threshold Systems or metric       | Goal Systems or metric                                                                     |
|----------|--------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------|
| 1        | LRS&T Radar                                            | SPY-3 X-band radar; S-Band<br>VSR | SPY-3/VSR+++ DBR, IRST,<br>AEGIS BMD 2014 Combat<br>System, CIFF-SD, SLQ/32(R)<br>improved |
| 2        | BMD Missile Cell                                       | SM-3/MK-57 VLS only               | KEI and SM-3/MK-57 VLS                                                                     |
| 3        | BMD Missile Capacity                                   | 96 SM-3                           | 160 SM-3, 8 KEI                                                                            |
| 4        | BMD Platform Mobility                                  | 30knt, full SS4, 4000 nm, 45 days | 35knt, full SS5, 6000 nm, 75<br>days                                                       |
| 5        | Platform Passive Susceptibility                        | DDG-51 signatures                 | DDG1000 signatures                                                                         |
| 6        | Platform Vulnerability and Recoverability              | AFSS                              | AFSS                                                                                       |
| 7        | Platform Self and Area Defense,<br>Other Multi-Mission | CIGS, LAMPS haven, TSCE           | 1xAGS, IUSW, SOF and ASUW<br>stern launch, Embarked<br>LAMPS/AAV w/hangar, TSCE            |

#### 2 Analysis Summary.

An Acquisition Decision Memorandum issued on 21 August 2007 by the Virginia Tech Acquisition Authority directed Concept Exploration and Analysis of Alternatives (AoA) for a new Aegis-type ship with more capable core systems and modular systems similar to DDG-1000, with particular emphasis on providing robust ICBM defense. Required core capabilities are to project defense around friends, joint forces and critical bases of operations at sea.

The platforms must provide a sea-based layer of homeland defense, and provide persistent surveillance and reconnaissance. The platforms must operate within current logistics support capabilities. Inter-service and Allied  $C^4/I$  (inter-operability) must be considered.

Concept Exploration was conducted from 23 August 2007 through 5 December 2007. A Concept Design and Requirements Review was conducted on 23 January 2008. This CDD presents the baseline requirements approved in this review.

Available technologies and concepts necessary to provide required functional capabilities were identified and defined in terms of performance, cost, risk and ship impact (weight, area, volume, power). Trade-off studies were performed using technology and concept design parameters to select trade-off options in a multi-objective genetic optimization (MOGO) for the total ship design. The result of this MOGO was a non-dominated frontier, Figure 1. This frontier includes designs with a wide range of risk and cost, each having the highest effectiveness for a given risk and cost. Preferred designs are often "knee in the curve" design selected for Virginia Tech Team 2, and specified in this CDD, is the low risk design shown with an X in Figure 1. Selection of a point on the non-dominated frontier specifies requirements, technologies and the baseline design.



Figure 1 – CGX/BMD Non-Dominated Frontier

#### **3** Concept of Operations Summary

The CGX concept of operations is based on the Initial Capabilities Document and the Acquisition Decision Memorandum for a Ballistic Missile Defense Cruiser that will have the ability to conduct BMD operations from advantageous locations at sea that are inaccessible to ground-based systems. It must have the ability to operate in forward locations in international waters and readily move to new maritime locations as needed. It must be able to operate over the horizon from observers ashore, and evade detection and targeting by enemy forces. It also must be able to move to locations that lie along a ballistic missile's potential flight path to facilitate tracking and intercepting the attacking missile, or move to locations to permit the CGX/BMD radar to view a ballistic missile from a different angle to allow the CGX systems to track the attacking missile more effectively.

CGX/BMD must be capable of defending a large down-range territory against potential attack by ballistic missiles. It will use very fast interceptors to intercept ballistic missiles fired from launchers during the boost phase and mid-flight. CGX/BMD must be equipped with high-altitude long-range search and track radar capable of detecting and establishing precise tracking information on ballistic missiles, discriminating missile warheads from decoys and debris, providing data for updating ground-based interceptors in flight, and assessing the results of intercept attempts.

CGX/BMD radar will be a large, powerful, phased-array radar operating in the X and S band frequencies. The X-band frequency is necessary for tracking missile warheads with high accuracy. To intercept the ballistic missile warheads in boost, early ascent, and mid-course of the flight, SM-3's and Kinetic Energy Interceptor's (KEIs) will be considered for the CGX/BMD weapons payload.

Additionally, the CGX/BMD will perform Carrier Battle Group (CBG) and Expeditionary Readiness Group (ERG) escort, providing area Anti-Air Warfare (AAW) defense and limited Anti-Submarine Warfare (ASW) and Anti-Surface Warfare (ASUW) defense in support of these units. The CGX/BMD will perform Tomahawk Land Attack Missile (TLAM) strikes in conjunction with the CBG, ERG, Surface Action Group (SAG) or operating independently.

Expected operations for CGX/BMD include:

- Ballistic Missile Defense
  - Provide Area AAW, ASW and ASUW defense
- Escort (CBG)
  - Provide Area AAW, ASW and ASUW defense
- Independent Ops
  - Provide Area AAW, ASW and ASUW
  - Provide ISR
  - Support UAVs, USVs and UUVs
  - Provide BMD
  - Provide MCM and additional ISR/ASW/ASUW
  - Support Special Operations
- Homeland Defense/Interdiction
  - Support AAW, ASW and ASUW
  - Provide surveillance and reconnaissance, support UAVs

#### 4 Threat Summary.

Ballistic missiles armed with WMD payloads pose a strategic threat to the United States. This is not a distant threat. A new strategic environment now gives emerging ballistic missile powers the capacity, through a combination of domestic development and foreign assistance, to acquire the means to strike the U.S. within about five years of a decision to acquire such a capability. During several of those years, the U.S. might not be aware that such a decision had been made. Available alternative means of delivery can shorten the warning time of deployment nearly to zero. The threat is exacerbated by the ability of both existing and emerging ballistic missile powers to hide their activities from the U.S. and to deceive the U.S. about the pace, scope and direction of their development and proliferation programs.

Twenty-first-century threats to the United States, its deployed forces, and its friends and allies differ fundamentally from those of the Cold War. An unprecedented number of international actors have now acquired – or are seeking to acquire – missiles. These include not only states, but also non-state groups interested in obtaining missiles with nuclear or other payloads. The spectrum encompasses the missile arsenals already in the hands of

Russia and China, as well as the emerging arsenals of a number of hostile states. The character of this threat has also changed. Unlike the Soviet Union, these newer missile possessors do not attempt to match U.S. systems, either in quality or in quantity. Instead, their missiles are designed to inflict major devastation without necessarily possessing the accuracy associated with the U.S. and Soviet nuclear arsenals of the Cold War.

The warning time that the United States might have before the deployment of such capabilities by a hostile state, or even a terrorist actor, is eroding as a result of several factors, including the widespread availability of technologies to build missiles and the resulting possibility that an entire system might be acquired. Would-be possessors do not have to engage in the protracted process of designing and building a missile. They could purchase and assemble components or reverse-engineer a missile after having purchased a prototype, or immediately acquire a number of assembled missiles. Even missiles that are primitive by U.S. standards might suffice for a rogue state or terrorist organization seeking to inflict extensive damage upon the United States.

A successfully launched short or long range ballistic missile has a high probability of delivering its payload to its target compared to other means of delivery. Emerging powers therefore see ballistic missiles as highly effective deterrent weapons and as an effective means of coercing or intimidating adversaries, including the United States. The basis of most missile developments by emerging ballistic missile powers is the Soviet Scud missile and its derivatives. The Scud is derived from the World War II-era German V-2 rocket. With the external help now readily available, a nation with a well-developed, Scud-based ballistic missile infrastructure would be able to achieve first flight of a long range missile, up to and including intercontinental ballistic missile (ICBM) range (greater than 5,500 km), within about five years of deciding to do so. During several of those years the U.S. might not be aware that such a decision had been made. Early production models would probably be limited in number. They would be unlikely to meet U.S. standards of safety, accuracy and reliability. But the purposes of these nations would not require such standards. A larger force armed with scores of missiles and warheads and meeting higher operational standards would take somewhat longer to test, produce and deploy. But meanwhile, even a few of the simpler missiles could be highly effective for the purposes of those countries.

The extraordinary level of resources North Korea and Iran are now devoting to developing their own ballistic missile capabilities poses a substantial and immediate danger to the U.S., its vital interests and its allies. While these nations' missile programs may presently be aimed primarily at regional adversaries, they inevitably and inescapably engage the vital interests of the U.S. as well. Their targeted adversaries include key U.S. friends and allies. U.S. deployed forces are already at risk from these nations' growing arsenals. Each of these nations places a high priority on threatening U.S. territory, and each is even now pursuing advanced ballistic missile capabilities to pose a direct threat to U.S. territory.

Since many potentially unstable nations are located on or near geographically constrained (littoral) bodies of water, the tactical picture may be at smaller scales relative to open ocean warfare. Threats in such an environment include: (1) technologically advanced weapons - cruise missiles like the Silkworm and Exocet, land-launched attack aircraft, fast gunboats armed with guns and smaller missiles, and diesel-electric submarines; and (2) unsophisticated and inexpensive passive weapons – mines (surface, moored and bottom), chemical and biological weapons. Encounters may occur in shallow water which increases the difficulty of detecting and successfully prosecuting targets.

The sea-based environment for BMD varies greatly depending on the most strategic and effective location necessary to counter a particular threat. It includes:

- Open ocean (sea states 0 through 9) and littoral
- Shallow and deep water
- Noisy and reverberation-limited
- Degraded radar picture
- Crowded shipping
- Dense contacts and threats with complicated targeting
- Biological, chemical and nuclear weapons
- All-Weather

#### 5 System Capabilities and Characteristics Required for the Current Development Increment.

| Key Performance Parameter | Development Threshold or Bequirement |
|---------------------------|--------------------------------------|
| <b>(KPP</b> )             | Development intestion of Kequirement |

| AAW/BMD/STK                   | SPY-3/VSR+++ DBR, IRST, AEGIS BMD 2014 Combat System, CIFF-SD, SLQ/32(R)<br>improved, MK36 SRBOC with NULKA |
|-------------------------------|-------------------------------------------------------------------------------------------------------------|
| ASUW/NSFS                     | 1xMK45 5"/62 gun, SPS-73, Small Arms, TISS, FLIR, GFCS, 2x7m RHIB, MK46 Mod2 3x<br>CIGS                     |
| ASW/MCM                       | Dual Frequency Bow Array, ISUW, NIXIE, 2xSVTT, mine-avoidance sonar                                         |
| CCC                           | Enhanced CCC                                                                                                |
| LAMPS                         | 2 x Embarked LAMPS w/Hangar, 2xVTUAV                                                                        |
| SDS                           | SLQ-32(V) 3, SRBOC, NULKA, ESSM                                                                             |
| GMLS                          | 160 cells MK57, 8 cells KEI                                                                                 |
| Hull                          | Flare – 10 deg                                                                                              |
| Power and Propulsion          | 2 shaft, 2 pods FPP                                                                                         |
| Endurance Range (nm)          | 8000 nm                                                                                                     |
| Sustained Speed (knots)       | 32.2 knots                                                                                                  |
| Endurance Speed (knots)       | 20 knots                                                                                                    |
| Stores Duration (days)        | 50                                                                                                          |
| Collective Protection System  | full                                                                                                        |
| Crew Size                     | 452                                                                                                         |
| RCS (m <sup>3</sup> )         | 14050                                                                                                       |
| Maximum Draft (m)             | 7.58 m                                                                                                      |
| Vulnerability (Hull Material) | Steel                                                                                                       |
| Ballast/fuel system           | Clean, separate ballast tanks                                                                               |
| Degaussing System             | No                                                                                                          |
| McCreight Seakeeping Index    | 15.5                                                                                                        |

| KG margin (m)                                  | 0.22m         |
|------------------------------------------------|---------------|
| Propulsion power margin (design)               | 10%           |
| Propulsion power margin (fouling and seastate) | 25% (0.8 MCR) |
| Electrical margins                             | 5%            |
| Net Weight margin (design and service)         | 10%           |

#### 6 Program Affordability.

Average follow-ship acquisition cost shall not exceed \$3.7B(\$FY2012) with a lead ship acquisition cost less than \$5.3B. It is expected that 18 ships of this type will be built with IOC in 2018.

# Appendix E-MEL

| ITEM                                       | QTY     | NOMENCLATURE                                       | DESCRIPTION                                                 | CAPACITY RATING                                 |
|--------------------------------------------|---------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| System: Main Engines and Transmission      |         |                                                    |                                                             |                                                 |
| 1                                          | 4       | Gas Turbine, Main                                  | MT30 Marine Turbine                                         | 36MW                                            |
| 2                                          | 2       | EMR Eng                                            | CAT 3616                                                    | 5.1MW                                           |
| 3                                          | 4       | SPGM                                               | 5 X 500kW Fuel Cell Module                                  | 2.5 MW 480 VAC at 60                            |
| -                                          | 4       | Main Francisco Francest Durat                      |                                                             | HZ                                              |
| 4                                          | 4       | Main Engine Exhaust Duct                           | MT20 Marine Turbine                                         | 153.8 Kg/sec                                    |
| 5                                          | 4       | Main Engine Inlet Duct                             |                                                             | 135 kg/sec                                      |
| 0                                          | 2       | EMR Eng Inlet Duct                                 | CAT 3010                                                    |                                                 |
| /<br>8                                     | 2       |                                                    | Engineering Control Station                                 |                                                 |
| 10                                         | 2       | Console Main Control                               | Main Propulsion                                             |                                                 |
| Syster                                     | n: Pow  | er Generation and Distribution                     | Maint Topulsion                                             |                                                 |
|                                            |         | DOM OF N                                           |                                                             | 36000 kW, 4180 VAC,                             |
| 11                                         | 4       | PGM GEN                                            | Power Generator Module                                      | 3 phase, 60 Hz, 0.8 PF                          |
| 12                                         | 2       | EMR GEN                                            | Fuel Cell                                                   | 5060 kW, 4180 VAC, 3<br>phase, 60 Hz            |
| 13                                         | 2       | SPGM GEN                                           | Secondary Power Generation<br>Module                        | 500 kW                                          |
| 14                                         | 2       | РММ                                                | Brushless Permanent Magnet<br>Motor Propulsion Motor Module | 70MW                                            |
| 15                                         | 8       | PCM4                                               | PCM4-5000                                                   | 4160 VAC to 1000 VDC                            |
| 16                                         | 32      | PCM1                                               |                                                             | 1000 VDC to 375-800<br>VDC                      |
| 17                                         | 32      | PCM2                                               |                                                             | 800 VDC to 450 VAC                              |
| 18                                         | 2       | Switchboard, Ships Service                         | Generator Control Power<br>Distribution DC                  | -                                               |
| 19                                         | 2       | EMR Switchboard                                    | Generator Control Power<br>Distribution AC                  | -                                               |
| 20                                         | 4       | MMR and AMR ladders                                | Inclined ladders                                            |                                                 |
| 21                                         | 4       | MMR and AMR escape trunks                          | Vertical ladders with fire tight<br>doors at each level     |                                                 |
| 22                                         | 3       | MN Machinery Space Fan                             | Supply                                                      | 94762 m^3/hr                                    |
| 23                                         | 3       | MN Machinery Space Fan                             | Exhaust                                                     | 91644 m^3/hr                                    |
| 24                                         | 2       | Aux Machinery Space Fan                            | Supply                                                      | 61164 m^3/hr                                    |
| 25                                         | 2       | Aux Machinery Space Fan                            | Exhaust                                                     | 61164 m^3/hr                                    |
| Syster                                     | m: Salt | Water Cooling                                      |                                                             |                                                 |
| 26                                         | 8       | Pump, Main Seawater Circ                           | Centrifugal, Vertical, Motor<br>Driven                      | 230 m^3/hr @ 2 bar                              |
| Syster                                     | m: Lube | e Oil Service and Transfer                         | l .                                                         | 1                                               |
| 27                                         | 4       | Assembly, MGT Lube Oil Storage and<br>Conditioning | Includes Oil Storage and Cooler                             | NA                                              |
| 28                                         | 4       | Assembly, Lube Oil Storage and<br>Conditioning     | Includes Oil Storage and Cooler<br>SEC ENG                  | NA                                              |
| 29                                         | 4       | Purifier, Lube Oil                                 | Centrifugal, Self Cleaning,<br>Partial Discharge Type       | 1.1 m^3/hr                                      |
| 30                                         | 4       | Pump, Lube Oil Transfer                            | Pos. Displacement, Horizontal,<br>Motor Driven              | 4 m^3/hr @ 5 bar                                |
| Syster                                     | m: Fuel | Oil Service and Transfer                           |                                                             |                                                 |
| 31                                         | 4       | Filter Separator, MGT Fuel                         | 2-Stage, Static, 5 Micron                                   | 30 m^3/hr                                       |
| 32                                         | 4       | Purifier, Fuel Oil GT                              | Selt Cleaning, Centrifugal,<br>Partial Discharge Type       | 7.0 m^3/hr                                      |
| 33                                         | 4       | Pump, Fuel Trans                                   | Gear, Motor Driven                                          | 45.4 m^3/h @ 5.2 bar                            |
| 34                                         | 4       | Fuel Oil Service Tanks                             |                                                             | $11.2 \text{ m}^3 \text{ x } 4 = 4 \text{ hrs}$ |
| 35                                         | 2       | EMR Fuel Oil Service Tanks                         |                                                             | 5 m^3                                           |
| System: Air Conditioning and Refrigeration |         |                                                    |                                                             |                                                 |
| 36                                         | 4       | Air Conditioning Plants                            | 150 Ion, Centritugal Units                                  | 150 ton                                         |
| 37                                         | 4       | Pump, Chilled Water                                | Centrifugal, Horizontal, Motor<br>Driven                    | 128 m^3/hr @4.1 bar                             |

| 38     | 4       | Refrig Plants, Ships Service    | R-134a                                   | 4.3 ton                    |
|--------|---------|---------------------------------|------------------------------------------|----------------------------|
| 39     | 6       | Radar Cooling Units             | 150 Ton Radar                            | 150 Ton                    |
| 40     | 6       | Pump, Coolant                   | Centrifugal, Horizontal, Motor<br>Driven | 128 m^3/hr @4.1 bar        |
| Syster | m: Salt | Water: Firemain, Bilge, Ballast | •                                        |                            |
| 41     | 8       | Pump, Fire                      | Centrifugal, Horizontal, Motor<br>Driven | 454 m^3/hr @ 9 bar         |
| 42     | 4       | Pump, Fire/Ballast              | Centrifugal, Horizontal, Motor<br>Driven | 454 m^3/hr @ 9 bar         |
| 43     | 2       | Pump, Bilge                     | Centrifugal, Horizontal, Motor<br>Driven | 227 m^3/hr @3.8 bar        |
| 44     | 2       | Pump, Bilge/Ballast             | Centrifugal, Horizontal, Motor<br>Driven | 227 m^3/hr @3.8 bar        |
| 45     | 5       | Station, AFFF                   | Skid Mounted                             | 227 m^3/hr @3.8 bar        |
| Syster | m: Pota | ble Water                       |                                          |                            |
| 46     | 4       | Distiller, Fresh Water          | Distilling Unit                          | 76 m^3/day (3.2<br>m^3/hr) |
| 47     | 4       | Brominator                      | Proportioning                            | 1.5 m^3/hr                 |
| 48     | 4       | Brominator                      | Recirculation                            | 5.7 m^3/hr                 |
| 49     | 4       | Pump, Potable Water             | Centrifugal, Horizontal, Motor<br>Driven | 22.7 m^3/hr @ 4.8 bar      |
| Syster | m: JP-5 | Service and Transfer            | 1                                        |                            |
| 49     | 2       | Pump, JP-5 Transfer             | Rotary, Motor Driven                     | 11.5 m^3/hr @ 4.1 bar      |
| 50     | 2       | Pump, JP-5 Service              | Rotary, Motor Driven                     | 22.7 m^3/hr @ 7.6 bar      |
| 51     | 1       | Pump, JP-5 Stripping            | Rotary, Motor Driven 5.7 m^3/hr @ 3.4 k  |                            |
| 52     | 2       | Filter/Separ., JP-5 Transfer    | Static, Two Stage                        | 17 m^3/hr                  |
| 53     | 2       | Filter/Separ., JP-5 Service     | Static, Two Stage                        | 22.7 m^3/hr                |
| Syster | m: Com  | pressed Air                     |                                          | 0.0                        |
| 54     | 5       | Receiver, Starting Air          | Steel, Cylindrical                       | 2.3 m^3                    |
| 55     | 3       | Compressor, MP Air              | Reciprocating Motor Driven,              | 80 m^3/nr FADY @ 30        |
| 56     | 2       | Receiver Ship Service Air       | Steel Cylindrical                        | 1 7 m^3                    |
| 57     | 2       | Receiver, Control Air           | Steel Cylindrical                        | 1.7 m 3                    |
| 58     | 2       | Compressor Air LP Ship Service  | Reciprocating Rotary Screw               | 8.6 bar @ 194 SCFM         |
| 59     | 2       | Drver, Air                      | Refrigerant Type                         | 250 SCFM                   |
| Syster | m: Stee | ring Gear Hydaulics             | i tomgorant Type                         |                            |
| 60     | 2       | Hydraulic Pump and Motor        | Steering Gear                            |                            |
| 61     | 1       | Hydraulic Steering Ram          | Steering Gear                            |                            |
| Syster | m: Envi | ronmental                       |                                          |                            |
| 62     | 2       | Pump, Oily Waste Transfer       | Motor Driven                             | 12.3 m^3/hr @ 7.6 bar      |
| 63     | 2       | Separator, Oil/Water            | Coalescer Plate Type                     | 2.7 m^3/hr                 |
| 64     | 2       | Unit, Sewage Collection         | Vacuum Collection Type w/<br>Pumps       | 28 m^3                     |
| 65     | 2       | Sewage Plant                    | Biological Type                          | 225 people                 |

# Appendix F-SSCS

| SSCS    | GROUP                        | VOLUME M3 | AREA M2 | LOC | SD |
|---------|------------------------------|-----------|---------|-----|----|
| 1       | MISSION SUPPORT              | 86.1      | 7570.6  | Т   | 0  |
|         |                              |           | 2573.5  | D   |    |
|         |                              |           | 4997    | Е   |    |
| 1.1     | COMMAND, COMMUNICATION+SURV  | 1696.3    |         | D   | 0  |
|         |                              |           | 1572.2  | Ε   |    |
| 1.11    | EXTERIOR COMMUNICATIONS      |           | 471.1   | D   | 0  |
| *1.111  | RADIO                        |           | 465.2   | D   | 0  |
| 1.112   | UNDERWATER SYSTEMS           |           |         | Ε   | 0  |
| 1.113   | VISUAL COM                   |           | 5.9     | D   | 0  |
| 1.12    | SURVEILLANCE SYS             |           | 1143.3  | D   | 0  |
|         |                              |           | 417.8   | Ε   |    |
| *1.121  | SURFACE SURV (RADAR)         |           | 1143.3  | D   | 0  |
|         |                              |           | 1       | Ε   |    |
| *1.122  | UNDERWATER SURV (SONAR)      |           | 416.8   | Ε   | 0  |
| 1.13    | COMMAND+CONTROL              |           | 75.4    | D   | 0  |
|         |                              |           | 948.4   | Ε   |    |
| *1.131  | COMBAT INFO CENTER           |           | 948.4   | Ε   | 0  |
| 1.132   | CONNING STATIONS             |           | 75.4    | D   | 0  |
| 1.13201 | PILOT HOUSE                  |           | 68.3    | D   | 0  |
| 1.13202 | CHART ROOM                   |           | 7.1     | D   | 0  |
| 1.14    | COUNTERMEASURES              |           | 6.5     | D   | 0  |
|         |                              |           | 16      | Ε   |    |
| *1.141  | ELECTRONIC                   |           | 6.5     | D   | 0  |
| *1.142  | TORPEDO                      |           | 16      | Ε   | 0  |
| 1.143   | MISSILE                      |           |         | Ε   | 0  |
| 1.15    | INTERIOR COMMUNICATIONS      |           | 190     | Ε   | 0  |
| 1.16    | ENVIRONMENTAL CNTL SUP SYS   |           |         | Ε   | 0  |
| 1.2     | WEAPONS                      | 24.1      |         | D   | 0  |
|         |                              |           | 3155.8  | Ε   |    |
| *1.21   | GUNS                         |           | 13.9    | D   | 0  |
|         |                              |           | 115.8   | Ε   |    |
| *1.211  | BATTERIES                    |           | 23.8    | Ε   | 0  |
| *1.22   | MISSILES                     |           | 10.1    | D   | 0  |
|         |                              |           | 3040    | Ε   |    |
| *1.221  | LAUNCHERS                    |           | 3040    | E   | 0  |
| 1.23    | ROCKETS                      |           |         | E   | 0  |
| 1.24    | TORPEDOS                     |           |         | Ε   | 0  |
| 1.25    | DEPTH CHARGES                |           |         | E   | 0  |
| 1.26    | MINES                        |           |         | Ε   | 0  |
| 1.27    | MULT EJECT RACK STOW         |           |         | E   | 0  |
| 1.28    | WEAP MODULE STA & SERV INTER |           |         | Ε   | 0  |
| 1.3     | AVIATION                     | 86.1      | 806.6   | D   | 0  |
|         |                              |           | 95.8    | E   | -  |
| 1.31    | AVIATION LAUNCH+RECOVERY     |           | 44.4    | E   | 0  |
| 1.311   | LAUNCHING+RECOVERY AREAS     |           |         | E   | 0  |
| 1.31102 | HELICOPTER LANDING AREA      |           |         | E   | 0  |

| SSCS                  | GROUP                            | VOLUME M3 | AREA M2 | LOC    | SD |
|-----------------------|----------------------------------|-----------|---------|--------|----|
| 1.312                 | LAUNCHING+RECOVERY EQUIP         |           | 44.4    | Е      | 0  |
| *1.3123               | HELICOPTER RECOVERY              |           | 44.4    | Е      | 0  |
| 1.32                  | AVIATION CONTROL                 |           | 20.4    | D      | 0  |
| 1.321                 | FLIGHT CONTROL                   |           | 9.3     | D      | 0  |
| 1.3212                | HELO FLIGHT CONTROL              |           | 9.3     | D      | 0  |
| 1.321201              | HELICOPTER CONTROL STATION       |           | 9.3     | D      | 1  |
| 1.322                 | NAVIGATION                       |           | 11.1    | D      | 0  |
| 1.32202               | TACAN EQUIP RM                   |           | 11.1    | D      | 1  |
| 1.323                 | OPERATIONS                       |           |         | Ε      | 0  |
| 1.33                  | AVIATION HANDLING                |           |         | Ε      | 0  |
| 1.331                 | AIRCRAFT ELEVATORS               |           |         | Е      | 0  |
| 1.332                 | AIRCRAFT CRANE                   |           |         | Ε      | 0  |
| 1.334                 | GROUND SUPPORT EQUIPMENT         |           |         | Ε      | 0  |
| *1.34                 | AIRCRAFT STOWAGE                 |           | 533.8   | D      | 0  |
| 1.34002               | HELICOPTER HANGAR                |           |         | Ε      | 0  |
| 1.35                  | AVIATION ADMINISTRATION          |           | 8.4     | Ε      | 0  |
| 1.353                 | AIR WING                         |           | 8.4     | Ε      | 0  |
| 1.35306               | AVIATION OFFICE                  |           | 8.4     | Ε      | 1  |
| *1.36                 | AVIATION MAINTENANCE             |           | 34.1    | D      | 0  |
|                       |                                  |           | 17.6    | Ε      |    |
| 1.361                 | AIRFRAME SHOPS                   |           | 5.9     | Ε      | 0  |
| 1.36106               | BATTERY SHOP                     |           | 5.9     | Ε      | 1  |
| 1.369                 | ORGANIZATIONAL LEVEL MAINTANENCE |           | 11.6    | Ε      | 0  |
| 1.36905               | HELICOPTER SHOP                  |           | 11.6    | Ε      | 1  |
| 1.37                  | AIRCRAFT ORDINANCE               |           | 57.5    | D      | 0  |
| 1.372                 | CONTROL                          |           |         | Ε      | 0  |
| 1.373                 | HANDLING                         |           |         | Ε      | 0  |
| *1.374                | STOWAGE                          |           | 57.5    | D      | 0  |
| *1.38                 | AVIATION FUEL SYS                | 86.1      | 2.8     | D      | 0  |
|                       |                                  |           | 4.1     | Ε      |    |
| 1.381                 | JP-5 SYSTEM                      |           | 86.1    | Ε      | 0  |
| 1.3811                | JP-5 TRANSFER                    |           |         | Ε      | 0  |
| 1.3812                | JP-5 HANDLING                    |           |         | Ε      | 0  |
| 1.3813                | AVIATION FUEL                    |           | 86.1    | E      | 0  |
| *1.39                 | AVIATION STORES                  |           | 158.1   | D      | 0  |
| 1 201                 |                                  |           | 21.4    | E<br>E | 0  |
| 1.391                 | AVIATION CONSUMABLES             |           | 21.4    | E<br>E | 0  |
| 1.3911                | SD STOREROOM                     |           | 21.4    | Е<br>Б | 0  |
| 1.391102              | AVIATION STORE RM                |           | 21.4    | Е<br>П | 0  |
| 1 F211                | CARGO                            |           |         | E<br>D | 0  |
| 1.5311                | CARGO ELEVATORS                  |           |         | E<br>D | 0  |
| 1.0                   | INTERMEDIATE MAINT FAC           |           |         | Е<br>D | 0  |
| 1./                   | FLAG FACILITIES                  | 40.5      | 11/     | D<br>E | 0  |
| 1 71                  |                                  |           | 114     | ь<br>г | 0  |
| $\perp \cdot / \perp$ | OPERALLONS<br>CONTROL            |           |         | ь<br>р | 0  |
| エ・/ム<br>1 ワン          | LANDI INC                        |           | 40.5    | ע<br>ד | 0  |
| 1 7/                  |                                  |           |         | с<br>г | 0  |
| 1./4                  | DI OWAGE                         |           |         | Ľ      | U  |
| SSCS     | GROUP                        | VOLUME M3 | AREA M2 | LOC    | SD |
|----------|------------------------------|-----------|---------|--------|----|
| 1.75     | ADMIN                        |           | 114     | Е      | 0  |
| 1.8      | SPECIAL MISSIONS             |           |         | Е      | 0  |
| *1.9     | SM ARMS, PYRO+SALU BAT       | 59.2      |         | Е      | 0  |
| 1.91     | SM ARMS (LOCKER)             |           | 7.9     | Е      | 0  |
| 1.92     | PYROTECHNICS                 |           |         | Е      | 0  |
| 1.93     | SALUTING BAT (MAGAZINE)      |           | 3.7     | Е      | 0  |
| 1.94     | ARMORY                       |           | 19      | Е      | 0  |
| 1.95     | SECURITY FORCE EQUIP         |           | 9.8     | Е      | 0  |
| 2        | HUMAN SUPPORT                | 4222.8    |         | Т      | 0  |
|          |                              |           | 203.6   | D      |    |
|          |                              |           | 4019.2  | Е      |    |
| 2.1      | LIVING                       | 203.6     |         | D      | 0  |
|          |                              |           | 2738.6  | Е      |    |
| 2.11     | OFFICER LIVING               |           | 201.2   | D      | 0  |
|          |                              |           | 312.8   | Е      |    |
| 2.111    | BERTHING                     |           | 196.6   | D      | 0  |
|          |                              |           | 274.8   | Е      |    |
| 2.1111   | SHIP OFFICER                 |           | 196.6   | D      | 0  |
|          |                              |           | 172.3 E |        |    |
| *2 11111 | COMMANDING OFFICER BERTHING  |           | 196 6   | П      | 0  |
| 2 11111  | COMMANDING OFFICER CABIN     |           | 36 5    | D      | 1  |
| 2 11111  | COMMANDING OFFICER STATEROOM |           | 18 6    | D      | 1  |
| 2.111121 | EXECUTIVE OFFICER STATEROOM  |           | 13.9    | -<br>F | 1  |
| 2.111123 | DEPARTMENT HEAD STATEROOM    |           | 58.1    | т<br>Е | 5  |
| 2.11113  | OFFICER STATEROOM (DBL)      |           | 100.3   | E      | 8  |
| 2.1114   | AVIATION OFFICER             |           | 37.6    | E      | 0  |
| 2.11143  | AIR OFFICER BERTHING         |           | 37.6    | Е      | 3  |
| 2.1115   | FLAG OFFICER                 |           | 64.8    | Е      | 0  |
| 2.11151  | FLAG CABIN                   |           | 36.5    | Е      | 1  |
| 2.11151  | FLAG STATEROOM               |           | 18.6    | Е      | 1  |
| 2.11153  | FLAG STAFF OFFICER STTRM     |           | 9.8     | Е      | 1  |
| 2.112    | SANITARY                     |           | 4.6     | D      | 0  |
|          |                              |           | 38      | Е      |    |
| 2.1121   | SHIP OFFICER                 |           | 4.6     | D      | 0  |
|          |                              |           | 21.2    | Е      |    |
| 2.11211  | COMMANDING OFFICER BATH      |           | 4.6     | D      | 1  |
| 2.11212  | EXECUTIVE OFFICER BATH       |           | 2.8     | Е      | 1  |
| 2.11212  | OFFICER BATH                 |           | 2.1     | Е      | 2  |
| 2.11213  | OFFICER WR, WC & SH          |           | 16.4    | Е      | 2  |
| 2.1124   | AVIATION OFFICER             |           | 6.3     | Е      | 0  |
| 2.112403 | AVIATION OFFICER BATH        |           | 6.3     | Е      | 3  |
| 2.1125   | FLAG OFFICER                 |           | 10.5    | Е      | 0  |
| 2.11251  | FLAG OFFICER BATH            |           | 4.6     | Е      | 1  |
| 2.11253  | FLAG STF OFF WR, WC & SH     |           | 5.9     | Е      | 1  |
| *2.12    | CPO LIVING                   |           | 337.7   | Е      | 0  |
| 2.121    | BERTHING                     |           | 89.4    | Е      | 0  |
| 2.1211   | SHIP CPO                     | 53.7      | Е       | 2      |    |

| SSCS     | GROUP                       | VOLUME M3 | AREA M2 | LOC | SD |
|----------|-----------------------------|-----------|---------|-----|----|
| 2.1214   | AVIATION CPO                |           | 20.4    | Е   | 1  |
| 2.1215   | FLAG CPO                    |           | 15.3    | Е   | 1  |
| 2.122    | SANITARY                    |           | 28.2    | Е   | 0  |
| 2.1221   | SHIP CPO                    |           | 15.7    | Е   | 2  |
| 2.1224   | AVIATION CPO                |           | 6.7     | Е   | 1  |
| 2.1225   | FLAG CPO                    |           | 5.9     | Е   | 1  |
| *2.13    | CREW LIVING                 |           | 1859.8  | Е   | 0  |
| 2.131    | BERTHING                    |           | 771     | Е   | 0  |
| 2.1311   | SHIP CREW                   |           | 747     | Е   | 0  |
| 2.131101 | LIVING SPACE                |           | 747     | Е   | 16 |
| 2.1314   | AVIATION ENLIST             |           | 24      | Е   | 1  |
| 2.132    | SANITARY                    |           | 146.9   | Е   | 0  |
| 2.1321   | SHIP CREW                   |           | 141     | Е   | 0  |
| 2.132101 | SANITARY                    |           | 141     | Е   | 16 |
| 2.1324   | AVIATION ENLIST             |           | 5.9     | Е   | 1  |
| 2.133    | RECREATION                  |           | 35.9    | Е   | 0  |
| 2.13301  | RECREATION ROOM             |           | 17.9    | Е   | 0  |
| 2.13302  | LIBRARY                     |           | 17.9    | Е   | 0  |
| 2.13306  | CREW LOUNGE                 |           |         | Е   | 0  |
| 2.14     | GENERAL SANITARY FACILITIES |           | 2.3     | D   | 0  |
|          |                             |           | 10.2    | Е   |    |
| 2.14001  | LADIES RETIRING ROOM        |           | 5.6     | Е   | 1  |
| 2.14002  | BRIDGE WASHRM & WC          |           | 2.3     | D   | 1  |
| 2.14003  | DECK WASHRM & WC            |           | 2.3     | Е   | 1  |
| 2.14004  | ENGINEERING WR & WC         |           | 2.3     | Е   | 1  |
| *2.15    | SHIP RECREATION FAC         |           | 214.9   | Е   | 0  |
| 2.151    | MUSIC                       |           | 8.4     | Е   | 0  |
| 2.15101  | ENTERTAINMENT EQUIP STRM    |           | 8.4     | Е   | 0  |
| 2.152    | MOTION PIC FILM+EQUIP       |           | 1.9     | Е   | 0  |
| 2.15201  | PROJECTION EQUIP RM         |           | 1.9     | Е   | 0  |
| 2.153    | PHYSICAL FITNESS            |           | 5       | Е   | 0  |
| 2.15302  | ATHLETIC GEAR STRM          |           | 5       | Е   | 0  |
| 2.154    | TV ROOM                     |           |         | Е   | 0  |
| 2.16     | TRAINING                    |           | 3.3     | Ε   | 0  |
| 2.16002  | RECOGNITION TRAINING LKR    |           | 3.3     | Е   | 0  |
| 2.2      | COMMISSARY                  | 776.7     |         | Ε   | 0  |
| 2.21     | FOOD SERVICE                |           | 375.3   | Ε   | 0  |
| 2.211    | OFFICER                     |           | 62.7    | Ε   | 0  |
| 2.21101  | WARDROOM MESSRM & LOUNGE    |           | 62.7    | Ε   | 0  |
| *2.212   | CPO                         |           | 98.2    | Ε   | 0  |
| 2.21201  | CPO MESSROOM AND LOUNGE     |           | 69.7    | Ε   | 0  |
| *2.213   | CREW                        |           | 200     | Ε   | 0  |
| 2.21301  | 1ST CLASS MESSROOM          |           | 25.6    | Ε   | 0  |
| 2.21303  | CREW MESSROOM               |           | 145.3   | Ε   | 0  |
| 2.214    | MESS MANAGEMENT SPLST       |           | 14.3    | Ε   | 0  |
| 2.21401  | MESS MNGMNT SPLST MESSRM    |           | 14.3    | Ε   | 0  |
| 2.215    | FLAG OFFICER                |           |         | Ε   | 0  |
| *2.22    | COMMISSARY SERVICE SPACES   |           | 186.4   | Е   | 0  |

| SSCS    | GROUP                       | VOLUME M3 | AREA M2 | LOC | SD |
|---------|-----------------------------|-----------|---------|-----|----|
| 2.221   | FOOD PREPARATION SPACES     |           | 15      | Е   | 0  |
| 2.22104 | BREAD ROOM                  |           |         | Е   | 0  |
| 2.22105 | VEGETABLE PREPARATION ROOM  |           | 11      | Е   | 0  |
| 2.22107 | THAW ROOM                   |           | 4       | Е   | 0  |
| 2.222   | GALLEY                      |           | 104.9   | Е   | 0  |
| 2.22201 | COMMANDING OFFICER GALLEY   |           | 10.7    | Е   | 0  |
| 2.22202 | WARD ROOM GALLEY            |           | 9.8     | Е   | 0  |
| 2.22203 | CPO GALLEY                  |           | 9.1     | Е   | 0  |
| 2.22204 | CREW GALLEY                 |           | 75.3    | Е   | 0  |
| 2.223   | PANTRIES                    |           | 7.6     | Е   | 0  |
| 2.22303 | CPO PANTRY                  |           | 7.6     | Е   | 0  |
| 2.224   | SCULLERY                    |           | 20.4    | Е   | 0  |
| 2.22403 | CREW SCULLERY               |           | 20.4    | Е   | 0  |
| 2.225   | GARBAGE DISPOSAL            |           |         | Е   | 0  |
| 2.226   | PREPARED FOOD HANDLING      |           |         | Е   | 0  |
| *2.23   | FOOD STORAGE+ISSUE          |           | 215.1   | Е   | 0  |
| 2.231   | CHILL PROVISIONS            |           | 27.3    | Е   | 0  |
| 2.232   | FROZEN PROVISIONS           |           | 26.8    | Е   | 0  |
| 2.233   | DRY PROVISIONS              |           | 57.5    | Е   | 0  |
| 2.234   | ISSUE                       |           | 8.6     | Е   | 0  |
| 2.23401 | PROVISION ISSUE ROOM        |           | 8.6     | Е   | 0  |
| 2.3     | MEDICAL+DENTAL (MEDICAL)    | 83.6      |         | Е   | 0  |
| 2.31    | MEDICAL FACILITIES          |           | 50      | Е   | 0  |
| 2.31007 | DIET PANTRY                 |           | 6.7     | Е   | 0  |
| 2.3101  | INTENSIVE CARE OUIET RM     |           |         | Е   | 0  |
| 2.31011 | ~<br>MEDICAL LINEN ISSUE RM |           |         | Е   | 0  |
| 2.31012 | MEDICAL TREATMENT ROOM      |           | 28      | Е   | 0  |
| 2.31023 | MEDICAL UTILITY RM          |           | 5.2     | Е   | 0  |
| 2.31024 | WARD                        |           | 4.6     | Е   | 0  |
| 2.31025 | WARD BATH                   |           | 5.5     | Е   | 0  |
| 2.31027 | MORGUE                      |           |         | Е   | 0  |
| 2.33    | BATTLE DRESSING             |           | 16.3    | Е   | 0  |
| 2.331   | AUX BATTLE DRESSING         |           | 2.3     | Е   | 0  |
| 2.33101 | FWD AUX BATTLE DRESS ST     |           | 2.3     | Е   | 0  |
| 2.33102 | AFT AUX BATTLE DRESS ST     |           |         | Е   | 0  |
| 2.332   | MAIN BATTLE DRESSING        |           | 13.9    | Е   | 0  |
| 2.33201 | FWD BATTLE DRESSING STA     |           | 7       | Е   | 0  |
| 2.33203 | AFT BATTLE DRESSING STA     |           | 7       | Е   | 0  |
| 2.34    | MEDICAL & DENTAL STOWAGE    |           | 17.4    | Е   | 0  |
| 2.341   | MEDICAL                     |           | 17.4    | Е   | 0  |
| 2.34101 | MEDICAL STOREROOM           |           | 6.2     | Е   | 2  |
| 2.34104 | BATTLE DRESSING STRM        |           | 11.1    | Е   | 2  |
| 2.342   | DENTAL                      |           |         | Е   | 0  |
| 2.35    | MEDICAL & DENTAL ADMIN      |           |         | Е   | 0  |
| 2.352   | DENTAL ADMIN                |           |         | Е   | 0  |
| 2.4     | GENERAL SERVICES            | 228.3     |         | Е   | 0  |
| 2.41    | SHIP STORE FACILITIES       |           | 64.8    | Е   | 0  |
| 2.41001 | SHIP STORE                  |           | 26.9    | Е   | 0  |

| SSCS    | GROUP                          | VOLUME M3 | AREA M2 | LOC | SD |
|---------|--------------------------------|-----------|---------|-----|----|
| 2.41005 | VENDING MACHINE AREA           |           |         | E   | 0  |
| 2.41006 | SHIP STORE STORERM             |           | 37.9    | Е   | 0  |
| *2.42   | LAUNDRY FACILITIES             |           | 139.4   | Е   | 0  |
| 2.42001 | LAUNDRY                        |           | 84      | Е   | 0  |
| 2.42004 | LAUNDRY STOREROOM              |           |         | Е   | 0  |
| 2.44    | BARBER SERVICE                 |           | 13.9    | Е   | 0  |
| 2.44002 | BARBER SHOP                    |           | 13.9    | Е   | 0  |
| 2.46    | POSTAL SERVICE                 |           | 10.2    | Е   | 0  |
| 2.46001 | POST OFFICE                    |           | 10.2    | Е   | 0  |
| 2.47    | BRIG                           |           |         | Е   | 0  |
| 2.48    | RELIGIOUS                      |           |         | Е   | 0  |
| 2.5     | PERSONNEL STORES               | 46.3      |         | Е   | 0  |
| 2.51    | BAGGAGE STOREROOMS             |           | 26.9    | Е   | 0  |
| 2.51001 | OFFICER BAGGAGE STRM           |           | 5.8     | Е   | 0  |
| 2.51002 | CPO BAGGAGE STRM               |           | 3.3     | Е   | 0  |
| 2.51003 | CREW BAGGAGE STRM              |           | 17.9    | Е   | 0  |
| 2.52    | MESSROOM STORES                |           | 11.2    | Е   | 0  |
| 2.52001 | WARDROOM STOREROOM             |           | 2.9     | Е   | 0  |
| 2.52002 | CPO STOREROOM                  |           | 6.5     | Е   | 0  |
| 2.52003 | COMMANDING OFFICER STRM        |           | 1.9     | Е   | 0  |
| 2.55    | FOUL WEATHER GEAR              |           | 3.4     | Е   | 0  |
| 2.55001 | FOUL WEATHER GEAR LOCKER       |           | 3.4     | Е   | 0  |
| 2.56    | LINEN STOWAGE                  |           | 2.2     | Е   | 0  |
| 2.57    | FOLDING CHAIR STOREROOM        |           | 2.5     | Е   | 0  |
| 2.6     | CBR PROTECTION                 | 143.7     |         | Е   | 0  |
| 2.61    | CBR DECON STATIONS             |           | 31.5    | Е   | 0  |
| 2.62    | CBR DEFENSE EQUIPMENT          |           | 41.5    | Е   | 0  |
| 2.62001 | CBR DEFENSE EQP STRMS          |           | 41.5    | Е   | 0  |
| 2.63    | CPS AIRLOCKS                   |           | 70.7    | Е   | 0  |
| 2.7     | LIFESAVING EQUIPMENT           | 1.9       |         | Е   | 0  |
| 2.71    | LIFEJACKET LOCKER              |           | 1.9     | Е   | 0  |
| 3       | SHIP SUPPORT                   | 6760.8    | 4757.5  | Т   | 0  |
|         |                                |           | 709.4   | D   |    |
|         |                                |           | 4048.2  | Ε   |    |
| 3.1     | SHIP CNTL SYS(STEERING&DIVING) | 144.9     |         | Е   | 0  |
| 3.11    | STEERING GEAR                  |           | 144.9   | Ε   | 0  |
| 3.12    | ROLL STABILIZATION             |           |         | Ε   | 0  |
| 3.15    | STEERING CONTROL               |           |         | Ε   | 0  |
| 3.2     | DAMAGE CONTROL                 | 130.9     |         | Ε   | 0  |
| 3.21    | DAMAGE CNTRL CENTRAL           |           |         | Ε   | 0  |
| 3.22    | REPAIR STATIONS                |           | 73.6    | Ε   | 0  |
| 3.25    | FIRE FIGHTING                  |           | 57.3    | Ε   | 0  |
| 3.3     | SHIP ADMINISTRATION            | 252.2     |         | Ε   | 0  |
| 3.301   | GENERAL SHIP                   |           | 24.2    | Ε   | 0  |
| 3.302   | EXECUTIVE DEPT                 |           | 55.5    | Ε   | 0  |
| 3.303   | ENGINEERING DEPT               |           | 34      | Ε   | 0  |
| 3.304   | SUPPLY DEPT                    |           | 50.5    | Ε   | 0  |
| 3.305   | DECK DEPT                      |           | 14.7    | Е   | 0  |

| SSCS      | GROUP                           | VOLUME M3 | AREA M2 | LOC    | SD |
|-----------|---------------------------------|-----------|---------|--------|----|
| 3.306     | OPERATIONS DEPT                 |           | 73.4    | Е      | 0  |
| 3.307     | WEAPONS DEPT                    |           |         | Е      | 0  |
| 3.308     | REACTOR DEPT                    |           |         | Е      | 0  |
| 3.309     | MARINES                         |           |         | Е      | 0  |
| 3.31      | SHIP PHOTO/PRINT SVCS           |           |         | Е      | 0  |
| 3.5       | DECK AUXILIARIES                |           | 152.7   | D      | 0  |
|           |                                 | 237.2     |         | Е      |    |
| 3.51      | ANCHOR HANDLING                 |           | 86.3    | Е      | 0  |
| *3.52     | LINE HANDLING                   |           | 62      | D      | 0  |
|           |                                 |           | 101     | Е      |    |
| *3.53     | TRANSFER-AT-SEA                 |           | 74.7    | D      | 0  |
|           |                                 |           | 11.8    | Е      |    |
| *3.54     | SHIP BOATS STOWAGE              |           | 16      | D      | 0  |
|           |                                 |           | 38      | Е      |    |
| *3.6      | SHIP MAINTENANCE                | 272.7     |         | Е      | 0  |
| 3.61      | ENGINEERING DEPT                |           | 195.9   | Е      | 0  |
| 3.611     | AUX (FILTER CLEANING)           |           | 27.8    | Е      | 0  |
| 3.612     | ELECTRICAL                      |           | 65.6    | Е      | 0  |
| 3.613     | MECH (GENERAL WK SHOP)          |           | 92.3    | Е      | 0  |
| 3.614     | PROPULSION MAINTENANCE          |           | 10.2    | Е      | 0  |
| 3.62      | OPERATIONS DEPT (ELECT SHOP)    |           | 152.3   | Е      | 0  |
| 3.63      | WEAPONS DEPT (ORDINANCE SHOP)   |           | 15.3    | Е      | 0  |
| 3.64      | DECK DEPT (CARPENTER SHOP)      |           |         | Е      | 0  |
| *3.7      | STOWAGE                         | 921.2     |         | Е      | 0  |
| 3.71      | SUPPLY DEPT                     |           | 807.1   | Е      | 0  |
| 3.711     | HAZARDOUS MATL (FLAM LIQ)       |           | 92.1    | Е      | 0  |
| 3.712     | SPECIAL CLOTHING                |           | 15      | Е      | 0  |
| 3.713     | GEN USE CONSUM+REPAIR PART      |           | 588.9   | Е      | 0  |
| 3.714     | SHIP STORE STORES               |           | 23.4    | E      | 0  |
| 3.715     | STORES HANDLING                 |           | 87.7    | E      | 0  |
| 3.72      | ENGINEERING DEPT                |           | 19.4    | E      | 0  |
| 3.73      | OPERATIONS DEPT                 |           | 27      | E      | 0  |
| 3.74      | DECK DEPT (BOATSWAIN STORES)    |           | 239.3   | E      | 0  |
| 3.75      | WEAPONS DEPT                    |           | 17.3    | E      | 0  |
| 3.76      | EXEC DEPT (MASTER-AT-ARMS STOR) |           | 20      | E      | 0  |
| 3.78      | CLEANING GEAR STOWAGE           |           | 12.9    | E      | 0  |
| 3.8       | ACCESS                          | 556.7     |         | D      | 0  |
| 2 . 0.0   |                                 | 2047      |         | E.     | 0  |
| 3.82      | INTERIOR                        |           | 556.7   | D      | 0  |
| 2 . 0 0 1 |                                 |           | 2047    | E      | 0  |
| 3.821     | NORMAL ACCESS                   |           | 547.9   | D      | 0  |
| 2         |                                 |           | 2015.9  | E.     | 0  |
| 3.822     | ESCAPE ACCESS                   |           | 8.8     | D      | 0  |
| ~ ~       |                                 |           | 31.1    | Е<br>Е | ~  |
| 3.9       | TANKS                           | 6760.8    | 42.2    | E      | 0  |
| 3.91      | SHIP PROP SYS TNKG              |           | 5935.5  | E      | 0  |
| 3.911     | SHIP ENDUR FUEL TNKG            |           | 5935.5  | E      | 0  |
| 3.91101   | ENDUR FUEL TANK                 | 4651.6    |         | Ę      | 0  |

| SSCS    | GROUP                         | VOLUME M3 | AREA M2 | LOC | SD |
|---------|-------------------------------|-----------|---------|-----|----|
| 3,91104 | FUEL OR BALLAST TANK          |           | 1283.9  | E   | 0  |
| 3.914   | FEEDWATER TNKG                |           |         | E   | 0  |
| 3.92    | BALLAST TNKG                  |           |         | Е   | 0  |
| 3.93    | FRESH WATER TNKG              |           | 69.9    | Е   | 0  |
| 3.94    | POLLUTION CNTRL TNKG          |           | 42.2    | Е   | 0  |
| 3.941   | SEWAGE TANKS                  |           | 8.6     | Е   | 0  |
| 3.942   | OILY WASTE TANKS              |           | 33.6    | Е   | 0  |
| 3.95    | VOIDS                         |           | 755.4   | Е   | 0  |
| 3.96    | COFFERDAMS                    |           |         | Е   | 0  |
| 3.97    | CROSS FLOODING DUCTS          |           |         | Е   | 0  |
| 4       | SHIP MACHINERY SYSTEM         | 1970.3    |         | Т   | 0  |
|         |                               | 875.3     |         | D   |    |
|         |                               | 1095      |         | Е   |    |
| 4.1     | PROPULSION SYSTEM             | 685.7     |         | D   | 0  |
|         |                               | 312.4     | Е       |     |    |
| 4.13    | INTERNAL COMBUSTION           |           | 42.8    | D   | 0  |
|         |                               |           | 64.4    | Е   |    |
| 4.131   | ENERGY GENERATION             |           |         | Е   | 0  |
| 4.132   | COMBUSTION AIR                |           | 12.8    | D   | 0  |
|         |                               |           | 4.1     | Е   |    |
| 4.133   | EXHAUST                       |           | 30      | D   | 0  |
|         |                               |           | 10.1    | Е   |    |
| 4.134   | CONTROL                       |           | 50.2    | Е   | 0  |
| 4.14    | GAS TURBINE                   |           | 642.9   | D   | 0  |
|         |                               |           | 248.1   | Е   |    |
| 4.141   | ENERGY GENERATION             |           |         | Е   | 0  |
| 4.142   | COMBUSTION AIR                |           | 252.6   | D   | 0  |
|         |                               |           | 63.2    | Е   |    |
| 4.143   | EXHAUST                       |           | 390.3   | D   | 0  |
|         |                               |           | 97.6    | Е   |    |
| 4.144   | CONTROL                       |           | 87.3    | Е   | 0  |
| 4.17    | AUX PROPULSION SYSTEMS        |           |         | Е   | 0  |
| 4.2     | PROPULSOR & TRANSMISSION SYST |           |         | Е   | 0  |
| 4.21    | SCREW PROPELLER               |           |         | Е   | 0  |
| 4.21001 | PROP SHAFT ALLEY              |           |         | Е   | 0  |
| 4.22    | CYCLOIDAL PROPELLER ROOMS     |           |         | Е   | 0  |
| 4.23    | WATERJET ROOMS                |           |         | Е   | 0  |
| 4.24    | AIR FAN ROOMS                 |           |         | Е   | 0  |
| 4.3     | AUX MACHINERY                 | 189.5     |         | D   | 0  |
|         |                               |           | 782.6   | Е   |    |
| 4.31    | GENERAL (AUX MACH DELTA)      |           | -897.9  | Е   | 0  |
| 4.32    | A/C & REFRIGERATION           |           | 99.2    | Е   | 0  |
| 4.321   | A/C (INCL VENT)               |           | 82.5    | Е   | 0  |
| 4.322   | REFRIGERATION                 |           | 16.7    | Е   | 0  |
| 4.33    | ELECTRICAL                    |           | 9.8     | D   | 0  |
|         |                               |           | 1085.7  | Е   |    |
| 4.331   | POWER GENERATION              |           | 9.8     | D   | 0  |
|         |                               |           | 37      | Е   |    |

| SSCS   | GROUP                     | VOLUME M3 | AREA M2 | LOC | SD |
|--------|---------------------------|-----------|---------|-----|----|
| 4.3311 | SHIP SERVICE PWR GEN      |           | 9.8     | D   | 0  |
|        |                           |           | 37      | Е   |    |
| 4.3313 | BATTERIES                 |           |         | Е   | 0  |
| 4.3314 | 400 HERTZ                 |           |         | Е   | 0  |
| *4.332 | PWR DIST & CNTRL          |           | 1016.6  | Е   | 0  |
| 4.334  | DEGAUSSING                |           | 32      | Е   | 0  |
| 4.34   | POLLUTION CONTROL SYSTEMS |           | 31.5    | Е   | 0  |
| 4.341  | SEWAGE                    |           | 21      | Е   | 0  |
| 4.342  | TRASH                     |           | 10.5    | Е   | 0  |
| 4.35   | MECHANICAL SYSTEMS        |           | 50.5    | Е   | 0  |
| 4.36   | VENTILATION SYSTEMS       |           | 179.8   | D   | 0  |
|        |                           |           | 413.7   | Е   |    |

# Appendix G – Weights and Centers

|      |                                 |                | VCG-  |           | LCG-   |            | TCG- |        |
|------|---------------------------------|----------------|-------|-----------|--------|------------|------|--------|
| SWBS | COMPONENT                       | WT-MT          | m     | Moment    | m      | Moment     | m    | Moment |
|      | FULL LOAD WEIGHT + MARGIN       | 24518.83       | 8.09  | 198247.57 | 113.53 | 2783635.57 | 0.00 | 0.00   |
|      | MINOP WEIGHT AND MARGIN         | 22466.28       | 8.48  | 190409.38 | 112.65 | 2530736.26 | 0.00 | 0.00   |
|      | LIGHTSHIP WEIGHT + MARGIN       | 19955.83       | 9.08  | 181218.94 | 112.64 | 2247914.71 | 0.00 | 0.00   |
|      | LIGHTSHIP WEIGHT                | 18141.66       | 9.08  | 164744.49 | 112.64 | 2043558.83 | 0.00 | 0.00   |
|      | MARGIN                          | 1814.17        | 9.08  | 16474.45  | 112.64 | 204355.88  | 0.00 | 0.00   |
|      |                                 |                |       |           |        |            |      |        |
| 100  | HULL STRUCTURES                 | 9430.10        | 8.23  | 77600.31  | 112.70 | 1062778.62 | 0.00 | 0.00   |
| 110  | SHELL + SUPPORTS                | 3421.10        | 3.23  | 11050.15  | 110.54 | 378168.39  |      | 0.00   |
| 120  | HULL STRUCTURAL BULKHDS         | 447.30         | 8.30  | 3712.59   | 108.65 | 48599.15   |      | 0.00   |
| 130  | HULL DECKS                      | 2243.40        | 13.86 | 31093.52  | 109.09 | 244732.51  |      | 0.00   |
| 140  | HULL PLATFORMS/FLATS            | 658.00         | 6.06  | 3987.48   | 125.23 | 82401.34   |      | 0.00   |
| 150  | DECK HOUSE STRUCTURE            | 423.50         | 25.06 | 10612.91  | 105.24 | 44569.14   | 0.00 | 0.00   |
| 160  | SPECIAL STRUCTURES              | 791.90         | 6.29  | 4981.05   | 118.78 | 94061.88   | 0.00 | 0.00   |
| 170  | MASTS+KINGPOSTS+SERV PLATFORM   | 1.00           | 33.85 | 33.85     | 99.73  | 99.73      | 0.00 | 0.00   |
| 180  | FOUNDATIONS                     | 1050.10        | 8.58  | 9009.86   | 119.87 | 125875.49  | 0.00 | 0.00   |
| 190  | SPECIAL PURPOSE SYSTEMS         | 393.80         | 7.92  | 3118.90   | 112.42 | 44271.00   | 0.00 | 0.00   |
|      |                                 |                |       |           |        |            |      |        |
| 200  | PROPULSION PLANT                | 1861.06        | 5.07  | 9437 80   | 140 33 | 261156.95  | 0.00 | 0.00   |
| 233  | DIESEL ENGINES                  | 70 50          | 4 20  | 296.10    | 98.38  | 6935 79    | 0.00 | 0.00   |
| 234  | GAS TURBINES                    | 184 10         | 4 44  | 817.40    | 99.56  | 18329.00   |      | 0.00   |
| 235  | FLECTRIC PROPULSION             | 1035 56        | 1.07  | 1108.05   | 160.02 | 165710 31  |      | 0.00   |
| 233  | SHAFTING                        | 6.80           | 0.07  | 0.48      | 204.10 | 1387.88    |      | 0.00   |
| 243  | SHAFT BEADINGS                  | 46.70          | 0.07  | 3.27      | 205.30 | 0587.51    |      | 0.00   |
| 244  |                                 | 40.70<br>56.40 | 0.07  | 3.05      | 203.30 | 11/15/1 8/ |      | 0.00   |
| 250  | SUPPORT SYSTEMS UPTAKES         | 420.90         | 16.68 | 7020.61   | 101.90 | /2880.71   |      | 0.00   |
| 250  |                                 | 420.90         | 10.08 | 55.62     | 08.02  | 1117 /2    |      | 0.00   |
| 200  | SDECIAL DUDDOSE SVSTEMS         | 28.70          | 4.00  | 122.21    | 96.02  | 2744.40    |      | 0.00   |
| 290  | SFECIAL FURFOSE STSTEMS         | 28.70          | 4.01  | 132.31    | 130.47 | 5/44.49    |      | 0.00   |
| 200  | ELECTRIC DI ANTE CENTER AL      | 1020.00        | 0.05  | 0(10.04   | 11(22  | 120006.04  | 0.00 | 0.00   |
| 300  | ELECTRIC PLANT, GENERAL         | 1039.20        | 9.25  | 9610.84   | 116.33 | 120886.84  | 0.00 | 0.00   |
| 311  | SHIP SERVICE POWER GENERATION   | 537.20         | /.53  | 4045.12   | 109.44 | 58/91.1/   |      | 0.00   |
| 313  | BATTERIES+SERVICE FACILITIES    | 2.00           | 9.94  | 19.88     | 109.44 | 218.88     |      | 0.00   |
| 320  | POWER DISTRIBUTION SYS          | 381.10         | 10.65 | 4058.72   | 123.05 | 46894.36   |      | 0.00   |
| 330  | LIGHTING SYSTEM                 | 86.50          | 14.73 | 1274.15   | 116.38 | 10066.87   |      | 0.00   |
| 340  | POWER GENERATION SUPPORT SYS    | 7.30           | 8.27  | 60.37     | 102.46 | 747.96     |      | 0.00   |
| 390  | SPECIAL PURPOSE SYS             | 25.10          | 6.08  | 152.61    | 166.04 | 4167.60    |      | 0.00   |
|      |                                 |                |       |           |        |            |      |        |
| 400  | COMMAND+SURVEILLANCE            | 1202.10        | 17.08 | 20535.12  | 67.88  | 81598.54   | 0.00 | 0.00   |
| 410  | COMMAND+CONTROL SYS             | 91.00          | 10.31 | 938.21    | 21.46  | 1952.86    |      | 0.00   |
| 420  | NAVIGATION SYS                  | 32.40          | 24.23 | 785.05    | 89.65  | 2904.66    |      | 0.00   |
| 430  | INTERIOR COMMUNICATIONS         | 99.30          | 12.69 | 1260.12   | 94.76  | 9409.67    |      | 0.00   |
| 440  | EXTERIOR COMMUNICATIONS         | 106.00         | 26.51 | 2810.06   | 0.79   | 83.74      |      | 0.00   |
| 450  | SURF SURVEILLANCE SYS (RADAR)   | 505.70         | 24.10 | 12187.37  | 97.00  | 49052.90   |      | 0.00   |
| 460  | UNDERWATER SURVEILLANCE SYSTEMS | 101.30         | 4.98  | 504.47    | 11.95  | 1210.54    |      | 0.00   |
| 470  | COUNTERMEASURES                 | 117.70         | 11.30 | 1330.01   | 89.94  | 10585.94   |      | 0.00   |
| 480  | FIRE CONTROL SYS                | 11.30          | 13.24 | 149.61    | 110.85 | 1252.61    |      | 0.00   |
| 490  | SPECIAL PURPOSE SYS             | 137.40         | 4.15  | 570.21    | 37.45  | 5145.63    |      | 0.00   |

| 500 | AUXILIARY SYSTEMS, GENERAL             | 2207.20 | 11.99     | 26473.77   | 121.94    | 269139.01   | 0.00      | 0.00   |
|-----|----------------------------------------|---------|-----------|------------|-----------|-------------|-----------|--------|
| 510 | CLIMATE CONTROL                        | 587.30  | 13.21     | 7758.23    | 126.40    | 74234.72    |           | 0.00   |
| 520 | SEA WATER SYSTEMS                      | 272.30  | 9.38      | 2554.17    | 130.80    | 35616.84    |           | 0.00   |
| 530 | FRESH WATER SYSTEMS                    | 420.10  | 14.98     | 6293.10    | 105.50    | 44320.55    |           | 0.00   |
| 540 | FUELS/LUBRICANTS,HANDLING+STORAGE      | 130.90  | 7.39      | 967.35     | 121.93    | 15960.64    |           | 0.00   |
| 550 | AIR,GAS+MISC FLUID SYSTEM              | 255.70  | 10.39     | 2656.72    | 140.50    | 35925.85    |           | 0.00   |
| 570 | UNDERWAY REPLENISHMENT SYSTEMS         | 63.00   | 12.23     | 770.49     | 145.60    | 9172.80     |           | 0.00   |
| 581 | ANCHOR HANDLING+STOWAGE SYSTEMS        | 137.10  | 9.66      | 1324.39    | 31.20     | 4277.52     |           | 0.00   |
| 582 | MOORING+TOWING SYSTEMS                 | 33.20   | 15.41     | 511.61     | 108.50    | 3602.20     |           | 0.00   |
| 583 | BOATS,HANDLING+STOWAGE SYSTEMS         | 29.60   | 16.91     | 500.54     | 216.60    | 6411.36     |           | 0.00   |
| 588 | AIRCRAFT HANDLING, SERVICE,<br>STOWAGE | 26.00   | 16.10     | 418.60     | 122.60    | 3187.60     |           | 0.00   |
| 593 | ENVIRONMENTAL POLLUTION CNTL SYS       | 28.60   | 5.57      | 159.30     | 121.93    | 3487.20     |           | 0.00   |
| 598 | AUX SYSTEMS OPERATING FLUIDS           | 199.60  | 11.75     | 2345.30    | 150.50    | 30039.80    |           | 0.00   |
| 599 | AUX SYSTEMS REPAIR PARTS+TOOLS         | 23.80   | 8.99      | 213.96     | 121.93    | 2901.93     |           | 0.00   |
|     |                                        |         |           |            |           |             |           |        |
| 600 | OUTFIT+FURNISHING,GENERAL              | 1553.50 | 7.61      | 11823.91   | 101.03    | 156944.44   | 0.00      | 0.00   |
| 610 | SHIP FITTINGS                          | 32.70   | 2.78      | 90.91      | 122.51    | 4006.08     |           | 0.00   |
| 620 | HULL COMPARTMENTATION                  | 319.90  | 9.31      | 2978.27    | 106.35    | 34021.37    |           | 0.00   |
| 630 | PRESERVATIVES+COVERINGS                | 650.30  | 7.02      | 4565.11    | 94.47     | 61433.84    |           | 0.00   |
| 640 | LIVING SPACES                          | 81.40   | 6.43      | 523.40     | 102.31    | 8328.03     |           | 0.00   |
| 650 | SERVICE SPACES                         | 33.60   | 7.18      | 241.25     | 103.59    | 3480.62     |           | 0.00   |
| 660 | WORKING SPACES                         | 194.30  | 8.04      | 1562.17    | 96.26     | 18703.32    |           | 0.00   |
| 670 | STOWAGE SPACES                         | 225.10  | 7.83      | 1762.53    | 110.85    | 24952.34    |           | 0.00   |
| 690 | SPECIAL PURPOSE SYSTEMS                | 16.20   | 6.19      | 100.28     | 124.62    | 2018.84     |           | 0.00   |
|     |                                        |         |           |            |           |             |           |        |
| 700 | ARMAMENT                               | 848.50  | 10.92     | 9262.75    | 107.31    | 91054.44    | 0.00      | 0.00   |
| 710 | GUNS+AMMUNITION                        | 60.60   | 17.76     | 1076.26    | 138.19    | 8374.31     |           | 0.00   |
| 720 | MISSLES+ROCKETS                        | 749.20  | 10.36     | 7761.71    | 106.14    | 79520.09    |           | 0.00   |
| 750 | TORPEDOES                              | 2.70    | 11.60     | 31.32      | 14.80     | 39.96       |           | 0.00   |
| 760 | SMALL ARMS+PYROTECHNICS                | 9.80    | 14.27     | 139.85     | 93.67     | 917.97      |           | 0.00   |
| 790 | SPECIAL PURPOSE SYSTEMS                | 26.20   | 9.68      | 253.62     | 84.05     | 2202.11     |           | 0.00   |
|     |                                        |         |           |            |           |             |           |        |
|     | FULL LOAD CONDITION                    | WT-MT   | VCG-<br>m | Moment     | LCG-<br>m | Moment      | TCG-<br>m | Moment |
| F00 | LOADS                                  | 4563.00 | 3.73      | 17028.63   | 117.41    | 535720.85   | 0.00      | 0.00   |
| F10 | SHIPS FORCE                            | 51.10   | 11.47     | 586.12     | 104.20    | 5324.62     | 0.00      | 0.00   |
| F21 | SHIP AMMUNITION                        | 438.30  | 12.44     | 5452.45    | 113.71    | 49839.09    |           | 0.00   |
| F23 | ORD DEL SYS (AIRCRAFT)                 | 14.10   | 14.29     | 201.49     | 127.00    | 1790.70     | 0.00      | 0.00   |
| F31 | PROVISIONS+PERSONNEL STORES            | 53.50   | 8.40      | 449.40     | 119.72    | 6405.02     | 0.00      | 0.00   |
| F32 | GENERAL STORES                         | 12.00   | 9.51      | 114.12     | 119.72    | 1436.64     | 0.00      | 0.00   |
| F41 | DIESEL FUEL MARINE                     | 3767.00 | 2.45      | 9229.15    | 118.30    | 445636.10   | 0.00      | 0.00   |
| F42 | JP-5                                   | 50.00   | 8.81      | 440.50     | 134.00    | 6700.00     | 0.00      | 0.00   |
| F46 | LUBRICATING OIL                        | 23.00   | 1.55      | 35.65      | 105.16    | 2418.68     | 0.00      | 0.00   |
| F47 | SEA WATER                              | 0.00    | 0.00      | 0.00       | 0.00      | 0.00        |           | 0.00   |
| F52 | FRESH WATER                            | 154.00  | 3.38      | 519.75     | 105.00    | 16170.00    | 0.00      | 0.00   |
|     |                                        |         |           |            |           |             |           |        |
|     |                                        | WT MT   | VCG-      | Mamment    | LCG-      | Momant      | TCG-      | Monort |
|     |                                        | 2510.45 | 2.66      |            | 112.00    |             | 0.00      | Moment |
| EUU |                                        | //.     | 4 5 5     | <b>U</b> 1 | 1 1 1 66  | / 8 / 9 / 1 |           |        |

| F10 | SHIPS FORCE                 | 51.10   | 11.47 | 586.12  | 104.20 | 5324.62   | 0.00 | 0.00 |
|-----|-----------------------------|---------|-------|---------|--------|-----------|------|------|
| F21 | SHIP AMMUNITION             | 144.64  | 12.44 | 1799.31 | 113.71 | 16446.90  |      | 0.00 |
| F23 | ORD DEL SYS (AIRCRAFT)      | 14.10   | 14.29 | 201.49  | 127.00 | 1790.70   | 0.00 | 0.00 |
| F31 | PROVISIONS+PERSONNEL STORES | 17.66   | 8.40  | 148.30  | 119.72 | 2113.66   | 0.00 | 0.00 |
| F32 | GENERAL STORES              | 3.96    | 9.51  | 37.66   | 119.72 | 474.09    | 0.00 | 0.00 |
| F41 | DIESEL FUEL MARINE          | 1308.00 | 1.51  | 1975.08 | 118.10 | 154474.80 | 0.00 | 0.00 |
| F42 | JP-5                        | 17.00   | 7.95  | 135.22  | 134.00 | 2278.00   | 0.00 | 0.00 |
| F46 | LUBRICATING OIL             | 8.00    | 1.23  | 9.84    | 105.21 | 841.68    | 0.00 | 0.00 |
| F47 | SEA WATER                   | 843.00  | 4.74  | 3996.66 | 104.70 | 88262.10  | 0.00 | 0.00 |
| F52 | FRESH WATER                 | 103.00  | 2.92  | 300.76  | 105.00 | 10815.00  | 0.00 | 0.00 |

## Appendix H – Basic Resistance MathCAD file

# Holtrop Resistance and Power

## Units definition

$$\begin{split} & hp = \frac{33000 \, ft \cdot lbf}{min} & knt = 1.69 \frac{ft}{sec} & mile = knt \cdot hr & lton = 2240 lbf & MT := 1000 kg \cdot g \\ \hline Physical Parameters \\ & Sea water properties: & \rho_{SW} := 1.9905 \frac{slug}{ft^3} & \upsilon_{SW} := 1.2817 \, 10^{-5} \cdot \frac{ft^2}{sec} \\ & Air properties: & \rho_A := 0.0023817 \frac{slug}{ft^3} \\ \hline Input \\ & Principal characteristics: & LWL := 221.7 m & B := 23.48 m & D_{10} := 16 m & T_{W} := 7.59 m & C_{P} := .677 & C_{X} := .87 \\ & Margins: & PMF := 1.1 & N_{fins} := 0 & H_{DK} := 3 \cdot m \\ & SON_{TYP} := 1 & V_{e} := 20 \, knt & C_{A} := .0004 & N_{P} := 2 \\ & Performance: \\ \hline Process \end{split}$$

$$\begin{split} \mathbf{S}_{SD} &:= \begin{bmatrix} 5:t^2 & \text{if } \text{SON}_{TYP} = 0 & \mathbf{V}_{SD} := \\ 80:t^2 & \text{if } \text{SON}_{TYP} = 1 \\ 1400:t^2 & \text{if } \text{SON}_{TYP} = 2 \end{bmatrix} \begin{bmatrix} 5:m^3 & \text{if } \text{SON}_{TYP} = 0 & \mathbf{S}_{SD} = 7.432m^2 \\ 19.1:m^3 & \text{if } \text{SON}_{TYP} = 1 & \mathbf{V}_{SD} = 1.91 \times 10^4 \text{ L} \\ 163.4m^3 & \text{if } \text{SON}_{TYP} = 2 \end{bmatrix} \\ \mathbf{C}_{B} := \mathbf{C}_{P} \cdot \mathbf{C}_{X} & \mathbf{C}_{B} = 0.589 \\ \mathbf{V}_{FL} := \mathbf{C}_{B} L W L \cdot \mathbf{B} \cdot \mathbf{T} + \mathbf{V}_{SD} & \mathbf{V}_{FL} = 2.329 \times 10^7 \text{ L} \\ \mathbf{C}_{BT} := \frac{B}{T} & \mathbf{C}_{V} := \frac{V_{FL}}{LWL^3} \end{bmatrix} \\ \textbf{TSS wetted surface coefficient:} \\ \mathbf{A}_0 := 7.028 - 2.331 \cdot \mathbf{C}_{BT} + 0.299 \cdot \mathbf{C}_{BT}^2 \\ \mathbf{A}_1 := -11 + 5.536 \cdot \mathbf{C}_{BT} - 0.704 \cdot \mathbf{C}_{BT}^2 \\ \mathbf{A}_2 := 6.913 - 3.419 \cdot \mathbf{C}_{BT} + 0.451 \cdot \mathbf{C}_{BT}^2 \\ \mathbf{C}_{STSS} := \mathbf{A}_0 + \mathbf{A}_1 \cdot \mathbf{C}_{P} + \mathbf{A}_2 \cdot \mathbf{C}_{P}^2 & \mathbf{C}_{STSS} = 2.563 \\ \mathbf{S}_{TSS} := \mathbf{C}_{STSS} \sqrt{V_{FL'} L W L} & \mathbf{S}_{TSS} = 5825m^2 \\ \mathbf{S}_{A} := \mathbf{S}_{TSS} + \mathbf{S}_{SD} & \mathbf{S} = 5832m^2 \\ \mathbf{C}_{W} := 0.278 + 0.836 \cdot \mathbf{C}_{P} & \mathbf{C}_{W} := \mathbf{C}_{W} \end{split}$$

Pre-Process

$$\begin{split} T_{\rm F} &:= T \qquad C_{\rm M} := C_{\rm X} \qquad \sum_{\rm WL^3} = \frac{V_{\rm FL}}{L \, {\rm WL}^3} \qquad C_{\rm V} = 2.137 \times 10^{-3} \\ A_{\rm BT} &:= \frac{S_{\rm SD}}{6} \qquad A_{\rm BT} = 1.239 \, {\rm m}^2 \qquad (\text{bulb section area at FP}) \\ h_{\rm B} &:= \sqrt{\frac{A_{\rm BT}}{\pi}} \qquad h_{\rm B} = 0.628 \, {\rm m} \qquad (\text{height of bulb center}) \\ A_{\rm T} &:= \frac{B \cdot T \cdot C_{\rm X}}{20} \qquad A_{\rm T} = 7.752 \, {\rm m}^2 \qquad (\text{transom area}) \\ L_{\rm R} &:= (1 - C_{\rm P}) \cdot L WL \quad L_{\rm R} = 71.609 \, {\rm m} \qquad (\text{Run length}) \\ formfac &:= 1.03 \cdot \left[.93 + \left(\frac{T}{L \, WL}\right)^{22284} \cdot \left(\frac{B}{L_{\rm R}}\right)^{.92497} \cdot (.95 - C_{\rm P})^{-.521448} \cdot (1 - C_{\rm P} + .05)^{.6906}\right] + 2.7 \cdot \frac{S_{\rm SD}}{S} \qquad formfac = 1.134 \\ \text{Appendence drag coefficient:} \end{split}$$

Appendages drag coefficient:

$$C_{\text{DAPP}} \coloneqq \left(-4 \cdot 10^{-9} \cdot \frac{LWL^3}{ft^3} + 9 \cdot 10^{-6} \cdot \frac{LWL^2}{ft^2} - 0.0081 \cdot \frac{LWL}{ft} + 5.0717\right) \cdot \frac{\text{hp} \cdot 10^{-5}}{ft^2 \cdot \text{knt}^3} \qquad C_{\text{DAPP}} = 4.977 \times 10^{-6} \cdot \frac{\text{hp}}{ft^2 \cdot \left(\frac{ft}{\text{sec}}\right)^3}$$

Estimate propeller size:

 $C_{PROP} \coloneqq if \left(N_P > 1, 1, 1.2\right) \qquad C_{PROP} = 1 \qquad D_P \coloneqq (0.64 \cdot T + 0.013 \cdot LWL) \cdot C_{PROP} \qquad D_P = 7.74 \text{ m}$ 

$$\begin{split} \mathbf{i} &:= 1..16 \qquad \bigvee_{\mathsf{W}\mathbf{i}} := (\mathbf{i} - 1) \cdot \mathrm{knt} + \mathrm{V}_{\mathsf{e}} \\ \mathrm{R}_{\mathsf{A}_{\mathbf{i}}} &:= .5 \cdot \rho_{\mathsf{SW}} \cdot \left(\mathrm{V}_{\mathbf{i}}\right)^2 \cdot \mathbf{S} \cdot \mathrm{C}_{\mathsf{A}} \end{split}$$

## Viscous Drag

Coefficient of friction:

$$R_{N_{i}} := LWL \cdot \frac{V_{i}}{v_{SW}} \qquad C_{F_{i}} := \frac{0.075}{\left(\log\left(R_{N_{i}}\right) - 2\right)^{2}}$$
(ITTC)  
$$R_{V} := 0.5 \cdot \rho_{SW} \cdot \left(V_{i}\right)^{2} \cdot S \cdot C_{E} \cdot \text{formfac}$$

$$(v_i) = 0.5^{\circ} p_{SW}(v_i) = 0.5^{\circ} p_i$$

## Wave Making Drag

$$\begin{aligned} & \operatorname{Fn}_{i} := \frac{V_{i}}{\sqrt{g \cdot LWL}} \\ & \operatorname{c}_{3} := \frac{.56 \cdot \operatorname{A_{BT}}^{1.5}}{\operatorname{B} \cdot \operatorname{T} \cdot (.31 \cdot \sqrt{\operatorname{A_{BT}}} + \operatorname{T_{F}} - \operatorname{h_{B}})} \\ & \operatorname{c}_{3} := \frac{.8 \cdot \operatorname{A_{T}}}{\operatorname{B} \cdot \operatorname{T} \cdot \operatorname{C_{M}}} \\ & \operatorname{c}_{5} := 1 - \frac{.8 \cdot \operatorname{A_{T}}}{\operatorname{B} \cdot \operatorname{T} \cdot \operatorname{C_{M}}} \\ & \operatorname{c}_{5} = 0.96 \\ & \lambda_{R} := \begin{bmatrix} 1.446 \cdot \operatorname{C_{P}} - .03 \cdot \frac{LWL}{\operatorname{B}} & \text{if } \frac{LWL}{\operatorname{B}} < 12 \\ 1.446 \cdot \operatorname{C_{P}} - .036 & \text{otherwise} \end{bmatrix} \\ \end{aligned}$$

$$\begin{split} c_{15} := & \begin{bmatrix} -1.69385 & \text{if } \frac{LWL^3}{V_{FL}} < 512. & c_{15} = -1.694 \\ 0.0 & \text{if } \frac{LWL^3}{V_{FL}} > 1726.91 \\ & \frac{LWL}{1} > 8 \\ -1.69385 + \frac{V_{FL}}{2.36} & \text{otherwise} \\ c_{7} := & \begin{bmatrix} 229577 \cdot \left(\frac{B}{LWL}\right)^{33333} & \text{if } \frac{B}{LWL} < .11 & c_{7} = 0.109 \\ S - .0625 \frac{LW}{LW} & \text{if } \frac{B}{LWL} > .25 \\ & \frac{B}{LWL} & \text{otherwise} \\ c_{16} := & \begin{bmatrix} 8.07981 \cdot C_{P} - 13.8073 \cdot C_{P}^{-2} + 6.984388 \cdot C_{P}^{-3} & \text{if } C_{P} < .8 & c_{16} = 1.281 \\ 1.73014 - .7067 \cdot C_{P} & \text{otherwise} \\ & \text{i}_{E} := 1 + 89 \cdot exp \left[ -\left(\frac{LWL}{B}\right)^{-30085} \cdot \left(1 - C_{W}\right)^{-30484} \left(1 - C_{P}\right)^{.6367} \left(\frac{L_{R}}{B}\right)^{-34574} \cdot \left(\frac{100 \cdot V_{FL}}{LWL^{-3}}\right)^{.16302} \right] & \text{i}_{E} = 13.77 \\ c_{1} := & 2223105 \cdot c_{7}^{-3.78613} \cdot \left(\frac{T}{B}\right)^{1.07961} \cdot \left(90 - i_{E}\right)^{-1.37565} c_{1} = 0.379 \\ & m_{1} := & .0140407 \cdot \frac{LWL}{T} - 1.75254 \cdot \frac{V_{FL}}{LWL} - 4.79323 \cdot \frac{B}{LWL} - c_{16} m_{1} = -1.605 \\ & m_{4} := .4 \cdot c_{15} \cdot exp \left[ -0.34 \cdot \left(Fn_{1}\right)^{-3.29} \right] \\ & R_{W_{1}} := V_{FL} \cdot p_{SW'} g \cdot c_{1} \cdot c_{2} \cdot c_{5} \exp \left[ m_{1} \cdot \left(Fn_{1}\right)^{-.9} + m_{4} \cdot cos \left[ \frac{\lambda_{R}}{(Fn_{1})^{2}} \right] \right] \\ & P_{B} := \frac{.56 \cdot A_{BT}^{-5}}{\left(T_{F} - 1.5 h_{B}\right)} \qquad P_{B} = 0.094 \\ & Fn_{1} := \frac{V_{1}}{\sqrt{g\left(T_{F} - h_{B} - .25 \cdot A_{BT}^{-5}\right) + .15\left(V_{1}\right)^{2}} \qquad R_{B_{1}} := \frac{.11 \cdot exp \left(\frac{-3}{P_{B}^{-2}}\right) \cdot \left(Fn_{1}\right)^{3} \cdot A_{BT}^{-1.5} \cdot P_{SW'} g}{1 + \left(Fn_{1}\right)^{2}} \\ & FnT_{1} := \frac{V_{1}}{\sqrt{\frac{2 \cdot g \cdot A_{T}}{B + B \cdot C_{W}}}} \qquad c_{6}_{1} := \left(\frac{2 \cdot (1 - 2 \cdot PnT_{1}\right)}{0 \cdot otherwise} \quad R_{TR_{1}} := .5 \cdot p_{SW'} \cdot \left(V_{1}\right)^{2} \cdot A_{T} \cdot c_{6_{1}} \\ & \end{array}$$

$$R_{R_i} := \left( R_{W_i} + R_{B_i} + R_{TR_i} + R_{A_i} \right)$$
$$R_{T_i} := R_{V_i} + R_{R_i}$$

Ship Effective Horsepower

Bare hull:  $P_{EBH_i} := R_{T_i} V_i$ 

$$P_{\text{Efins}_{i}} \coloneqq \begin{bmatrix} 0 \cdot \text{hp if } N_{\text{fins}} = 0 \\ 0.025 \cdot P_{\text{EBH}_{i}} & \text{otherwise} \end{bmatrix} P_{\text{EAPP}_{i}} \coloneqq 1.23 \cdot \text{LWL} \cdot \text{D}_{\text{P}} \cdot \text{C}_{\text{DAPP}} \left( \text{V}_{i} \right)^{3} + P_{\text{Efins}_{i}}$$

Air frontal area (+5% for masts, equip., etc):  $A_W := 1.05 \cdot B \cdot (D_{10} - T + 3 \cdot H_{DK})$   $A_W = 429.226 \text{ m}^2$  $C_{AA} := 0.7$   $P_{EAA_i} := \frac{1}{2} \cdot C_{AA} \cdot A_W \cdot \rho_A \cdot (V_i)^3$ 

Total effective horsepower:  $P_{ET_i} := P_{EBH_i} + P_{EAPP_i} + P_{EAA_i}$   $EHP_i := PMF \cdot P_{ET_i}$ 

## Appendix I – Prop Selection, Engine Match and Fuel Calculation MathCAD File

## Units and Physical Constants

knt =  $1.69 \cdot \frac{\text{ft}}{\text{sec}}$ mile = knt·hr Iton = 2240·lbf  $mm := knt·hr kN := 1000·newton RPM := \frac{1}{min}$ Sea water properties:  $\rho_{SW} \coloneqq 1.9905 \cdot \frac{\text{slug}}{\text{e}^3}$   $\upsilon_{SW} \coloneqq 1.2817 \cdot 10^{-5} \cdot \frac{\text{ft}^2}{\text{sec}}$   $\delta_F \coloneqq 43.6 \cdot \frac{\text{ft}^3}{\text{Iton}}$ Air properties:  $\rho_A := 0.0023817 \cdot \frac{\text{slug}}{2}$ Principal characteristics:  $I_{X} := 7.59 \cdot m \quad C_{P} := .677 \quad C_{X} := .87 \qquad \text{Draft} := T \qquad D_{P} := 6.14 \cdot m \qquad D := D_{P}$ KW<sub>24AVG</sub> := 13531·kW KW<sub>MFLM</sub> := 28425kW V<sub>F41</sub> := 4651.6·m<sup>3</sup>  $V_{e} := 20 \cdot knt$   $V_{S} := 32.17 \cdot knt$   $C_{B} := C_{P} \cdot C_{X}$   $C_{B} = 0.589$  z := 8mPMF<sub>e</sub> := 1.1 PMF<sub>S</sub> := 1.25 N<sub>P</sub> := 2  $\mathsf{w} \coloneqq 2 \cdot {\textbf{C}_{\text{B}}}^5 \cdot \left(1 - {\textbf{C}_{\text{B}}}\right) + .04 \qquad \mathsf{w} = 0.098 \text{ wake fraction}$  $t := .7 \cdot w + .06$  t = 0.129thrust deduction fraction - prop changes pressure distribution around hull which effectively changes the resistance of towed hull 1. Maximize Propulsor Efficiency at Endurance Speed - input EHP from Resistance Calculation at Ve  $V_{e} := V_{e}$  EHP := 17165 · hp (total, hull) V<sub>A</sub> := V · (1 - w) V<sub>A</sub> = 18.035 · knt speed of advance - average wake velocity seen by prop  $T := \frac{EHP}{V \cdot (1-t) \cdot N_P} \qquad T = 160301 \cdot lbf \qquad T = 713.053 \cdot kN$ thrust/shaft  $\eta_{\text{H}} := \frac{1 - t}{1 - w} \qquad \qquad \eta_{\text{H}} = 0.966 \qquad \qquad \text{hull efficiency} = \text{EHP}/(\text{THP}_{*}\text{N}_{\text{P}}) = \text{R}_{\text{T}^{*}}\text{V}/(\text{T}_{*}\text{V}_{\text{A}^{*}}\text{N}_{\text{P}})$ relative rotative efficiency - due to non-uniform flow into prop = DHPo/DHP  $\eta_R := 1.0$ estimate 2. Determine the efficiency of an optimum standard propeller using the Wageningen B-screw series and the Propeller Optimization Program from the University of Michigan. The inputs for the program are: Pitch Type = Fixed Pitch Z := 5 EAR := 0.8 PtoD := 1.4 D = 6.14 · m T = 713.053 · kN  $V_{e} = 20 \cdot knt$ W = 0.098z = 8 · m Output: D := 6.98 · m EAR := 0.8243  $\eta_0 := .765$ PtoD = 1.1871 n<sub>eSHAFT</sub> = 82.66RPM σ := .6643 prop efficiency behind ship = THP/DHP  $\eta_{B} := \eta_{O} \cdot \eta_{R}$   $\eta_{B} = 0.765$  $\eta_{\rm D} := \eta_{\rm H} \cdot \eta_{\rm B}$   $\eta_{\rm D} = 0.739$ quasi-propulsive efficiency

 $\underbrace{\text{SHP}}_{\eta_{\text{S}}} \coloneqq \frac{\text{DHP}}{\eta_{\text{S}}} \qquad \text{SHP} = 60536.869 \cdot \text{hp} \qquad (\text{per shaft})$ 

 $\mathsf{BHP}_{\mathsf{Sreq}} \coloneqq \frac{\mathsf{N}_{\mathsf{P}} \cdot \mathsf{PMF}_{\mathsf{S}} \cdot \mathsf{SHP}}{\eta_{\mathsf{elec}}}$ 

| $\eta_{\text{S}}\coloneqq 1.0$                                                    | estimate                                                        | transmission efficiency (mechanical external to hull - stern tube and struts)                              |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| $\eta_{P} \coloneqq \eta_{S} \cdot \eta_{D}$                                      | $\eta_{\rm P} = 0.739$                                          | propulsive efficiency                                                                                      |
| η <sub>gen</sub> := .973                                                          |                                                                 | generator efficiency                                                                                       |
| $\eta_{conv} := .955$                                                             |                                                                 | convertor efficiency                                                                                       |
| $\eta_{motor} := .957$                                                            |                                                                 | motor efficiency                                                                                           |
| $\eta_{\text{elec}} \coloneqq \eta_{\text{gen}} \cdot \eta_{\text{den}}$          | onv'¶motor                                                      |                                                                                                            |
| $\eta_{\text{elec}}=0.889$                                                        |                                                                 | electrical efficiency                                                                                      |
| $THP \coloneqq \frac{EHP}{\eta_{H}\cdotN_{P}}$                                    | THP = 8883.158-hp                                               |                                                                                                            |
| $DHP := \frac{THP}{\eta_B}$                                                       | DHP = 11611.971 · hp                                            | $DHP_0 := \eta_R \cdot DHP$ $DHP_0 = 11612 \cdot hp$                                                       |
| $SHP \coloneqq \frac{DHP}{\eta_{S}}$                                              | SHP = 11611.971 · hp                                            | (per shaft)                                                                                                |
| $BHP_{ereq} \coloneqq \frac{PM}{P}$                                               | $\frac{F_e \cdot SHP \cdot N_P}{\eta_{elec}}$ BHP <sub>er</sub> | eq = 21422·kW (total ship)                                                                                 |
| 3. Calculate "off                                                                 | f-design" performance (η                                        | o and n) and required BHP at sustained speed                                                               |
| ,,,:= V <sub>S</sub> V =                                                          | = 32.17·knt                                                     | knt _EHP:= 88316.8.hp                                                                                      |
| $\mathbf{T} := \frac{EHP}{V \cdot (1-t) \cdot t}$                                 | $T = 512759.629 \cdot \text{lbf}$                               | $T = 2280.868 \cdot kN \qquad \bigvee_{A} := V \cdot (1 - w) \qquad V_{A} = 29.009 \cdot knt  (per shaft)$ |
| Determine the e                                                                   | fficiency of the propeller                                      | at sustained speed (off-design):                                                                           |
| ກຸລຸ:= .755                                                                       | n <sub>sSHAFT</sub> := 138.69RPM                                | M = .2392 propeller cavitates                                                                              |
| $\underline{\text{THP}} := \frac{\text{EHP}}{\eta_{\text{H}} \cdot N_{\text{P}}}$ | THP = 45705.336 · hp                                            | ·                                                                                                          |
| ∭8‰ <sup>:=</sup> ηο∙η <sub>R</sub>                                               | $\eta_B = 0.755$ prop                                           | o efficiency behind ship = THP/DHP                                                                         |
| дд∷= ηн∙ηв                                                                        | $\eta_{\text{D}}=0.729 \qquad \qquad \text{qua}$                | si-propulsive efficiency                                                                                   |
| η <sub>R</sub> ∷= η <sub>S</sub> ·η <sub>D</sub>                                  | $\eta_{P} = 0.729$ prop                                         | pulsive efficiency                                                                                         |
| $\underline{DHP} := \frac{THP}{\eta_B}$                                           | DHP = 60536.869 · hp                                            | DHP <sub>D</sub> := $\eta_R$ ·DHP DHP <sub>O</sub> = 60536.869·hp                                          |

BHP<sub>Sreq</sub> = 126910.011 · kW (total ship)

4. Calculate optimum engine operating characteristics - Electric Propulsion

input: MCR<sub>P</sub> := 35500-kW MCR<sub>S</sub> := 5100-kW 
$$n_{eSHAFT} = 82.66 \cdot RPM$$
  $n_{eSHAFT} = 138.69 \cdot RPM$   
Endurance input:  $N_{eENGP} := 1$   $N_{eENGS} := 2$   
 $P_{eFracP} := .9$   
 $P_{eP} := P_{eFracP} \cdot N_{eENGP} \cdot MCR_P = 31950 \cdot kW$   $P_{eP} = 42845.656 \cdot hp$   
 $P_{eS} := BHP_{ereq} + \frac{KW_{24AVG}}{.8} - P_{eP} = 6385.974 \cdot kW$   $P_{eS} = 8563.732 \cdot hp$   
 $P_{eFracS} := \frac{P_{eS}}{N_{eENGS} \cdot MCR_S} = 0.626$   
Sustained speed: input:  $N_{eENGP} := 4$   $N_{eENG,S} := 2$   
 $P_{eFracP} := .80$   
 $P_{eP} := P_{eFracP} \cdot N_{eENGP} \cdot MCR_P = 113600 \cdot kW$   $P_{eP} = 152340.109 \cdot hp$   
 $0.4KW_{MELM}$ 

$$P_{sS} \coloneqq BHP_{Sreq} + \frac{0.4KW_{MFLM}}{.8} - P_{sP} = 27522.511 \cdot kW P_{sS} = 36908.296 \cdot hp$$
$$P_{sFracS} \coloneqq \frac{P_{sS}}{N_{sENG,S} \cdot MCR_{S}} = 2.698$$

4a. Select engine RPM for minimum fuel consumption at endurance speed from the engine performance map. Estimate fuel consumption.

 $\mathbf{n_{sPEopt} \coloneqq 3600 \cdot RPM} \quad \mathbf{n_{sPE} \coloneqq n_{sPEopt}}$ 

SFC data:

CAT 3618  

$$vx_{p} := \begin{pmatrix} .13 \\ .205 \\ .56 \\ .885 \\ 1 \end{pmatrix}$$
 $vy_{p} := \begin{pmatrix} .77 \\ .62 \\ .465 \\ .36 \\ .345 \end{pmatrix}$ 
 $vy_{s} := \begin{pmatrix} .18 \\ .53 \\ .86 \end{pmatrix}$ 
 $vy_{s} := \begin{pmatrix} .37 \\ .345 \\ .33 \end{pmatrix}$ 
 $\frac{lb}{hp \cdot hr}$ 

Speed:

$$SFC_{eP} := interp(cspline(vx_{P}, vy_{P}), vx_{P}, vy_{P}, P_{eFracP}) = 0.356 \cdot \frac{lb}{hp \cdot hr} \qquad Fuelrate_{eP} := (P_{eP}) \cdot SFC_{eP} = 15260.22$$

$$SFC_{eS} := interp(cspline(vx_{S}, vy_{S}), vx_{S}, vy_{S}, P_{eFracS}) = 0.34 \cdot \frac{lb}{hp \cdot hr} \qquad Fuelrate_{eS} := (P_{eS}) \cdot SFC_{eS} = 2912.82 \cdot P_{eS}$$

$$Fuelrate_{e,TOT} := Fuelrate_{eP} + Fuelrate_{eS} = 8.243 \cdot \frac{tonne}{hr}$$

$$Sustained$$

$$Speed: \qquad .21 \frac{kg}{kW \cdot hr} = 0.345 \cdot \frac{lb}{hp \cdot hr}$$

$$Fuelrate_{sP} := interp(cspline(vx_{P}, vy_{P}), vx_{P}, vy_{P}, P_{sFracP}) = 0.388 \cdot \frac{lb}{hp \cdot hr}$$

$$Fuelrate_{sP} := (P_{sP}) \cdot SFC_{sP} = 59151.37$$

$$SFC_{sS} := interp(cspline(vx_{S}, vy_{S}), vx_{S}, vy_{S}, P_{sFracP}) = 0.011 \cdot \frac{lb}{hp \cdot hr}$$

$$Fuelrate_{sS} := (P_{sS}) \cdot SFC_{sS} = 368.353 \cdot P_{sFracP} = Fuelrate_{sS} = 26.998 \cdot \frac{tonne}{hr}$$

#### 5. Endurance Fuel Calculation

Calculate the endurance range for the specified fuel tank volume and average 24 hour electric load.

 $P_{eBAVG} := P_{e,P} + P_{e,S}$   $P_{eBAVG} = 38308.008 \cdot kW$   $V_e = 20 \cdot knt$ 

Correction for instrumentation inaccuracy and machinery design changes:

$$f_{1} := \begin{vmatrix} 1.04 & \text{if } P_{e,P} \leq \frac{1}{3} \cdot MCR_{P} \\ 1.02 & \text{if } P_{e,P} \geq \frac{2}{3} \cdot MCR_{P} \\ 1.03 & \text{otherwise} \end{vmatrix}$$

Specified fuel rate:  $FR_{SP} := f_1 \cdot SFC_{e.tot}$   $FR_{SP} = 0.352 \cdot \frac{lbf}{hp \cdot hr}$ Average fuel rate allowing for plant deterioration over 2 years:  $FR_{AVG} := 1.05 \cdot FR_{SP}$ 

$$FR_{AVG} = 11.882 \frac{ft}{s^2} \cdot \frac{lb}{hp \cdot hr}$$

Tailpipe allowance: TPA := 0.95

Usable Fuel (volume allowance for expansion, 5%, and tank internal structure, 2%) and Endurance Range

$$V_{F41} = 4651.6 \cdot m^3$$
  $V_{orig} := V_{F41} = 4651.6 \cdot m^3$ 

$$V_{\text{EA1}} := 4720 \text{m}^3$$
 diff :=  $V_{\text{F41}} - V_{\text{orig}} = 68.4 \cdot \text{m}^3$ 

$$W_{F41} := \frac{V_{F41}}{1.02 \cdot 1.05 \cdot \delta_F}$$
  $E := \frac{W_{F41} \cdot V_e \cdot TPA}{P_{eBAVG} \cdot FR_{AVG}}$   $E = 8007.473 \cdot nm$ 

Fuel Oil Service Tank Calculation:

$$\begin{split} \mathsf{N}_{\mathsf{servicetanks}} &\coloneqq 2 \\ \mathsf{V}_{\mathsf{Servicetank}} &\coloneqq \frac{\mathsf{FR}_{\mathsf{AVG}} \cdot 4\mathsf{hr} \cdot \mathsf{P}_{\mathsf{eBAVG}} \cdot 1.02 \cdot 1.05 \cdot \delta_{\mathsf{F}}}{\mathsf{N}_{\mathsf{servicetanks}}} = 22.399 \cdot \mathsf{m}^3 \\ \mathsf{boxdims} &\coloneqq \mathsf{V}_{\mathsf{Servicetank}} \overset{1}{\overset{3}{}} = 2.819 \cdot \mathsf{m} \end{split}$$

## Appendix J – Simpliefied Cost Model MathCAD File

#### SIMPLIFIED COST MODEL Bdol := 1000 Mdol FFSHI $Kdol := \frac{Mdol}{1000}$ lton := 2240.1b $\lim_{m \to \infty} = \frac{33000 \cdot \text{ft} \cdot \text{lb}}{\min}$ 1. Single Digit Weight Summary: i1 := 100,200..700 $dol := \frac{Kdol}{1000}$ $W_{400} := 9306.362 \cdot \text{lton}$ $W_{400} := 1183.213 \cdot \text{lton}$ $W_{500} := 2172.537 \cdot \text{lton}$ W<sub>F20</sub> := 445.550 ·lton $W_{200} := 1908.081 \cdot 1 \text{ton}$ $W_{420} := 31.888 \cdot 1 \text{ton}$ $W_{600} := 1528.866 \cdot 1 \text{ton}$ $W_{300} := 1022.787 \cdot 100 \quad W_{430} := 97.732 \cdot 100 \quad W_{700} := 835.099 \cdot 100$ WF22 := 13.877.lton [helo] $N_{HELO} := 2$ Weight margin: W<sub>M</sub> := 1672.327·lton $N_{VTUAV} := 2$ 2. Additional charcteristics: Lightship: $W_{LS} := \sum_{i=1}^{N} W_{i1} + W_M$ $W_{LS} = 1.963 \times 10^4 \cdot 10^{10}$ tonne = $2.205 \times 10^3$ ·lb

Costed Military Payload: (helo and helo fuel weight not included)

$$W_{MP} := \left[ \left( W_{400} + W_{700} \right) - W_{420} - W_{430} \right] + W_{F_{20}} - W_{F_{23}} \qquad W_{MP} = 2.32 \times 10^3 \cdot 1 \text{ton}$$

Installed Propulsion Power: P<sub>SUM</sub> = 95930 hp

Manning: (crew + air detachment + staff)

Officers:
$$N_{C_1} := 31$$
CPO's: $N_{C_2} := 35$ Enlisted: $N_{C_3} := 386$ Ship Service Life: $L_S := 35$ Initial Operational Capability: $Y_{IOC} := 2018$ Total Ship Acquisition: $N_S := 18$ Production Rate (per year): $R_P := 3$ 

 $F_I := \prod_{iy} \left( 1 + \frac{R_I}{100} \right) \qquad F_I = 3.373$ 

#### 3. Inflation:

Base Year:  $Y_B := 2012$  iy := 1..  $Y_B - 1981$ 

Average Inflation Rate (%): R<sub>I</sub> := 4 (from 1981)

. . . . .

#### 4. Lead Ship Cost:

### a. Lead Ship Cost - Shipbuilder Portion:

SWBS costs: (See Enclosure 1 for K<sub>N</sub> factors); includes escalation estimate

Structure
 
$$K_{N1} \coloneqq \frac{.8 \cdot Mdol}{lton^{.772}}$$
 $C_{L_{100}} \coloneqq .03395 \cdot F_{\Gamma} \cdot K_{N1} \cdot \left(W_{100}\right)^{.772}$ 
 $C_{L_{100}} \equiv 106.136 \cdot Mdol$ 

 + Propulsion
  $K_{N2} \coloneqq \frac{1.43 \cdot Mdol}{hp^{.808}}$ 
 $C_{L_{200}} \coloneqq .00186 \cdot F_{\Gamma} \cdot K_{N2} \cdot P_{SUM}^{.808}$ 
 $C_{L_{200}} \equiv 95.127 \cdot Mdol$ 

 + Electric
  $K_{N3} \coloneqq \frac{1.0 \cdot Mdol}{lton^{.91}}$ 
 $C_{L_{300}} \coloneqq .07505 \cdot F_{\Gamma} \cdot K_{N3} \cdot \left(W_{300}\right)^{.91}$ 
 $C_{L_{300}} \equiv 138.768 \cdot Mdol$ 

Mdol := coul

+ Command, Control, Surveillance

$$K_{N4} := \frac{1.06383 \cdot Mdol}{lton^{.617}} C_{L_{400}} := .10857 \cdot F_{\Gamma} K_{N4} \cdot \left(W_{400}\right)^{.617} \qquad C_{L_{400}} = 30.669 \cdot Mdol$$
(less payload GFM cost)

+ Auxiliary 
$$K_{N5} := \frac{1.0 \cdot Mdol}{1 ton^{.782}}$$
  $C_{L_{500}} := .09487 \cdot F_{\Gamma} \cdot K_{N5} \cdot (W_{500})^{.782}$   $C_{L_{500}} = 130.218 \cdot Mdol$ 

+ Outfit 
$$K_{N6} := \frac{1.0 \cdot Mdol}{lton^{.784}}$$
  $C_{L_{600}} := .09859 \cdot F_{I'} K_{N6'} (W_{600})^{.784}$   $C_{L_{600}} = 104.331 \cdot Mdol$ 

+ Armament 
$$K_{N7} := \frac{1.0 \cdot Mdol}{1 \text{ ton}^{.987}}$$
  $C_{L_{700}} := .00838 \cdot F_{\Gamma} K_{N7} \cdot (W_{700})^{.987}$   $C_{L_{700}} = 21.629 \cdot Mdol$ 

(Less payload GFM cost)

+ Margin Cost:

$$C_{LM} \coloneqq \frac{W_M}{(W_{LS} - W_M)} \cdot \left(\sum_{i1} C_{L_{i1}}\right) \qquad C_{LM} = 58.381 \cdot Mdol$$

+ Integration/Engineering: (Lead ship includes detail design engineering and plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad C_{L_{800}} := .034 \cdot K_{N8} \cdot \left(\sum_{i1} C_{L_{i1}} + C_{LM}\right)^{1.099} \qquad C_{L_{800}} = 444.715 \cdot Mdol$$

+ Ship Assembly and Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{.839}} \qquad C_{L_{900}} := .135 \cdot K_{N9} \cdot \left(\sum_{i1} C_{L_{i1}} + C_{LM}\right)^{.839} \qquad C_{L_{900}} = 64.661 \cdot Mdol$$

= Total Lead Ship Construction Cost: (BCC):

$$C_{LCC} \coloneqq \sum_{i1} C_{L_{i1}} + C_{L_{800}} + C_{L_{900}} + C_{LM} \qquad C_{LCC} = 1.195 \times 10^3 \cdot Mdol$$

+ Profit:

$$F_P := .10$$
  $C_{LP} := F_P \cdot C_{LCC}$   $C_{LP} = 119.463 \cdot Mdol$ 

= Lead Ship Price:

$$P_L := C_{LCC} + C_{LP} \qquad \qquad P_L = 1.314 \times 10^3 \cdot M dol$$

+ Change Orders:

$$C_{LCORD} := .12 \cdot P_L$$

020

- = Total Shipbuilder Portion:
  - $C_{SB} = 1.472 \times 10^3 \cdot Mdol$  $C_{SB} := P_L + C_{LCORD}$

## b. Lead Ship Cost - Government Portion

| Other support:                                           | $C_{LOTH} := .025 \cdot P_L$                                   | $C_{LOTH} = 32.852 \cdot Mdol$                     |                                                     |
|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| + Program Manager's Growth:                              | $C_{LPMG}\coloneqq .1 \cdot P_L$                               | $C_{LPMG} = 131.41 \cdot Mdol$                     | $W_{MP} = 2.32 \times 10^3$ ·lton                   |
| + Ordnance and Electrical GFE:<br>(Military Payload GFE) | $C_{LMPG} := \left(.319 \cdot \frac{Mdol}{lton} \cdot \right)$ | W <sub>MP</sub> + N <sub>HELO</sub> 18.71 · Mdol + | $N_{VTUAV} \cdot 7.5 \cdot Mdol  ight) \cdot F_{I}$ |
|                                                          | $C_{LMPG} = 2.674 \times 10^3 \cdot N$                         | ldol (or incl actual cost if kn                    | own)                                                |
| + HM&E GFE (boats, IC):                                  | $C_{LHMEG} \coloneqq .02 \cdot P_L$                            | $C_{LHMEG} = 26.282 \cdot Mdol$                    |                                                     |
| + Outfittimg Cost :                                      | $C_{LOUT} := .04 P_L$                                          | $C_{LOUT} = 52.564 \cdot Mdol$                     |                                                     |
| = Total Government Portion:                              |                                                                |                                                    |                                                     |
| $C_{LGOV} := C_{LOTH} + C_{LPMG} + C_{LMPG} + C_{CMPG}$  | C <sub>LHMEG</sub> + C <sub>LOUT</sub>                         | $C_{LGOV} = 2.917 \times 10^3 \cdot 10^3$          | Mdol                                                |
| c. Total Lead Ship End Cost: (Must al                    | ways be less than app                                          | propriation)                                       |                                                     |
| * Total End Cost:                                        |                                                                |                                                    |                                                     |
| $C_{LEND} \coloneqq C_{SB} + C_{LGOV}$                   | $C_{LEND} = 4$                                                 | $388 \times 10^3$ · Mdol                           |                                                     |
| d. Total Lead Ship Acquisition Cost:                     |                                                                |                                                    |                                                     |
| + Post-Delivery Cost (PSA):                              | $C_{LPDEL} := .05 \cdot P_L$                                   | $C_{LPDEL} = 65.705 \cdot Mdol$                    |                                                     |
| = Total Lead Ship Acquisition Cost:                      | $C_{LA} \coloneqq C_{LEND} + C_{LPD}$                          | EL $C_{LA} = 4.454 \times$                         | 10 <sup>3</sup> ∙Mdol                               |

 $C_{FCC} = 840.954 \cdot Mdol$ 

## 5. Follow-Ship Cost:

| Learning Rate/Factor:                                                                                                                                        | $R_L := .97$               | $F := 2 \cdot R_L - 1$    | F = 0.94 | (†                 | 99.768   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------|--------------------|----------|
| a Follow Shin Cost - Shinbuilder                                                                                                                             | Portion                    |                           |          |                    | 89.419   |
| a ronow omp oost - ompounder                                                                                                                                 | 1011011                    |                           |          | C <sub>F</sub>     | 130.442  |
| $C_{F_{i1}} := F C_{L_{i1}}$                                                                                                                                 | $C_{FM} := F \cdot C_{LM}$ | $C_{FM} = 54.878 \cdot N$ | Adol     | $\frac{1}{Mdal} =$ | 28.829   |
|                                                                                                                                                              |                            |                           |          | IVIGOT             | 122.405  |
| $C_{F_{800}} \coloneqq \frac{.104 \cdot M dol}{M dol^{1.099}} \cdot \left( \sum_{i1} C_{L_{i1}} + C_{LM} \right)^{1.099}  C_{F_{800}} = 136.031 \cdot M dol$ |                            |                           |          |                    | 98.071   |
|                                                                                                                                                              |                            |                           |          |                    | 20.331 ) |

$$C_{F_{900}} := F \cdot C_{L_{900}} \qquad C_{F_{900}} = 60.782 \cdot Mdol$$

Total Follow Ship Construction Cost: (BCC)

$$C_{FCC} := \sum_{i1} C_{F_{i1}} + C_{F_{800}} + C_{F_{900}} + C_{FM}$$

+ Profit:

$$F_{PP} := .1$$
  $C_{FP} := F_{P} \cdot C_{FCC}$   $C_{FP} = 84.095 \cdot Mdol$ 

= Follow Ship Price:

$$P_F := C_{FCC} + C_{FP}$$
  $P_F = 925.049 \cdot Mdol$ 

+ Change Orders:

$$C_{FCORD} := .08 \cdot P_L$$
  $C_{FCORD} = 105.128 \cdot Mdol$ 

= Total Follow Ship Shipbuilder Portion:

$$C_{FSB} := P_F + C_{FCORD}$$
  $C_{FSB} = 1.03 \times 10^3 \cdot Mdol$ 

## b. Follow Ship Cost - Government Portion

| Other support:                                           | $C_{FOTH} := .025 \cdot P_F$                                             | $C_{FOTH} = 23.126 \cdot Mdol$                 |  |
|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|--|
| + Program Manager's Growth:                              | $C_{FPMG} := .05 \cdot P_F$                                              |                                                |  |
|                                                          | number of                                                                | f helo's: N <sub>HELO</sub> = 2                |  |
| + Ordnance and Electrical GFE:<br>(Military Payload GFE) | $C_{FMPG} \coloneqq \left(.3 \cdot \frac{Mdol}{lton} \cdot W_{M}\right)$ | $P + 18.710 \cdot Mdol \cdot N_{HELO} + F_{I}$ |  |
|                                                          | $C_{FMPG} = 2.474 \times 10^3 \cdot Mdol$                                |                                                |  |
| + HM&E GFE (boats, IC):                                  | $C_{FHMEG} := .02 \cdot P_F$                                             | $C_{FHMEG} = 18.501 \cdot Mdol$                |  |
| + Outfittimg Cost:                                       | $C_{FOUT} := .04 \cdot P_F$                                              | $C_{FOUT} = 37.002 \cdot Mdol$                 |  |
| = Total Follow Ship Government Cost:                     |                                                                          |                                                |  |

 $C_{FGOV} := C_{FOTH} + C_{FPMG} + C_{FMPG} + C_{FHMEG} + C_{FOUT} \qquad C_{FGOV} = 2.599 \times 10^3 \cdot M dol$ 

c. Total Follow Ship End Cost: (Must always be less than SCN appropriation)

\* Total Follow Ship End Cost:

 $C_{FEND} \coloneqq C_{FSB} + C_{FGOV} \qquad \qquad C_{FEND} = 3.629 \times 10^3 \cdot Mdol$ 

d. Total Follow Ship Acquisition Cost:

+ Post-Delivery Cost (PSA):  $C_{FPDEL} := .05 \cdot P_F$   $C_{FPDEL} = 46.252 \cdot Mdol$ = Total Follow Ship Acquisition Cost:  $C_{FA} := C_{FEND} + C_{FPDEL}$   $C_{FA} = 3.676 \times 10^3 \cdot Mdol$ 

AVERAGE SHIP ACQUISITION COST:

$$C_{AV} \coloneqq \frac{\frac{C_{FA} - C_{FMPG}}{F} \cdot (N_S - 1)}{\frac{\ln(2 \cdot R_L)}{\ln(2)}} + (N_S - 1) \cdot C_{FMPG} + C_{LA}}{N_S}$$
$$C_{AV} = 3.65 \times 10^3 \cdot Mdo1$$

## 6. Life Cycle Cost:

### a. Research and development

Ship design and development:

$$C_{SDD} := 1.1 \cdot \left( .571 \cdot \frac{C_{FSB}}{F} + .072 \cdot C_{LMPG} \right)$$

 $C_{SDD} = 900.105 \cdot Mdol$ 

+ Ship test and evaluation

$$C_{\text{STE}} := 1.2 \cdot \left( .499 \cdot \frac{C_{\text{FSB}}}{F} + .647 \cdot C_{\text{LMPG}} \right) \qquad \qquad C_{\text{STE}} = 2.732 \times 10^3 \cdot \text{Mdol}$$

= Total Ship R&D Cost:

$$C_{RD} := C_{SDD} + C_{STE}$$
  $C_{RD} = 3.632 \times 10^{3} \cdot Mdol$ 

## b) Investment (less base facilities, unrep, etc)

Ship Expected Total Shipbuilding Program Cost:

$$C_{SPE} := C_{AV}N_S$$
  $C_{SPE} = 65.7 \cdot Bdol$ 

+ Support Equipment (shore-based)

ship:  $C_{SSE} := .15 \cdot C_{SPE}$   $C_{SSE} = 9.855 \cdot Bdol$ 

+ Spares and repair parts (shore supply)

ship:  $C_{ISS} := .1 \cdot C_{SPE}$   $C_{ISS} = 6.57 \cdot Bdol$ 

= Total Investment Cost:  $C_{INV} := C_{SPE} + C_{SSE} + C_{ISS}$ 

 $C_{INV} = 82.125 \cdot Bdol$ 

## c) Operations and Support (total service life, base year dollars)

Personnel (Pay and Allowances)

$$C_{PAY} := F_{\Gamma} \left[ .026184 \cdot N_{C_1} + .01151 \cdot \left( N_{C_2} + N_{C_3} \right) \right] \cdot N_S \cdot L_S \cdot Mdol \qquad C_{PAY} = 12.022 \cdot Bdo'$$

$$C_{TAD} := F_{\Gamma} \left( N_{C_1} + N_{C_2} + N_{C_3} \right) \cdot N_S \cdot L_S \cdot 2.6 \cdot 10^{-6} \cdot Mdol \qquad C_{TAD} = 2.497 \cdot Mdol$$
$$C_{PERS} := C_{PAY} + C_{TAD} \qquad C_{PERS} = 12.025 \cdot Bdol$$

+ Operations:

Operating hours/year: H = 2500 hr

$$C_{OPS} := N_{S} \cdot L_{S} \cdot \left[ F_{\Gamma} K dol \cdot \left[ 188. + 2.232 \cdot \left( N_{C_{1}} + N_{C_{2}} + N_{C_{3}} \right) - \frac{H}{26.9 \cdot hr} \right] + \frac{C_{AV}}{769.2} + \frac{C_{FMPG}}{196} \right]$$

+ Maintenance

$$C_{MTC} := N_{S} \cdot L_{S} \cdot \left[ F_{I'} K dol \cdot \left[ 2967 + 4.814 \cdot \left( N_{C_{1}} + N_{C_{2}} + N_{C_{3}} \right) - \frac{H}{3.05 \cdot hr} \right] + \frac{C_{AV}}{156.25} \right]$$
$$C_{MTC} = 23.904 \cdot B dol$$

+ Energy

+ Major Support (COH, ROH):

$$C_{MSP} := N_{S} \cdot L_{S} \cdot \left[ 698. + 5.988 \cdot \left( N_{C_{1}} + N_{C_{2}} + N_{C_{3}} \right) - \frac{H}{10.36 \cdot hr} \right] \cdot Kdol \cdot F_{I} + .0022 \cdot C_{AV}$$

 $C_{MSP} = 6.73 \cdot Bdol$ 

= Total Operation and Support Cost: C<sub>OAS</sub> := C<sub>PERS</sub> + C<sub>OPS</sub> + C<sub>MTC</sub> + C<sub>EGY</sub> + C<sub>REP</sub> + C<sub>MSP</sub>

 $C_{OAS} = 108.266 \cdot Bdol$ 

d. Residual Value:

$$RES := .5 \cdot C_{SPE} \left( 1 - \frac{2}{L_S} \right)^{L_S} RES = 4.189 \cdot Bdol$$

e. Total Program

\* Total Life Cycle Cost (Undiscounted):  $C_{LIFE} := C_{RD} + C_{INV} + C_{OAS} - RES$ 

 $C_{LIFE} = 189.833 \cdot Bdol$ 

7. Discounted Life Cycle Cost:

a. Discounted R&D:

Length of R&D Phase: LRD := 13

end: 
$$E_{RD} := Y_{IOC} + 2 - Y_B$$
  $E_{RD} = 8$  (normalized to base year)  
start:  $B_{RD} := E_{RD} - L_{RD} + 1$   $B_{RD} = -4$ 

$$F_{DRD} := \frac{\sum_{y = B_{RD}} \frac{1}{(1 + R_D)^y}}{L_{RD}} \qquad F_{DRD} = 0.88$$

 $C_{DRD} \coloneqq F_{DRD} \cdot C_{RD}$   $C_{DRD} = 3.196 \times 10^3 \cdot Mdol$ 

b. Discounted Investment: start:  $B_{INV} := E_{RD} + 1$ end:  $E_{INV} := B_{INV} + \frac{N_S - 1}{R_p}$   $E_{INV} = 14.667$   $L_{INV} := E_{INV} - B_{INV} + 1$   $L_{INV} = 6.667$   $F_{DINV} := \frac{\sum_{y=B_{INV}} \frac{1}{(1 + R_D)^y}}{L_{INV}}$   $F_{DINV} = 1$ C  $DINV := F_{DINV} \cdot C_{INV}$   $C_{DINV} = 1 \cdot Bdol$ c. Discounted O&S: start:  $B_{OAS} := E_{INV} + 1$   $B_{OAS} = 15.667$ end:  $E_{OAS} := B_{OAS} + L_S - 1$   $E_{OAS} = 49.667$   $L_{OAS} := E_{OAS} - B_{OAS} + 1$   $L_{OAS} = 35$  $F_{DOAS} := \frac{\sum_{y=B_{OAS}} \frac{1}{(1 + R_D)^y}}{L_{OAS}}$   $F_{DOAS} = 1$ 

d. Discounted Residual Value:  $RES_{D} := RES \cdot \left(\frac{1}{1 + R_{D}}\right)^{E_{OAS}+1} RES_{D} = 33.49 \cdot Mdol$ 

e. Total Discounted Life Cycle Cost:

 $C_{\text{DLIFE}} \coloneqq C_{\text{DRD}} + \frac{C_{\text{DINV}}}{C_{\text{DINV}}} + C_{\text{DOAS}} - \text{RES}_{\text{D}} \qquad \qquad C_{\text{DLIFE}} = \bullet \cdot \text{Bdol}$ 

LEARNING CURVE:

Ns:= 1..30

