

Design Report AREA DEFENSE FRIGATE

VT Total Ship Systems Engineering

ADF Design 95 Ocean Engineering Design Project AOE 4065/4066 Fall 2006 – Spring 2007 Virginia Tech Team 5

233	822
259	<u>979</u>
<u> </u>	153
259	<u>985</u>
259	<u>984</u>
	23 25 19 25 25 25 25

Executive Summary

This report describes the Concept Exploration and Development of an Area Defense Frigate (ADF) for the United States Navy. This concept design was completed in a two-semester ship design course at Virginia Tech.

The ADF requirement is based on the Initial Capabilities Document (ICD) and the Virginia Tech ADF Acquisition Decision Memorandum (ADM), Appendix A and Appendix B.

Concept Exploration trade-off studies and design space exploration are accomplished using a Multi-Objective Genetic Optimization (MOGO) after significant technology research and definition. Objective attributes for this optimization are cost, risk (technology, cost, schedule and performance) and military effectiveness. The product of this optimization is a series of cost-risk-effectiveness frontiers which are used to select alternative designs and define key performance parameters and a cost threshold based on the customer's preference. ADF 95 is a monohull design selected from the high end of the non-dominated frontier with high levels of cost, risk, and effectiveness.

The wave-piercing tumblehome hull form of ADF 95 reduces radar cross-section and resistance in waves. The monohull design provides sufficient displacement and large-object space for a 32 cell Vertical Launch System. ADF 95 also provides significant surface combatant capability for a relatively low cost compared to DD1000 and CGX in addition to being a force multiplier.

ADF 95 is capable of reaching a sustained speed of nearly 32 knots. This speed is achieved using an Integrated Power System (IPS) drive system that incorporates two pods, two gas turbines, and two diesel generators.

Concept Development included hull form development and analysis for intact and damage stability, structural finite element analysis, propulsion and power system development and arrangement, general arrangements, machinery arrangements, combat system definition and arrangement, seakeeping analysis, cost and producibility analysis and risk analysis. The final concept design satisfies critical key performance parameters in the Capability Development Document (CDD) within cost and risk constraints.

Ship Characteristic	Value
LWL	139.0 m
Beam	17.18 m
Draft	5.81 m
D10	12.51 m
Lightship weight	5483 MT
Full load weight	6530 MT
Sustained Speed	31.8 knots
Endurance Speed	20.0 knots
Endurance Range	5362 nm
Propulsion and	2 Pods
Power	IPS
	2 x LM2500+ GTG,
	1 x ICR
	2 x CAT3608 IL8 DG
BHP	66687 kW
Personnel	246
OMOE	0.841
(Effectiveness)	
OMOR (Risk)	0.509
Lead Ship	\$919.4M
Acquisition Cost	
Follow Ship	\$642.0M
Acquisition Cost	
Life-Cycle Cost	\$1.12B
ASW/MCM system	SQS-56, SQQ 89, 2 x MK 32
	Triple Tubes, NIXIE, SQR-19
	TACTAS
NSFS/ASUW system	MK 3 57 mm gun, MK86 GFCS,
	SPS-73(V)12, 1 RHIB, Small
	Arms Locker
AAW system	SPY-3 (3 panel), AEGIS MK 99
	FCS
CCC	Enhanced CCC
GMLS	32 cells, MK41
LAMPS	Embarked 2 x LAMPS w/ Hangar

Table of Contents

EX	ECUTI	IVE SUMMARY	2
ТА	BLE OF	F CONTENTS	3
1	INT	FRODUCTION, DESIGN PROCESS AND PLAN	5
	1.1	INTRODUCTION	5
	1.2	DESIGN PHILOSOPHY, PROCESS, AND PLAN	5
	1.3	Work Breakdown	9
	1.4	Resources	9
2	MIS	SSION DEFINITION	9
	2.1	CONCEPT OF OPERATIONS	9
	2.2	CAPABILITY GAPS	10
	2.3	PROJECTED OPERATIONAL ENVIRONMENT (POE) AND THREAT	10
	2.4	SPECIFIC OPERATIONS AND MISSIONS	11
	2.5	MISSION SCENARIOS	
	2.0	REQUIRED OPERATIONAL CAPABILITIES	13
3	COI	NCEPT EXPLORATION	15
	3.1	TRADE-OFF STUDIES, TECHNOLOGIES, CONCEPTS AND DESIGN VARIABLES	15
	3.1.	.1 Hull Form Alternatives	15
	3.1.	2. Propulsion and Electrical Machinery Alternatives	16
	3.1.	.3 Automation and Manning Parameters	
	3.1.	.4 Combat System Alternatives	21
	3.2	DESIGN SPACE	
	3.3	SHIP SYNTHESIS MODEL	
	3.4	UBJECTIVE ATTRIBUTES	41
	<i>3.4.</i>	4.1 Overall Measure of Effectiveness (OMOE)	
	5.4. 3 1	4.2 Overall Measure of Kisk (OMOR)	
	35	MUUTI-ORIECTIVE OPTIMIZATION	
	3.6	OPTIMIZATION RESULTS	50
	3.7	BASELINE CONCEPT DESIGN	
	3.8	ASSET FINAL CONCEPT BASELINE	53
4	CO	NCEPT DEVELOPMENT (FEASIBILITY STUDY)	58
•	4 1	$\mathbf{P}_{P} \in \mathbf{I}_{M} \times \mathbf{A}_{P} = \mathbf{A}_{M} \times \mathbf{A}_{M} = \mathbf{A}_{M} \times \mathbf{A}_{M} = \mathbf{A}_{M} \times $	58
	4.2	DESIGN FOR PRODUCIBILITY	
	4.3	HULL FORM AND DECK HOUSE	
	4.3.	2.1 Hullform	61
	4.3.	2.2 Deck House	62
	4.4	STRUCTURAL DESIGN AND ANALYSIS	62
	4.4.	Procedure	62
	4.4.	4.2 Materials and Geometry	64
	4.4.	Loads	
	4.4.	.4 Adequacy	
	4.5	POWER AND PROPULSION	
	4.3. 15	2.1 Resistance	
	4.J. 45	53 Fleetric Load Analysis (FLA)	
	4 5	5.4 Fuel Calculation	
	4.6	MECHANICAL AND ELECTRICAL SYSTEMS	
	4.6.	5.1 Integrated Power System (IPS)	
	4.6.	5.2 Service and Auxiliary Systems	
	4.6.	5.3 Ship Service Electrical Distribution	

	4.7	MANNING	
	4.8	SPACE AND ARRANGEMENTS	76
	4.8	8.1 Volume	
	4.8	8.2 Main and Auxiliary Machinery Spaces and Machinery Arrangement	
	4.8	8.3 Internal Arrangements	
	4.8	8.4 Living Arrangements	
	4.8	8.5 External Arrangements	
	4.9	WEIGHTS AND LOADING	
	4.9	9.1 Weights	
	4.9	9.2 Loading Conditions	
	4.10	HYDROSTATICS AND STABILITY	
	4.1	10.1 Intact Stability	
	4.1	10.2 Damage Stability	
	4.11	SEAKEEPING	
	4.12	Cost Analysis	
5	CC	ON OF LIGIONS AND FUTURE WORK	00
3	CU	UNCLUSIONS AND FUTURE WORK	
	5.1	Assessment	
	5.2	FUTURE WORK	
	5.3	CONCLUSIONS	
6	RE	EFERENCES	
A	PPEND	IX A – INITIAL CAPABILITIES DOCUMENT (ICD)	
A	PPENDI	IX B – ACQUISITION DECISION MEMORANDUM (ADM)	
A 1	PDFNDI	IY C CAPARILITY DEVELOPMENT DOCUMENT (CDD)	07
A		$\mathbf{A} \mathbf{C} = \mathbf{C} \mathbf{A} \mathbf{I} \mathbf{A} \mathbf{D} \mathbf{L} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{C} \mathbf{U} \mathbf{M} \mathbf{E} \mathbf{A} \mathbf{I} \mathbf{D} \mathbf{C} \mathbf{U} \mathbf{M} \mathbf{E} \mathbf{A} \mathbf{I} (\mathbf{C} \mathbf{D} \mathbf{D})$,
A	PPENDI	IX D – LOWER LEVEL PAIR-WISE COMPARISON RESULTS	
A	PPEND	IX E – ASSET DATA SUMMARIES	
A	PPEND	IX F – MACHINERY EQUIPMENT LIST	
A	PPENDI	IIX G – WEIGH IS AND CENTERS	
<u>A</u> 1	PPFND	IX H – SSCS SPACE SUMMARV	115
n.		1A 11 - 5505 51 ACE 501404AK I	
A	PPENDI	IX I – MATHCAD MODELS	

1 Introduction, Design Process and Plan

1.1 Introduction

This report describes the concept exploration and development of an Area Defense Frigate (ADF) for the United States Navy. The ADF requirement is based on the ADF Initial Capabilities Document (ICD), and Virginia Tech ADF Acquisition Decision Memorandum (ADM), Appendix A and Appendix B. This concept design was completed in a two-semester ship design course at Virginia Tech. The ADF must perform the following missions:

T 11 4

	Table 1– Missions			
	ADF Required Missions			
I.	Escort: Carrier Strike Group (CSG), Expeditionary Strike Group (ESG), MCG, Convoy			
II.	Surface Action Group (SAG)			
III.	Independent Ops			
IV.	Homeland Defense / Interdiction			

The ADF must provide and support the joint functional areas: Force Application, Force Protection and Battlespace Awareness. This means the ADF must provide force application from the sea, force protection and awareness at sea, and protection of homeland and critical bases from the sea.

The Concept of Operations (CONOPS) identifies seven critical US military operational goals.

- Protecting critical bases of operations
- Assuring information systems
- Protecting and sustaining US forces while defeating denial threats
- Denying enemy sanctuary by persistent surveillance
- Tracking and rapid engagement
- Enhancing space systems
- Leveraging information technology

The US Navy plans to support these goals by building a sufficient number of ships to provide warfighting capabilities in the following areas.

- Sea Strike: strategic agility, maneuverability, ISR, and time-sensitive strikes
- Sea Shield: project defense around allies, exploit control of seas, littoral sea control, and counter threats
- Sea Base: accelerated deployment and employment time, and enhanced seaborne positioning of joint assets

The new ADF will have the same modular systems as LCS in addition to core capabilities with AAW/BMD (with queuing) and blue/green water ASW. The lead ship acquisition cost of the new frigate must be no more than \$1B and the follow-ship acquisition cost shall not exceed \$700M. The platforms must be highly producible with minimum time from concept to delivery to the fleet. There should be maximum system commonality with LCS and the platforms should be able to operate within current logistics support capabilities. There should be minimum manning, a reduction in signature, and the Inter-service and Allied C⁴/I (inter-operability) must be considered. It is expected that 20 ships of this type will be built with IOC in 2015.

1.2 Design Philosophy, Process, and Plan

The design process for the ADF is broken down into the 5 distinct stages in Figure 1. This report will focus on Concept Exploration and Concept Development. Exploratory design is an ongoing process and is the assessment of new and existing technologies and the integration of these technologies in the ship design. With regards to a Navy ship design, there is also an on-going mission or market analysis of threat, existing ships, technology and consequently the determination of new ship designs or characteristics. The exploratory design stage will lead to a baseline design, feasibility studies, and finally a final concept.

The next stage is Concept Development where the concept is developed and matured to reduce risk and clarify cost. From this stage, the Preliminary Design is created. The next stage is contract design where a full set of drawings and specifications are made to the required level of detail to contract and acquire ships. Finally, the Detail

Design is performed by the ship builder where the process and details necessary to build the design are developed. The entire engineering process can take 15 to 20 years.

Figure 1 – Design stages.

The design strategy is presented in Figure 2, where the diagram is read from left to right. First a broad perspective is taken where the whole design space is looked at with a broad range of cost, risk and technical alternatives. The selection of technical alternatives is narrowed down to a set of non-dominated designs, and then some of the non-dominated designs are selected for further consideration. To do this, a multi-objective optimization with millions of possible different designs is conducted. The designs are sorted through the funnel and narrowed down to a non-dominated frontier. From the non-dominated frontier the design detail is expanded and the risk is minimized with additional analysis in concept development.

Figure 2 – Design Strategy

Figure 3 shows the concept and requirements exploration process. The process begins with the Initial Capabilities Document (ICD), the Acquisition Decision Memorandum (ADM) and the Analysis of Alternatives (AOA) guidance. The mission description is expanded into a detailed description that can be used in developing effectiveness metrics for engineering purposes. From the mission description, the Required Operational Capabilities (ROCs), the Measures of Performance (MOPs), and the alternative technologies that are able to achieve the necessary capabilities are identified. The alternative technologies have certain levels of risk associated with them because there are many unknowns.

Next, the MOPs are put into an Overall Measure of Effectiveness model (OMOE). Then the Design Variables (DVs) and the Design Space are defined from the design possibilities. The Risk, Cost, Effectiveness, Design Space, and Design Variables are included in the synthesis model and the model is then evaluated with a design of experiments (DOE) with variable screening and exploration. Ultimately the Multi-Objective Genetic Optimization (MOGO) is used to search the design space for a non-dominated frontier of designs using the Ship Synthesis model to assess the feasibility, cost, effectiveness and risk of alternative designs. From the non-dominated fronteir, concept baseline designs are selected for each team based on "knees" in the graph. For their design, each team creates a Capabilities Development Document (CDD) including Key Performance Parameters (KPPs), a ship concept, and determines some subset of technology development.

Figure 3 – Concept and Requirements Exploration

After finishing concept and requirements exploration, concept development is started as shown in Figure 4. The process is very similar to the traditional design spiral. The baseline design is based on concept exploration, the Capabilities Development Document (CDD) and a selection of technologies. A number of steps are taken in a spiral-like process where the concept is revised and the spiral is re-traveled until converging to a refined design. Typical steps in the process are the development and assessment of hull geometry, resistance and power, manning and automation, structural design, space and arrangements, hull mechanical and electrical (HM&E), weights and stability, seakeeping and maneuvering, and a final assessment of cost and risk. If there are things that need to be changed then the spiral must be traveled again.

Figure 4 – Idealized Concept Development Design Spiral

The real design spiral is never as smooth as presented in Figure 4. Often times the different departments communicate with each other a lot and build a complex network of communications between disciplines. For example, Figure 5 shows that once hull geometry is developed, it is communicated to the structures, general arrangements, machinery arrangements, and subdivision area and volume specialists. For this ship process, there may only be enough time to run through the design spiral once, and any inconsistencies will be noted for further evaluation.

Figure 5 – Concept Development Design Spiral

1.3 Work Breakdown

ADF Team 5 consists of five students from Virginia Tech. Each student requested or was assigned areas of work according to his or her interests and special skills as listed in Table 2. The team leader is in charge of communications between team members and Virginia Tech faculty. In addition, the team leader is also in charge of keeping everything organized and keeping the team on schedule.

Name	Specialization	
William Downing	Propulsion and Resistance, Manning and Automation, Weights and Stability	
Jason Eberle	Combat Systems, General & Machinery Arrangements, Electrical, Subdivision	
Michael Kipp	Feasibility, Cost & Risk, Effectiveness, General & Machinery Arrangements	
Anne-Marie Sattler	Writer / Editor, Structures, Preliminary Arrangement, Producibility	
Lawrence Snyder	Hull Form, Structures, Seakeeping, Propulsion and Resistance, Weights and Stability	

Table 2 – Work Breakdown

1.4 Resources

Computational and modeling tools used in this project are listed in Table 3. The analyses that were completed are listed on the left and the software packages used are listed on the right. These tools simplified the ship design process and decreased the overall time. Their applications are presented in Sections 3 and 4.

Table 3 – Tools		
Analysis	Software Package	
Arrangement Drawings	AutoCAD, Rhino	
Baseline Concept Design	ASSET	
Hull form Development	Rhino	
Hydrostatics	HECSALV, Rhino Marine	
Resistance/Power	Mathcad	
Ship Motions	SMP	
Ship Synthesis Model	Model Center, Fortran	
Structure Model	MAESTRO, HECSALV, Mathcad	

2 Mission Definition

The ADF requirement is based on the ADF Initial Capabilities Document (ICD), and Virginia Tech ADF Acquisition Decision Memorandum (ADM), Appendix A and Appendix B with elaboration and clarification obtained by discussion and correspondence with the customer.

2.1 Concept of Operations

In Appendix A, the 2001 Quadrennial Defense Review identifies seven critical US military operational goals:

- Protecting critical bases of operations
- Assuring information systems
- Protecting and sustaining US forces while defeating denial threats
- Denying enemy sanctuary by persistent surveillance
- Tracking and rapid engagement
- Enhancing space systems
- Leveraging information technology

The US Navy plans to support these goals by building a sufficient number of ships to provide warfighting capabilities in the following areas:

- Sea Strike: strategic agility, maneuverability, ISR, and time-sensitive strikes
- Sea Shield: project defense around allies, exploit control of seas, littoral sea control, and counter threats
- Sea Base: accelerated deployment and employment time, and enhanced seaborne positioning of joint assets

Power Projection requires the execution and support of flexible strike missions and support of naval amphibious operations. This includes protection to friendly forces from enemy attack, unit self defense against littoral threats, area defense, mine countermeasures, and support of theatre ballistic missile defense.

Ships must be able to support, maintain and conduct operations with the most technologically advanced unmanned/remotely controlled tactical and C4/I reconnaissance vehicles. The Naval forces will be the first military forces on-scene and will have "staying and convincing" power to promote peace and prevent crisis escalation. They must also have the ability to provide a "like-kind, increasing lethality" response to influence decisions of regional political powers, and have the ability to remain invulnerable to enemy attack. The Naval forces must also be able to support non-combatant and maritime interdiction operations in conjunction with national directives. They must also be flexible enough to support peacetime missions yet be able to provide instant wartime response should a crisis escalate. Finally, Naval forces must posses sufficient mobility and endurance to perform all missions on extremely short notice and at locations far removed from home port. To accomplish this, the naval forces must be predeployed and virtually on station in sufficient numbers around the world.

Expected operations include escort, surface action group (SAG), independent operations, and homeland defense. Within these operations the ship will provide area AAW, ASW and ASUW defense, along with intelligence, surveillance, and reconnaissance (ISR) and ballistic missile defense (BMD). It will also provide mine countermeasures (MCM) and will support UAVs, USVs and UUVs. The ship will also provide independent operations including support of special operations, humanitarian support and rescue, and peacetime presence.

2.2 Capability Gaps

Table 4 lists the capability gap goals and thresholds given in Appendix A.

Pr	iority Capability Description	Threshold Systems	Goal Systems
1	Core AAW/BMD (with queuing)	SPY-3 w/32 cell VLS, Nulka/SRBOC, SLQ-32V2	SPY-3 w/64 cell VLS, Nulka/SRBOC, SLQ-32V3
2	Core Blue/green water ASW	SQS-56 sonar, TACTAS, NIXIE, 2xSH-2G, SSTD	SQS-53C sonar, TACTAS, NIXIE, 2xSH-60, SSTD
3	Special-Mission Packages (MCM, SUW, ASW, ISR, Special Forces)	1xLCS Mission Packages with UAVs, USVs and stern launch	2xLCS Mission Packages with UAVs, USVs and stern launch
4	Core ISR	2xSH-2G, advanced C4I	2xSH-60, advanced C4I
5	Mobility	30knt, full SS4, 3500 nm, 45 days	35knt, full SS5, 5000 nm, 60 days
6	Survivability and self-defense	DDG-51 signatures, mine detection sonar, CIWS or CIGS	DDG1000 signatures, mine detection sonar, CIWS or CIGS
7	Maritime interdiction, ASUW	2xSH-2G, 57mm gun, 2x.50 caliber guns	2xSH-60, 57mm gun, 2x.50 caliber guns, Netfires

Table 4 – Canability Gans

2.3 Projected Operational Environment (POE) and Threat

The shift in emphasis from global Super Power conflict to numerous regional conflicts requires increased flexibility to counter a variety of asymmetric threat scenarios which may rapidly develop. Two distinct classes of threats to the U.S. national security interests exist:

- I. Threats from nations with either a significant military capability, or the demonstrated interest in acquiring such a capability. Specific weapons systems that could be encountered include:
 - a. Ballistic missiles
 - b. Land and surface launched cruise missiles
 - c. Significant land based air assets
 - d. Submarines

- II. Threats from smaller nations who support, promote, and perpetrate activities which cause regional instabilities detrimental to international security and/or have the potential for development of nuclear weapons. Specific weapons systems include:
 - a. Diesel/electric submarines
 - b. Land-based air assets
 - c. Mines (surface, moored and bottom)

The platform or system must be capable of operating in the following environments:

- Open ocean and littoral
- Shallow and deep water
- Noisy and reverberation-limited
- Degraded radar picture
- Crowded shipping
- Dense contacts and threats with complicated targeting
- Biological, chemical and nuclear weapons
- All-Weather Battle Group
- All-Weather Independent operations

Many potentially unstable nations are located on or near geographically constrained (littoral) bodies of water. Threats in such an environment include:

- I. Technologically advanced weapons
 - a. Cruise missiles like the Silkworm and Exocet
 - b. Land-launched attack aircraft
 - c. Fast gunboats armed with guns and smaller missiles
 - d. Diesel-electric submarines
- II. Unsophisticated and inexpensive passive weapons
 - a. Mines (surface, moored and bottom)
 - b. Chemical and biological weapons

2.4 Specific Operations and Missions

The ADF is expected to perform operations including escort, surface action group (SAG), independent operations, and homeland defense.

I. Escort

The ship will serve as an escort to protect aircraft carriers and other ships by traveling in convoy to provide direct support of Carrier Strike Group (CSG) and Expeditionary Strike Group (ESG). The ship will support CSGs by supporting flexible strike missions, providing forward presence, power projection, and crisis response. The ship will support ESGs in low to moderate threat environment by providing services such as human assistance, peace enforcement, maritime interdiction operations, and fire support.

II. Surface Action Group (SAG)

The ship may travel as part of a surface action group where it is not escorting an aircraft carrier or other ships. A surface action group generally consists of two or more surface combatants and deploys for unique operations, such as augmenting military coverage in world regions, providing humanitarian assistance, and conducting exercises with allied forces. As part of a SAG, the ship will travel with CGs, DDGs and LCSs, and will provide AAW, ASW, ASUW, BMD, MCM, and ISR.

III. Independent OPs

The ship will perform independent operations by providing area AAW, ASW and ASUW. It will also provide BMD with queuing, MCM and ISR. The ship will support special operations and has the ability to support UAV, USVs and UUVs. Specific independent operations may also include humanitarian support and rescue and peacetime presence.

IV. Homeland Defense / Interdiction

The ship will provide homeland defense from the sea against air and sea attacks. To accomplish this, the ship will perform military missions overseas including but not limited to AAW, ASW, ASUW and ISR. The ship will also perform maritime interdiction operations (MIO) in wartime and peacetime including eliminating enemy's surface military potential, terrorist threats and illegal interactions at sea.

2.5 Mission Scenarios

Mission scenarios for the primary ADF missions are provided in Table 5 and Table 6. The scenarios are for 60 days but actual scenarios may take as long as 90+ days.

Day	Mission scenario
1-21	Small ADF squadron transit from CONUS
22	Underway replenishment (Unrep)
23-33	Deliver humanitarian aid, provide support
29	Defend against surface threat (ASUW) during aid mission
31-38	Repairs/Port Call
39	Unrep
42	Engage submarine threat for self-defense
43	Avoid submarine threat (ASW)
44-59	Join CSG/ESG
60+	Port call or restricted availability

Table 6 – SAG Mission

Day	Mission scenario
1-21	ADF transit from CONUS
21-24	Port call, replenish and load AAW/ASW/ASUW/BMD modules
24	Engage air threat for self defense
25-30	Conduct AAW/ASW/ASUW/BMD operations
31-38	Repairs/Port Call
39	Unrep
41	Engage submarine threat for self-defense
39-49	SH-60 operations against submarine threat
50	Repairs/Port Call
51-59	Mine avoidance
60+	Port call or restricted availability

2.6 Required Operational Capabilities

In order to support the missions and mission scenarios described in Section 2.5, the capabilities listed in Table 7 are required. Each of these can be related to functional capabilities required in the ship design, and, if within the scope of the Concept Exploration design space, the ship's ability to perform these functional capabilities is measured by explicit Measures of Performance (MOPs).

ROCs	Description
AAW 1	Provide anti-air defense
AAW 1.1	Provide area anti-air defense
AAW 1.2	Support area anti-air defense
AAW 1.3	Provide unit anti-air self defense
AAW 2	Provide anti-air defense in cooperation with other forces
AAW 3	Support Theater Ballistic Missile Defense (TBMD)
AAW 5	Provide passive and soft kill anti-air defense
AAW 6	Detect, identify and track air targets
AAW 9	Engage airborne threats using surface-to-air armament
AMW 6	Conduct day and night helicopter, Short/Vertical Take-off and Landing and airborne autonomous vehicle (AAV) operations
AMW 6.3	Conduct all-weather helo ops
AMW 6.4	Serve as a helo hangar
AMW 6.5	Serve as a helo haven
AMW 6.6	Conduct helo air refueling
AMW 12	Provide air control and coordination of air operations
AMW 14	Support/conduct Naval Surface Fire Support (NSFS) against designated targets in support of an amphibious operation
ASU 1	Engage surface threats with anti-surface armaments
ASU 1.1	Engage surface ships at long range
ASU 1.2	Engage surface ships at medium range
ASU 1.3	Engage surface ships at close range (gun)
ASU 1.5	Engage surface ships with medium caliber gunfire
ASU 1.6	Engage surface ships with minor caliber gunfire
ASU 1.9	Engage surface ships with small arms gunfire
ASU 2	Engage surface ships in cooperation with other forces
ASU 4	Detect and track a surface target
ASU 4.1	Detect and track a surface target with radar
ASU 6	Disengage, evade and avoid surface attack
ASW 1	Engage submarines
ASW 1.1	Engage submarines at long range
ASW 1.2	Engage submarines at medium range
ASW 1.3	Engage submarines at close range
ASW 4	Conduct airborne ASW/recon
ASW 5	Support airborne ASW/recon
ASW 7	Attack submarines with antisubmarine armament
ASW 7.6	Engage submarines with torpedoes
ASW 8	Disengage, evade, avoid and deceive submarines
CCC 1	Provide command and control facilities

Table 7 – List of Required Operational Capabilities (ROCs)

Coordinate and control the operations of the task organization or functional force to carry out assigned missions	
CCC 3 Provide own unit Command and Control	
CCC 4 Maintain data link capability	
CCC 6 Provide communications for own unit	
CCC 9 Relay communications	
CCC 21 Perform cooperative engagement	
FSO 5 Conduct towing/search/salvage rescue operations	
FSO 6 Conduct SAR operations	
FSO 8 Conduct port control functions	
FSO 9 Provide routine health care	
FSO 10 Provide first aid assistance	
FSO 11 Provide triage of casualties/patients	
INT 1 Support/conduct intelligence collection	
INT 2 Provide intelligence	
INT 3 Conduct surveillance and reconnaissance	
INT 8 Process surveillance and reconnaissance information	
INT 9 Disseminate surveillance and reconnaissance information	
INT 15 Provide intelligence support for non-combatant evacuation operation (NEO)	
MIW 4 Conduct mine avoidance	
MIW 6 Conduct magnetic silencing (degaussing, deperming)	
MIW 6.7 Maintain magnetic signature limits	
MOB 1 Steam to design capacity in most fuel efficient manner	
MOB 2 Support/provide aircraft for all-weather operations	
MOB 3 Prevent and control damage	
MOB 3.2 Counter and control NBC contaminants and agents	
MOB 5 Maneuver in formation	
Perform seamanship, airmanship and navigation tasks (navigate, anchor, mooring, scuttle, life MOB 7 boat/raft capacity, tow/be-towed)	
MOB 10 Replenish at sea	
MOB 12 Maintain health and well being of crew	
Operate and sustain self as a forward deployed unit for an extended period of time during peace war without shore-based support	and
MOB 16 Operate in day and night environments	
MOB 17 Operate in heavy weather	
MOB 18 Operate in full compliance of existing US and international pollution control laws and regulation	s
NCO 3 Provide upkeep and maintenance of own unit	~
NCO 19 Conduct maritime law enforcement operations	
SEW 2 Conduct sensor and ECM operations	
SEW 3 Conduct sensor and ECCM operations	
SEW 5 Conduct coordinated SEW operations with other units	
STW 3 Support/conduct multiple cruise missile strikes	

3 Concept Exploration

Chapter 3 describes Concept Exploration. Trade-off studies, design space exploration and optimization are accomplished using a Multi-Objective Genetic Optimization (MOGO).

3.1 Trade-Off Studies, Technologies, Concepts and Design Variables

Available technologies and concepts necessary to provide required functional capabilities are identified and defined in terms of performance, cost, risk and ship impact (weight, area, volume, power). Trade-off studies are performed using technology and concept design parameters to select trade-off options in a multi-objective genetic optimization (MOGO) for the total ship design. Technology and concept trade spaces and parameters are described in the following sections.

3.1.1 Hull Form Alternatives

3.1.1.1 Finding an Appropriate Hull Form

To find an appropriate hull form, estimated hull parameters were compared to the hull parameters of proven ships. This method, called the Transport Factor method, uses these parameters to return a Transport Factor value. By comparing this calculated value to the Transport Factor of proven ships at a similar sustained speed, the most suitable hull-type can be determined. The Transport Factor is estimated using the following the following equation:

$$TF = \left(5.052 \frac{kW}{MT * knt}\right) \frac{\Delta V_s}{SHP} = 20.6 @ 30 knt$$

It is based on the following hull parameters:

- Full load weight of the ship
- Light ship weight
- Payload weight
- Sustained speed
- Endurance speed
- Total shaft power
- Endurance range
- Specific fuel consumption at endurance speed

A plot of the Transport Factor versus ship speed appears in Figure 6. Based on Transport Factor methodology, a monohull is most suitable.

Figure 6 – Transport Factors for Various Hull-Types

3.1.1.2 Additional Considerations Pertaining to Hull-Type

The following were ship considerations that were not taken into account by the Transfer Factor:

- Must be able to accommodate large and heavy combat systems (radar, cooling, and missiles)
- Must have sufficient deck area for LAMPS and possible V-22 ops
- Must have low radar cross section (RCS)
- Must be production efficient (low maintenance, low cost)
- Must have a large object volume for machinery spaces, hangar decks, weapon magazines, 32 cell VLS, and radar
- Must be structurally efficient
- Must have good seakeeping performance

Bearing in mind the Transport Factor and the additional considerations pertaining to choosing a hull-type, the best candidate hull from for ADF was a monohull.

3.1.1.3 Area Defense Frigate Design Lanes

Based on other proven naval ships a set of design ranges was chosen and appears in Table 8. These values were used to define the hull form design space, DV1 - DV7 in Table 20.

Tuble 0 Hun e	
Characteristic	Range or Value
Displacement (Mt)	approx. 6100
$\Delta/(L/100)^3$ (Mt/m ³)	55.2 - 72.5
L/B	7-10
L/D	10.5 - 17.8
B/T	2.8-3.2
C _p	0.56 - 0.64
C _x	0.75 - 0.85
C _{rd}	0.7 - 1.0

Table 8 – Hull Characteristics

3.1.2 Propulsion and Electrical Machinery Alternatives

3.1.2.1 Machinery Requirements

General Requirements

The propulsion for ADF 95 will use gas turbines, diesel engines, or IPS configurations in various mechanical drives. The preliminary power requirement includes two to four main engines capable of producing 10000 to 30000 kW per engine. The propulsion system has a goal of a Grade A shock certification and Navy qualification.

The propulsion drive type will be mechanical or IPS, and the propulsors will be fixed pitch or controllable pitch propellers or pods. Potential use of IPS with DC Bus, zonal distribution and permanent magnet motors will take into consideration operational flexibility, improved efficiency and survivability, and will be weighed against moderate weight and volume penalties.

Finally, the design must continuously operate using distillate fuel in accordance with ASTM D975, Grade 2-D, ISO 8217, F-DMA, DFM (NATO Code F-76) and JP-5 (NATO Code F-44).

Sustained Speed and Propulsion Power

The ship must have a minimum sustained speed of at least 30 knots in calm water, clean hull, and full load condition and must use no more than 80% of the installed engine rating (MCR) of main propulsion engines or motors. The ship also must have a minimum range of 3500 nautical miles when operating at 20 knots.

Additionally, all propulsion type alternatives must span 50-115 MW power range with ship service power in excess of 5000 kW MFLM.

Ship Control and Machinery Plant Automation

Ship control and machinery plant automation will use an integrated bridge system that integrates navigation, radio communication, interior communications, and ship maneuvering equipment. This system will be compliant with the ABS Guide for One Man Bridge Operated (OMBO) Ships as well as with ABS ACCU requirements for periodically unattended machinery spaces.

Sufficient manning and automation will be required to continuously monitor auxiliary systems, electric plant and damage control systems from the SCC, MCC and Chief Engineer's office, and to control the systems from the MCC and local controllers.

Propulsion Engine and Ship Service Generator Certification

Because propulsion and ship service power is critical to many aspects of mission and survivability for ADF 95, this equipment shall be:

- Navy qualified & grade A shock certified gas turbines are alternatives (design variable)
- Non-nuclear
- · Consider low IR signature and cruise/boost options for high endurance

3.1.2.2 Machinery Plant Alternatives

Consider two types of main drive systems:

- 1. Mechanical drive system, where the motor is coupled to a reduction gear that turns the driveshaft, which is directly connected to the propeller. This is the standard system for many navy ships.
- 2. Integrated power system (IPS), where the generator supplies power to an electric motor that is either directly connected to the propeller or turns a short driveshaft that is connected to the propeller. This system uses new technology and allows for more options when arranging the machinery room. This system may also eliminate the need for separate ship service generators.

Consider three types of propulsors:

- 1. Conventional fixed pitch propeller (FPP), which is standard for all systems.
- 2. Controllable pitch propeller (CPP), which allows the drive system to go from forward to reverse propulsion with out stopping the motors.
- 3. Podded propulsor, which may use either the FPP or the CPP. This system provides greater maneuverability and efficiency, but is not as resistant to shockwaves.

Consider two types of engines:

- 1. Gas turbines, which allow for more power with less weight.
- 2. Diesel engines, which have a low speed but high efficiency.

The various propulsion arrangement options are shown in Figure 7. Table 9 shows the characteristics of each propulsion system arrangement, and Table 10 shows the generator arrangement options and characteristics.

Figure 7 – Propulsion and Power System Alternatives

Table 9 – Propulsion System Data											
Propulsion Option	Propulsion System Type PSYSTYP	Propeller Shafts Nprop	Endurance Propulsion Engine Type, PENGtype (1=GT, 2=ICR, 3=Diesel)	Total Propulsion Engine BHP PBPENGTOT (kW)	Endurance Brake Propulsion Power, Pbpengend (kW) Engine	Endurance Propulsion SFCePE (kg/kwhr) Engine	Machinery Box Minimum Length LMBreq (m)	Machinery Box Minimum Height HMBreq (m)	Machinery Box Required Volume VMBreq (m3)	Basic Propulsion Machinery Weight WBM (MT)	Propulsion Inlet and Uptake Area APIE (m2)
2xLM2500+	1	1	1	52198	26099	0.226	17.61	4.54	2012	273.7	28.2
CODOG 1xMT30 1xPC2/16	1	1	3	43755	7755	0.207	18.33	9.18	2442	398.4	24.2
CODAG 1xMT30 1xPC2/16	1	1	3	43755	7755	0.207	18.49	9.10	2466	403.5	24.2
COGAG 1xLM2500+ 1xWR21/29	1	1	1	47754	21655	0.199	17.53	8.57	2270	310.5	25.8
COGAG 1xMT30 1xWR21/29	1	1	1	57655	21655	0.199	18.73	9.00	2734	373.3	33.0
CODLAG 1xMT30 1xPC2/16	1	1	3	43755	7755	0.207	13.19	9.22	2195	353.0	24.3
2xLM2500+ 2xepicyclis	1	2	1	52198	26099	0.226	14.91	7.00	2223	241.1	28.2
CODOG 2xLM2500+ 2xPC2/16	1	2	3	52198	7755	0.207	16.39	7.89	3298	619.1	34.0
CODLAG 2xLM2500+ 1xPC2/16	1	2	3	59953	7755	0.207	13.19	9.22	2740	406.4	31.2
2xLM2500+ 1x2/16	2	2	2	59953	7755	0.207	13.95	9.22	2495	490.7	31.1
2xLM2500+ 1x2/16	3	2	2	59953	7755	0.207	13.95	9.22	2495	490.7	31.1

·	Tuble 10 – Generator Bystem Data							
SSG Option	SSG Option	GENGtype (1=Diesel, 2=Gas Turbine)	Number of SGs N _{SSG}	SSG Power (ea) KW _G (kW)	KWgend	Endurance SSG SFC SFC _{eG} (kg/kwhr)	Basic Electric Machinery Weight W _{BMG} (MT)	SSG Uptake Area A _{GIE} (m ²)
3xDDA				10101			1.40.0	10.0
501K34	1	2	3	10101	3367	0.3	142.8	18.9
3516V16	2	1	4	4996	3747	0.2	124.8	7.6
DG								
4xCAT								
3608IL8	3	1	4	10404	5202	0.2	242.2	9.6
DG								
3XCA I 360811 8	4	1	3	7803	5202	0.2	242.2	7 2
DG	-	1	5	7805	5202	0.2	272.2	1.2
2xDDA								
501K34	5	2	2	6734	3367	0.3	142.8	12.6
GTG								
2xCAT		1	2	2400	2747	0.2	104.0	2.0
3516V16	6	1	2	2498	3/4/	0.2	124.8	3.8
2vCAT								
3608IL8	7	1	2	5202	5202	0.2	242.2	48
DG	, '	1	_	0202	0202		2.2	

 Table 10 – Generator System Data

3.1.3 Automation and Manning Parameters

Manning is an issue for the US Navy because of incurred cost and risk. The high "cost per man" in the US Navy because of support, training, housing, education, and so on, accounts for approximately 60% of the Navy budget. The operation and support cost for the ship is a major element in the ADF design, so to decrease this cost, a decrease in manning is desirable in addition to needing less men in combat.

For the determination of manning for the ADF, an Integrated Simulation Manning Analysis Tool (ISMAT) was used. ISMAT uses XML for libraries of equipment, manning, and compartment documents. It also employs maintenance pools where any operator within a division or department can be considered for a task. The functions within ISMAT are similar to a Gantt chart where they can be copied and pasted and the duration of the tasks and the start time can be altered.

Within ISMAT the Ship Manning Analysis and Requirements Tool (SMART) series is used to vary equipment, maintenance philosophies, and levels of automation to optimize crew size based on various goals. It employs libraries of navy equipment and maintenance procedures. The user develops a scenario to test ability of the crew and tasks and events are entered using Micro Saint with list of skills required to perform tasks. It then dynamically allocates each task to a crew member and function allocation is based on taxonomies and on the level of automation that is specified by the user. Ultimately, the size and make up of the crew is optimized for four different goals: cost (SMART database with annual cost of each rank and rate in the Navy); crew size; different jobs / crew ratings; and workload.

The input information is entered into Model Center and relayed into ISMAT. A Visual Basic program then runs the manning model interfacing with the wrapper in model center. Design explorer in Model Center samples the design space and performs a design of experiments by building up a data set spanning the full design space. Conclusions from the data collected from the DOE are used to build the response surface model and ultimately produce the RSM equation shown in Figure 8. This equation is used in the ship synthesis model, and the overall ship optimization is conducted at the end thereby eliminating the need to use ISMAT directly.

The independent variables in the RSM equation are total number of crew: NT, level of automation: LevAuto, maintenance level: MAINT, length along the waterline compared to the CG47: LWLComp, propulsion system: PSYS, and antisurface warfare: ASuW.

NT = 374.49 + 82.06 * *LevAuto* - 6.09 * *MAINT* +11.29 * *LWLComp* - 59.85 * *LevAuto*² + 2.08 * *PSYS* * *LWLComp* - .147 * *PSYS*³ + 8.52 * *LevAuto*³ - .294 * *ASuW* * *PSYS* * *LevAuto* + .341 * *ASuw* * *MAINT*² - .684 * *PSYS*² * *LWLComp* + .413 * *PSYS* * *LevAuto* * *CCC* - .485 * *MAINT* * *CCC* * *LWLComp* + .210 * *CCC* * *LWLComp*²

Figure 8 – "Standard" Manning RSM Equation

3.1.4 Combat System Alternatives

Several combat system alternatives were identified and the ship impact was documented for each configuration. To estimate the Value of Performance (VOP), the Analytical Hierarchy Process (AHP) and Multi-Attribute Value Theory (MAVT) were used. The ship synthesis model uses the VOPs to evaluate the effectiveness. The combat systems alternatives were selected based on the effectiveness, cost, risk, and MOGO or multi objective genetic optimization. All the components and the component data for the combat systems are located in Table 19. Applicable component IDs are listed for each option in Table 11 - Table 18 and keyed to Table 19.

3.1.4.1 AAW

The Anti-Air Warfare system alternatives are listed in Table 11. The different alternatives include AN/SPY-3 and AN/SPY-1D, IRST, AN/SRS-1A(V), AN/UPX-36(V) CIFF-SD. The Mk 99 Fire Control System (FCS) is used to control all the different weapons and sensors on the ship. The Mk 99 Fire Control System (FCS) improves effectiveness by coordinating the different systems and bringing them to their optimum tactical advantage.

Warfighting system	Options	Components
	Option 1) SPY-3 (4 panel), AEGIS MK 99 FCS	1,3,4,5,7,15,16,17,137,137,20,20
AAW	Option 2) SPY-3 (3 panel), AEGIS MK 99 FCS	1,3,4,5,7,15,16,17,137,20
	Option 3) SPY-1D (2 panel), AEGIS MK 99 FCS	1,3,4,5,7,15,16,17,6,8,14,14,21

Table 11 – AAW System Alternatives

Sub systems descriptions are as follows:

• AN/SPY-1D is a variant of the SPY-1B radar system, tailored for a destroyer-sized ship. The SPY-1D, ultimately installed on DDG-51, is virtually identical to the SPY-1B, but has only one transmitter, two channels and two fixed arrays. The SPY-1D radar system is shown in Figure 9.

Figure 9 – SPY-1D Phased-array

- Mk 99 Fire Control System (FCS) major component of the AEGIS Combat System. Controls loading and arming of the selected weapon, launches the weapon, and provides terminal guidance for AAW missiles. FCS controls the continuous wave illuminating radar, SPG-62, providing a very high probability of kill.
- IRST Shipboard integrated sensor designed to detect and report low flying ASCMs by their heat plumes. It scans the horizon +/- a few degrees but can be manually changed to search higher. Provides accurate bearing, elevation angle, and relative thermal intensity readings.
- AN/SRS-1A(V) Combat DF (Direction Finding)- Automated long range hostile target signal acquisition and direction finding system. Can detect, locate, categorize and archive data into the ship's tactical data system. Provides greater flexibility against a wider range of threat signals. Provides warship commanders near-real-time indications and warning, situational awareness, and cueing information for targeting systems
- AN/UPX-36(V) CIFF-SD Centralized, controller processor-based, system that associates different sources of target information – IFF and SSDS. Accepts, processes, correlates and combines IFF sensor inputs into one IFF track picture. Controls the interrogations of each IFF system

3.1.4.2 NSFS/ASUW

The Anti-Surface Warfare and the Naval Surface Fire Support system alternatives are listed in Table 12. The different alternatives include AN/SPS-73(V)12 Radar Set, AN/SPQ-9B Radar, TISS Thermal Imaging Sensor System, MK 34 Gun Fire Control System (GFCS), MK 45 5"/62 MK MOD 4 Gun Mount.

Warfighting system	Options	Components
NCEC/ACLIW	Option 1) MK 45 5IN/62 Mod 4 gun, MK86 GFCS, SPS- 73(V)12, 1 RHIB, Small Arms Locker	29,33,68,140,143,67,75,150,79,164
N3F5/ ASU W	Option 2) MK 3 57 mm gun, MK86 GFCS, SPS-73(V)12, 1 RHIB, Small Arms Locker	29,33,68,140,143,144,145,146,147,79,164

Table 12 – NSFS/ASUW System Alternatives

Sub systems descriptions are as follows:

• AN/SPS-73(V)12 Radar Set - Short-range, two-dimensional, surface-search/navigation radar system. Short-range detection and surveillance of surface units and low-flying air units. Provides contact range and bearing information. Enables quick and accurate determination of ownship position relative to nearby vessels and navigational hazards. The SPS-73 replaces SPS-64, 55 and 67 and is shown in Figure 10.

Figure 10 – AN/SPS-73(V)12 Surface Search Radar

• AN/SPQ-9B Radar- Surface surveillance and tracking radar. Has a high resolution, X-band. From the Mk 86 5 inch 54 caliber gun fire control system (GFCS). For missile AAW - provides cueing to other ship self defense systems and excellent detection of low sea-skimming cruise missiles in heavy clutter. The SPQ-9B is shown in Figure 11.

Figure 11 – AN/SPQ-9B Radar

• TISS Thermal Imaging Sensor System- The Thermal Imaging Sensor System (TISS) AN/SAY-1 is a stabilized imaging system which provides a visual infrared (IR) and television image to assist operators in identifying a target by its contrast or infrared characteristics. The AN/SAY-1 detects, recognizes, laser ranges, and automatically tracks targets under day, night, or reduced visibility conditions, complementing and augmenting existing shipboard sensors. The AN/SAY-1 is a manually operated system which can receive designations from the command system and designate to the command system providing azimuth, elevation, and range for low cross section air targets, floating mines, fast attack boats, navigation operations, and search and rescue missions. The sensor suite consists of a high-resolution Thermal

Imaging Sensor (TIS), two Charged Coupled Devices (CCDs) daylight imaging Television Sensors (TVS), and an Eye-Safe Laser Range Finder (ESLRF). The AN/SAY-1 also incorporates an Automatic Video Tracker (AVT) that is capable of tracking up to two targets within the TISS field of view. The TISS Thermal Imaging Sensor System is shown in Figure 12.

Figure 12 – TISS Thermal Imaging Sensor System

• MK 45 5"/62 MK MOD 4 Gun Mount- Range of over 60 nautical miles with Extended Range Guided Munitions (ERGM). Modifications to the basic Mk 45 Gun Mount: 62-caliber barrel, strengthened trunnion supports, lengthened recoil stroke, an ERGM initialization interface, round identification capability, and an enhanced control system. The new gun mount shield will reduce overall radar signature, maintenance, and production cost. The MK 45 gun mount is shown in Figure 13.

Figure 13 - MK 45 5"/62 MK MOD 4 Gun Mount

3.1.4.3 ASW and MCM

The Anti-Submarine Warfare and the Mine Counter Measures system alternatives are listed in Table 13. The different alternatives include SQS-56 (AN/SQS-56), MK 32 Surface Vessel Torpedo Tube (SVTT), Control Systems (ASWCS), and Mine Avoidance Sonar.

Warfighting system	Options	Components
ASW/MCM	Option 1) SQS-56, SQQ 89, 2xMK 32 Triple Tubes, NIXIE, SQR- 19 TACTAS, mine avoidance sonar	35,38,39,41,42,44,51,58,63
	Option 2) LFA/VDS, SQQ 89, 2xMK 32 Triple Tubes, NIXIE	41,42,44,51,153,63

Table 13 – ASW/MSM System Alternatives

Sub systems descriptions are as follows:

 SQS-56 (AN/SQS-56)- hull-mounted sonar (1.5m) with digital implementation, system control by a builtin mini computer, and an advanced display system. Extremely flexible and easy to operate. Active/passive, preformed beam, digital sonar providing panoramic echo ranging and panoramic (DIMUS) passive surveillance. A single operator can search, track, classify and designate multiple targets from the active system while simultaneously maintaining anti-torpedo surveillance on the passive display. The location of the SQS-56 is shown in Figure 14.

Figure 14 - SQS-56 (AN/SQS-56)- hull-mounted sonar

MK 32 Surface Vessel Torpedo Tube (SVTT)- ASW launching system which pneumatically launches torpedoes over-the-side of own ship. Handles the MK-46 and MK-50 torpedoes. Capable of stowing and launching up to three torpedoes. Launches torpedoes under local control or remote control from an ASW fire control system. The MK 32 SVTT is shown in Figure 15.

Figure 15 – MK 32 Surface Vessel Torpedo Tube (SVTT)

- Control Systems (ASWCS)- AN-SQQ-89 integrated undersea warfare detection, classification, display, and targeting capability. Supports SQQ-89 tactical sonar suite, SQS-53C and Tactical Towed Array Sonar (TACTAS), and is fully integrated with Light Airborne Multi-Purpose System (LAMPS MK III) helicopter, MK116 MK116 ASWCS and MK 309 Torpedo Fire Control System. (SQQ-89 is used on all current USN SC)
- Mine Avoidance Sonar (MAS)- The Multi-purpose Sonar System VANGUARD is a versatile two frequency active and broadband passive sonar system conceived for use on surface vessels to assist navigation and permit detection of dangerous objects. The system is designed primarily to detect mines but will also be used to detect other mobbing or stationary underwater objects. It can be used as a navigation sonar, i.e. as a navigational aid in narrow dangerous waters. In addition it can complement the sensors on board anchoring surface vessels with regard to surveillance and protection against divers. The effect of the Mine Avoidance Sonar is shown in Figure 16.

Figure 16 – MAS

3.1.4.4 CCC

The Command Control Communication system alternatives are listed in Table 14. The different alternatives include an enhanced CCC or a basic CCC.

Table 14 -	CCC System	Alternatives
-------------------	-------------------	--------------

Warfighting system	Options	Components
CCC	Option 1) Enhanced CCC	2
	Option 2) Basic CCC	106

The Command, Control, and Communications include the following systems with the option of future upgrades.

- Global Broadcast System (GBS)
- EHF SATCOM
- UHF SATCOM
- IMARSAT
- Link 11
- Link 16
- Low Observable Multi Function Stack

Figure 17 – CCC Components Installed in a Low Observable Multifunction Stack

Figure 18 – The computing system of the ship

3.1.4.5 SDS

The Self Defense System (SDS) system alternatives are listed in Table 15. Some of the different alternatives include AN/SLQ-32(V), MK53 SRBOC, NULKA, and CIWS Close-in Weapon System.

Warfighting system	Options	Components
	Option 1) 2xCIWS, SLQ-32(V) 3, SRBOC, NULKA	12,22,24,24,77,151,152
SDS	Option 2) 1xCIWS, SLQ-32(V) 3, SRBOC, NULKA	12,24,123,77,151,152
	Option 3) SLQ-32(V) 3, SRBOC, NULKA	77,151,152

Table 15 –	SDS System	Alternatives
-------------------	------------	--------------

Sub systems descriptions are as follows:

• AN/SLQ-32(V)3- provides early warning of threats and automatic dispensing of chaff decoys. The electronic warfare system is shown in Figure 19.

Figure 19 – AN/SQS-32(V)3 Electronic Warfare System

• MK 36 DLS SRBOC -Super Rapid Bloom Offboard Countermeasures Chaff and Decoy launching system - provides decoys launched at a variety of altitudes to confuse a variety of missiles by creating false signals. The MK 36 DLS SRBOC is shown in Figure 20.

Figure 20 – MK 36 DLS SRBOC

• MK53 SRBOC and NULKA- The Decoy Launching System (DLS) Mk 53 (NULKA) is a rapid response Active Expendable Decoy (AED) System capable of providing highly effective defense for ships of cruiser size and below against modern radar homing anti-ship missiles. The DLS MK 53 NULKA is shown in Figure 21.

Figure 21 – MK 53 DLS NULKA

• CIWS Close-in Weapon System- Hydraulically driven 20 mm gatling gun capable of firing 4500 rounds per minute. Magazine capacity is 1550 rounds of tungsten ammunition. Computer controlled to automatically correct aim errors. Defense against low altitude ASCMs. Phalanx Surface Mode (PSUM) incorporates side mounted Forward Looking Infrared Radar (FLIR) to engage low, slow or hovering aircraft and surface craft. The CIWS is shown in Figure 22.

Figure 22 – CIWS Close-in Weapon System

3.1.4.6 GMLS

The Guided Missile Launch system alternatives are listed in Table 16. The different alternatives include 32 cell or 64 cell MK 41 vertical launch system or the MK 57 Peripheral vertical launch system.

Warfighting system	Options	Components
GMLS	Option 1) 64 cells, MK 41 and/or MK57 PVLS	80,82,83,85,89
	Option 2) 32 cells, MK 41 and/or MK57 PVLS	81,82,84,86,90

Table 16 – GMLS System Alternatives

Sub systems descriptions are as follows:

MK 41 Vertical Launch System (VLS) or MK57 Peripheral vertical launch system - The MK 41 and MK 57 have AAW, ASW, and ASUM mission capabilities. The MKs allow for a fast reaction time to several different threats at once. With the various cells multiple targets are allowed to be targeted and fired upon continuously. The VLSs are capable of surviving high degrees of damage and have the capability of carrying various types of missiles for different missions. The MK 57 PVLS is shown in Figure 23 and the VLS arrangement is shown in Figure 24 and Figure 25.

Figure 23 – MK57 PVLS

Figure 24 – VLS Topside

Figure 25 – MK41 VLS

3.1.4.7 MODULES

The MODULES system alternatives are listed in Table 17. The different alternatives include 1 or 2 LCS suites.

Table 17 – MODULES System Alternatives				
Warfighting system	Options	Components		
MODULES	Option 1) 2xLCS	154-163, 154-163		
	Option 2) 1xLCS	154-163		

3.1.4.8 LAMPS

The Light Airborne Multi Purpose system alternatives are listed in Table 18.

Warfighting system	Options	Components			
	Option 1) Embarked 2xLAMPS w/Hangar	36,46,47,50,52,53,54,55,57			
LAMPS	Option 2) LAMPS haven	36,46,48,52,53,55,57,149			
	Option 3) LAMPS refueling	45,46,57			

Table 18 – LAMPS System Alternatives

Sub systems descriptions are as follows:

• The SH-60 Seahawk (LAMPS MK III) has the capability of performing a several different roles including ASW, search and rescue, ASUW, SPECOPS, cargo lift, deploys sonobuoys and torpedoes, and extending ship's radar capabilities. The SH-60 comes equipped with a retractable in-flight fueling probe, two 7.62mm machine guns, AGM-119 Penguin missiles (shown in Figure 26), and Mk46 or Mk50 torpedoes.

Figure 26 – SH-60 LAMPS Firing an AGM-119 Penguin Anti-Ship Missile

3.1.4.9 Combat Systems Payload Summary

The combat system component data table shown in Table 19 includes all the different alternatives for the combat systems and various properties including weights and areas. The table is included in the ship synthesis model database.

ID	NAME	AREA	WTGRP	ID	SingleD	WT (lton)	HD10	HAREA	DHAREA	CRSKW	BATKW
1	BALLISTIC PLATING, MISC	AAW	164	1	100	25.9	20.56	0	0	0	0
3	DATA DISPLAY GROUP - BASIC	AAW	411	3	400	5.74	12.19	1086	0	45	45
4	AAW INTERFACE EQUIPMENT - BASIC	AAW	413	4	400	0.3	-3.30	50	0	5	5
5	AAW DATA PROCESSING GROUP - BASIC	AAW	413	5	400	1.47	-3.30	210	0	10	10
6	RADAR, AIR SEARCH 2-D, SPS-49	AAW	452	6	400	6.91	17.19	0	52	79	79
7	IFF, MK XII AIMS	AAW	455	7	400	2.3	29.2	0	0	3.2	4
8	RADAR, MFAR, SPY-1D, SINGLE TRANSMITTER (2CH, 2FACE)	AAW	456	8	400	54.3	14.5	0	1594	269	474.3
14	RADAR, ILLUMINATOR, SPG-62, 1EA	AAW	482	14	400	4.8	20.9	0	320	11.6	21.7
15	GMFCS, MK99 (AEGIS)	AAW	482	15	400	0.7	6.4	0	9	34.7	65.2

Table 19 – Combat Systems Components Summary

16	WEAPON SYSTEM SWITCHBOARDS	AAW	489	16	400	2.24	7.28	55	0	4	4
17	COMBAT DF	AAW	495	17	400	8.26	21	0	448	15.47	19.34
20	COOLING EQUIPMENT FOR LARGE X-BAND RADAR, SPY-3 (2 CH)	AAW	532	20	500	13.16	-21.81	112	0	32.24	32.24
21	COOLING EQUIPMENT FOR SPY-1D, SPY 1A and SPY-1B (2 CH)	AAW	532	21	500	9	-34	960.8	0	0	0
137	RADAR, MFAR X- BAND FOR HOR AND ABOVE SCH, SD ILLUM, SPY-3 (2CH, 2FACE)	AAW	456	137	400	27.2	59.5	0	1500	382.7	382.7
29	HARPOON, AN/SWG-1, WCS, LNCH CONTROL SYSTEM IN CIC	ASUW	482	29	400	1.1	-3.3	0	100	0	15
33	SMALL ARMS AMMO, DDG51 - 7.62MM + 50 CAL + PYRO	ASUW	21	33	20	4.1	-6	0	0	0	0
68	GFCS, MK86	ASUW	481	68	400	7.18	-5.6	0	168	6	15.4
140	RADAR, SURFACE SEARCH and NAVIGATION, AN/SPS-73	ASUW	451	140	400	0.24	8.00	0.00	0.00	0.20	0.20
143	IR Search and Track System (IRST)	ASUW	452	143	400	1.60	8.00	0.00	19.90	40.00	40.00
164	1X 7M RHIB	ASUW	23	164	20	3.50	-3.00	19.01	0.00	0.00	0.00
35	SONAR, KEEL, SQS- 56, 1.5M, DOME STRUCTURE	ASW	165	35	100	7.43	-30.2	0	0	0	0
38	TACTAS, SQR-19	ASW	462	38	400	23.3	-25.72	473	0	26.6	26.6
39	SONAR, KEEL, SQS- 56, 1.5M, ELEX	ASW	463	39	400	5.88	-28.3	1340	0	19.7	19.7
41	NIXIE, AN/SLQ-25	ASW	473	41	400	3.6	-5.72	172	0	3	4.2
42	TORPEDO DECOYS	ASW	473	42	400	4.52	-4.89	0	0	0	0
44	ASW, CONTROL SYSTEM [ASWCS], SQQ-89	ASW	483	44	400	4.8	-11	185	0	19.5	19.5
51	SVTT, MK32, 2X, ON DECK	ASW	750	51	700	2.7	1.14	0	0	0.6	1.1
58	SONAR, BOW, SQS- 56, SONAR DOME HULL DAMPING	ASW	636	58	600	2.01	-37.07	0	0	0	0
153	LFA/VDS w/ELEX	ASW	462	153	400	43	-25.72	373	0	46	46
2	CIC, DDG51	CCC	411	2	400	17.34	-3.3	1989	0	74.5	74.5
106	CIC, FFG7	CCC	411	106	400	10	3.30	1200		60	60
80	VLS, 64 CELL, ARMOR - LEVEL III HY-80	GMLS	164	80	100	21.1	-6.17	0	0	0	0
81	VLS, 32 CELL, ARMOR - LEVEL III HY-80	GMLS	164	81	100	14	-6.17	0	0	0	0
82	VLS, WEAPON CONTROL SYSTEM (1 MODULE)	GMLS	482	82	400	0.7	-9.66	56	0	15	18

83	VLS, 64 CELL MAGAZINE DEWATERING SYSTEM	GMLS	529	83	500	3	-6.97	0	0	0	0
84	VLS, 32 CELL MAGAZINE DEWATERING SYSTEM	GMLS	529	84	500	3	-6.97	0	0	0	0
85	VLS, 64 CELL	GMLS	721	85	700	147.8	-13.66	2245	0	63.4	63.4
86	VLS, 32-CELL	GMLS	721	86	700	82.8	-7.97	1123	0	31.1	31.1
89	VLS, 64 CELL, MISSILES - 64	GMLS	21	89	20	98.4	-11.06	0	0	0	0
90	VLS MISSILES - 32	GMLS	21	90	20	49.2	-5.37	0	0	0	0
36	LAMPS, SQQ-28 ELECTRONICS	LAMPS	460	36	400	3.4	3	15	0	5.3	5.5
45	LAMPS, IN-FLIGHT REFUEL SYS	LAMPS	542	45	500	7.6	-7.35	44	0	1.3	1.3
46	LAMPS, AVIATION FUEL SYS	LAMPS	542	46	500	4.86	-11	30	0	2	2.9
47	LAMPS, RAST/RAST CONTROL/HELO CONTROL	LAMPS	588	47	500	31.1	-1.6	219	33	4.4	4.4
48	LAMPS, SECURING SYSTEM	LAMPS	588	48	500	3.6	9.62	0	0	0	0
50	LAMPS, AVIATION SHOP AND OFFICE	LAMPS	665	50	600	1.04	-4.5	194	75	0	0
52	LAMPS, REARM MAGAZINE	LAMPS	780	52	700	2.7	4.64	212	0	0	4.4
53	LAMPS, 18 X MK46 TORP & SONOBUOYS & PYRO	LAMPS	22	53	20	9.87	4.8	0	588	0	0
54	LAMPS MKIII 2 X SH-60B HELOS AND HANGER (BASED)	LAMPS	23	54	20	12.73	4.5	0	3406	5.6	5.6
55	LAMPS, AVIATION SUPPORT AND SPARES	LAMPS	26	55	20	9.42	5	357	0	0	0
57	LAMPS, AVIATION FUEL [JP-5]	LAMPS	42	57	40	64.4	-28.81	0	0	0	0
149	LAMPS MKIII 1 X SH-60B HELO (ON DECK)	LAMPS	23		20	6.36	4.5	0	0	0	0
63	MINE AVOIDANCE SONAR	MCM	462	63	400	11.88	-18.03	350	0	5	5
67	GUN, 5IN MK45, HY-80 ARMOR	NSFS	164	67	100	20.2	-0.35	0	0	0	0
75	GUN, 5IN/62 MK 45, MOD 4, AMMO W/ERGM - 600RDS	NSFS	21	75	20	41.1	-10.75	905	0	0	0
144	57mm MK 3 Naval Gun Mount 1 of 4	NSFS	711	144	700	6.80	2.00	31.00	0.00	4.00	10.00
145	57mm Stowage 2 of 4	NSFS	713	145	700	2.70	2.00	0.00	0.00	0.00	0.00
146	GUN, 57mm Ammo in Gun Mount 120 RDS 3 of 4	NSFS	21	146	20	0.75	2.00	0.00	0.00	0.00	0.00
147	GUN, 57mm Ammo in Magazine 880 RDS 4 of 4	NSFS	21	147	20	5.46	-2.00	0.00	0.00	0.00	0.00
150	GUN, 5IN/62 MOD 4	NSFS	710	150	700	39	1.44	300	0	36.6	50.2
12	CIWS WEAPON CONTROL SYSTEM	SDS	481	12	400	1	14.5	0	464	3.2	10.4

22	CIWS, 2X & WORKSHOP	SDS	711	22	700	13.2	21	0	321	14	42
24	CIWS, 20MM AMMO - 16000 RDS	SDS	21	24	20	8.3	20	0	257	0	0
123	CIWS, 1X & WORKSHOP	SDS	711	123	700	9.2	21	0	221	8	32
77	ECM, SLQ-32[V]3	SEW	472	77	400	11.61	20.6	40	300	6.4	87
151	2X-MK 137 LCHRs (Combined MK 53 SRBOC & NULKA LCHR) (1 OF 2)	SEW	721	151	700	0.74	1.00	0.00	0.00	0.00	0.00
152	2X-MK 137 LCHRs Loads (4NULKA, 12 SRBOC) (2 OF 2)	SEW	21	152	20	0.57	1.00	0.00	21.66	0.00	0.00
154	1x 11M MODULAR SPARTAN DET USV VEHICLE and STOWAGE	SPARTAN	23	154	20	10.54	-3.00	37.52	0.00	0.00	0.00
155	1X 11M MODULAR SPARTAN (USV) DET - 1 MAINT MODULE	SPARTAN	26	155	20	2.60	-3.00	37.52	0.00	0.00	0.00
156	1X 11M MODULAR SPARTAN DET - 1 CONTROL MODULE	SPARTAN	495	156	400	2.96	-3.00	37.52	0.00	2.40	2.40
157	1X 11M MODULAR SPARTAN DET - 1 MIW SUPPORT MODULE	SPARTAN	29	157	20	3.84	-3.00	37.52	0.00	0.00	0.00
158	1X 11M MODULAR SPARTAN DET - 1 WEAPON (ASUW) MODULE	SPARTAN	791	158	700	2.59	-3.00	37.52	0.00	0.00	0.00
159	MODULAR SPARTAN DET - MISSION FUEL	SPARTAN	42	159	40	4.50	-6.00	0.00	0.00	0.00	0.00
79	TOMAHAWK, WEAPON CONTROL SYSTEM (IN CIC)	STK	482	79	400	5.6	-3.3	5	0	11.5	11.5
160	VTUAV DET - MODULAR - HANGAR AND 3 VEHICLES	VTUAV	23	160	20	3.41	-3.00	0.00	73.00	0.00	0.00
161	VTUAV DET - MODULAR - MAINTENANCE MODULE	VTUAV	26	161	20	3.06	3.00	0.00	37.52	0.00	0.00
162	VTUAV DET - MODULAR - MISSION COMMAND MODULE	VTUAV	492	162	400	3.01	3.00	0.00	37.52	0.00	0.00
163	VTUAV DET - MODULAR - MISSION FUEL	VTUAV	42	163	40	11.00	-6.00	0.00	0.00	0.00	0.00

3.2 Design Space

The ADF design space includes twenty-five design variables. Trade-off studies are performed within the design space using a multi-objective genetic optimization to search for all feasible non-dominated combinations of design variable values based on cost, risk and overall effectiveness. Table 20 lists the design variables that comprise the ADF design space.

DV #	DV Name	Description	Design Space
1	LWL	Waterline Length	100-150m
2	LtoB	Length to Beam ratio	7.0-10.0
3	LtoD	Length to Depth ratio	10.5-17.8
4	BtoT	Beam to Draft ratio	2.8-3.2
5	Ср	Prismatic coefficient	0.56 - 0.64
6	Cx	Maximum section coefficient	0.75 - 0.85
7	Crd	Raised deck coefficient	0.7 – 1.0
8	VD	Deckhouse volume	2000-4000 m ³
9	Cdhmat	Deckhouse material	1 = Steel, 2 = Aluminum, 3 = Advanced Composite
10	HULLtype	Hull: Flare or Tumblehome	1: flare= 10 deg; 2: flare = -10 deg
11	BALtype	Ballast/fuel system type	0 = clean ballast, $1 =$ compensated fuel tanks
12	PSYS	Propulsion system alternative	Option 1) 1 shaft, mechanical, CRP, 2xLM2500+
			Option 2) 1 shaft, mechanical, CRP, 2xMT30
			Option 3) 1 shaft, mechanical, CRP, CODOG 1xLM2500+, 1x PC2/16
			Option 4) 1 shaft, mechanical, CRP, CODOG 1xMT30, 1x PC2/16
			Option 5) 1 shaft. mechanical, CRP, CODAG 1xLM2500+, 1x PC2/16
			Option 6) 1 shaft. mechanical, CRP, CODAG 1xMT30, 1x PC2/16
			Option 7) 1 shaft. mechanical, CRP, COGAG 1xLM2500+ 1x WR21/29
			Option 8) 1 shaft. mechanical, CRP, COGAG 1xMT30, 1x WR21/29
			Option 9) 1 shaft. mechanical, FPP, CODLAG 1x LM2500+, 1x PC2/16DG
			Option 10) 1 shaft. mechanical, FPP, CODLAG 1x MT30. 1x PC2/16DG
			Option 11) 2 shafts, mechanical, CRP, GT 2x LM2500+ 2x Epicycle gear
			Option 12) 2 shafts, mechanical, CRP, GT 2xMT30, 2x Epicycle gear
			Option 13) 2 shafts, mechanical, CRP, GT 4x LM2500+
			Option 14) 2 shafts, mechanical, CRP, CODOG 2x LM2500+, 2x PC2/16
			Option 15) 2 shafts, mechanical, CRP, CODAG 2x LM2500+, 2x PC2/16
			Option 16) 2 shafts, mechanical, CRP, COGAG 2x LM2500+, 2x WR21/29
			Option 17) 2 shafts, mechanical, FPP, CODLAG 2x LM2500+, 1x PC2/16DG
			Option 18) 2 shafts, mechanical, FPP, CODLAG 2x MT30, 1x PC2/16DG
			Option 19) 2 shafts, IPS, FPP, 2x LM2500+GTG, 1x PC2/16DG
----	---------------	--	---
			Option 20) 2 shafts, IPS, FPP, 2x MT30GTG, 1x
			Option 21) 2 shafts, IPS, FPP, 3x LM2500+GTG, 1x
			Option 22) 2 shafts, IPS, FPP, 3x MT30GTG,
			1xPC2/16DG
			Option 23) 2 pods, IPS, 2x LM2500+GTG, 1x PC2/16DG
			Option 24) 2 pods, IPS, 2xMT30GTG, 1x PC2/16DG
			Option 25) 2 pods, IPS, 3xLM2500+GTG, 1x PC2/16DG
			Option 26) 2 pods, IPS, 3x MT30 GTG, 1x PC2/16DG
13	GSYS	Ship Service Generator	Option 1) 3 x DDA Allison 501K34 GTG (@3,500 kW)
		system alternatives	Option 2) 4 x CAT 3515V16 DG
			Option 3) 4 x CAT3608 IL8 DG
			Option 4) 3 x CAT3608 IL8 DG
			Option 5) 2 x DDA Allison 501K34 GTG (@3,500 kW)
			Option 6) 2 x CAT3516V16 DG
			Option 7) 2 x CAT3608 IL8 DG
			For PSYS=9,10,17-26: GSYS=5,6or7
14	Ts	Provisions duration	45-60 days
15	Ncps	Collective Protection System	0 = none, $1 = $ partial, $2 = $ full
16	Ndegaus	Degaussing system	0 = none, $1 = $ degaussing system
17	Cman	Manning reduction and automation factor	0.5 – 0.1
18	AAW	Anti-Air Warfare alternatives	Option 1) SPY-3 (4 panel), AEGIS MK 99 FCS
			Option 2) SPY-3 (3 panel), AEGIS MK 99 FCS
			Option 3) SPY-1D (2 panel), AEGIS MK 99 FCS
19	ASW/MCM	Anti-Submarine Warfare and Mine Countermeasures	Option 1) SQS-56, SQQ 89, 2xMK 32 Triple Tubes, NIXIE, SQR-19 TACTAS, mine avoidance sonar
		alternatives	Option 2) LFA/VDS, SQQ 89, 2xMK 32 Triple Tubes, NIXIE
20	NSFS/ ASUW	Naval Surface Fire Support / ASUW alternatives	Option 1) MK 45 5IN/62 Mod 4 gun, MK86 GFCS, SPS-73(V)12, 1 RHIB, Small Arms Locker
			Option 2) MK 3 57 mm gun, MK86 GFCS, SPS-
			73(V)12, 1 RHIB, Small Arms Locker
21	CCC	Command Control	Option 1) Enhanced CCC
		Communication alternatives	Option 2) Basic CCC
22	LAMPS	LAMPS alternatives	Option 1) Embarked 2xLAMPS w/Hangar
			Option 2) LAMPS haven
	25.2	G 10D 0 - 2	Option 3) LAMPS refueling
23	SDS	Self Detense System	Option 1) 2xCIWS, SLQ-32(V) 3, SRBOC, NULKA
		andinatives	Option 2) IxCIWS, SLQ-32(V) 3, SRBOC, NULKA
			Option 3) SLQ-32(V) 3, SRBOC, NULKA
24	GMLS	Guided Missile Launching	Option 1) 64 cells, MK 41 and/or MK57 PVLS
		System alternatives	Option 2) 32 cells, MK 41 and/or MK57 PVLS
25	MODULES	LCS-equivalent Modules	Option 1) 2xLCS
			Option 2) 1xLCS

Design variables 1 through 10 pertain to hull dimensions and attributes. Ballast system type (DV 11) determines whether clean ballast or compensated fuel tanks should be used. The propulsion and generator system options (DV 12 and 13) are discussed in Section 3.1.2. Provisions duration (DV 14) is discussed in Section 3.2.2. Weapons system options (DV 18-25) are in Section 3.1.4 of the report.

3.3 Ship Synthesis Model

A ship synthesis model was created in Model Center using several modules of FORTRAN code. The modules are linked together in a cascading fashion, and each module deals with an aspect of the baseline design. The purpose of the ship synthesis model is to assess an array of candidate designs based on feasibility, cost, risk, and effectiveness. The synthesis model is made up of fourteen modules:

1)	Input	8)	Weight
2)	Combat	9)	Tankage
3)	Propulsion	10)	Space Required
4)	Hull	11)	Feasibility
5)	Space Available	12)	Cost
6)	Electric	13)	Risk
7)	Resistance	14)	OMOE

Figure 27 is a schematic of the synthesis process. Notice how the process begins with an input module, and as synthesis proceeds there is a cascade affect that terminates at the last three modules; cost, risk, and Overall Measure of Effectiveness (OMOE). Each module is interconnected to other modules as indicated in Table 21 and as detailed below:

Figure 27 – Ship Synthesis Model in Model Center (MC)

				Iunic	21 110	, meen e	actionship ,	oceneen	niouules					
Module N	Name						Mo	odules						
		Combat	Propulsion	Hull	SpaceA	Electric	Resistance	Weight	Tankage	SpaceR	Feasibility	Cost	OMOE	Risk
Input	feeds into	х	х	x	х	х	х	х	х	х	х	х	х	х
Combat	feeds into		х	x	x	х	х	x	х	х		х	х	
Propulsion	feeds into			x	x	х	х	x	х	х	х	х	х	x
Hull	feeds into				x	х	х	x					х	
SpaceA	feeds into					х		х		х	х			
Electric	feeds into						х	х	х	Х	х	х		
Resistance	feeds into							х	х		х		х	
Weight	feeds into								х		х	х	х	
Tankage	feeds into									х	х	х	х	
SpaceR	feeds into										х			
Feasibility	feeds into													
Cost	feeds into													
OMOE	feeds into													
Risk	feeds													

Table 21 – The Interrelationship between Modules

• Input Module

The purpose of this module is to distribute the necessary variables to the other modules. The design variables that make up the design space are stored in this module as well as a set of governing design parameters. These variables and design parameters are subsequently passed into the following modules:

• Combat Module

This module calculates payload characteristics based on the selected combat system alternatives. The depth at station 10 is calculated and a payload for each combat system alternative is found and ultimately summed. Vertical centers of gravity, and the required deckhouse and hull volume associated with the combat system selection are determined. The module finally estimates the required electrical and power payload.

• Propulsion Module

The propulsion module calculates the propulsion and generator system characteristics based on the selected propulsion and generator alternatives. This entails referencing a spreadsheet of propulsion characteristics. The efficiency is then calculated based on the propulsion type selected and a set of updated propulsion characteristics is outputted. Further, an area allocated to inlet and exhaust is found, as well as the number of hull decks.

• Hull Module

The hull form module calculates hull characteristics including block, volume, and water-plane coefficients. Hull geometry is inputted into the module, and using a Taylor Series surface area is calculated. The module ensures that the particular sonar type chosen meets the minimum surface area and volume requirements. Additionally, the module calculates the total hull displacement including appendages.

• Space Available Module

This module calculates the available space from hull and deckhouse characteristics. The minimum depth at station 10 is calculated to prevent flooding, maintain hull strength, and to accommodate the machinery box. Freeboard is calculated at various stations along the length of the ship and total hull, ship, and machinery box volume is outputted. By subtracting the volume allocated to machinery space and tankage, the space available is calculated.

• Electric Module

This module calculates the total electrical load and the volume of the auxiliary machinery room. It does so by first determining the amount of required manning. Electrical power is next summed for each auxiliary source (firefighting, fuel handling, maximum heating, AC, etc). The required electrical power required per generator is then predicted and the 24 hour average electrical load is calculated.

• Resistance Module

The resistance module calculates hull resistance using the Holtrop-Mennen and ITTC equations which require resistance to be broken down into components. Bare hull total resistance is calculated from viscous, wave-making, bulb, and transom resistance with an associated correlation allowance. Shaft horsepower, endurance and sustained speed are estimated by this module. An appropriate propeller diameter is also estimated.

• Weight Module

Weight and vertical center of gravity estimates are calculated in this module. Weight is found according to SWBS number. For instance, in Machinery Weight (W200), weight largely is dependent on propulsion type, power, and the number of shafts. A margin is added to each SWBS group and a total ship weight is found. Vertical centers of gravity are then found for each weight group using parametric equations. Finally, a deckhouse weight and fluid weights (fuel, lube oil, fresh water, etc) are estimated and hydrostatic stability (GM) is calculated.

• Tankage Module

In this module, tankage requirements are found using Navy DDS 200-1 to estimate endurance fuel. Inputs such as endurance speed, specific fuel consumption, and other properties that have effect on the amount of required fuel are entered into the module. Volume of tanks such as sewage, waste oil, ballast, and compensated fuel are calculated. The annual number of gallons of fuel used is then determined based on 2500 hours of operation.

• Space Required Module

This module estimates space requirements and the amount of arrange-able area. Based on deckhouse volume, tankage volume, inlet and exhaust area, and manning requirements, the module calculates habitability, the available volume, and the total available area.

• Feasibility Module

This module is vital because it determines whether a ship is balanced and feasible. From a set of design characteristics, this module determines whether a concept ship can meet its minimum requirements. Will it float at its design waterline? Does it have sufficient space, electric power and stability? It does this by creating ratios of the difference between available and required values to the required value. For a given ship design to be feasible, every ratio must be positive and with in a tolerance of five percent. Feasibility ratios are created for endurance speed, sustained speed, endurance range, electrical power, hull depth, deckhouse arrange-able area, total arrange-able area, a minimum stability ratio and maximum stability ratio.

• Cost Module

This module predicts the lead and the follow ship acquisition cost and life cycle cost. It estimates cost based on ship weight by SWBS group, propulsion power, number of crew, number of enlisted, inflation and a margin among other variables. A total ownership cost is then found by summing lifecycle fuel, manning, and a ship delivery cost. In these calculations, the life of the ship is considered to be 30 years.

• Risk Module

This module is used in order to assess the risk involved in building a particular ship design. Risk is calculated in three forms: performance, cost and scheduling. These terms are then used in calculating an Overall Measure Of Risk (OMOR) of the concept design. Major influences on risk are variables like deckhouse material, propulsion option, manning reduction factor, and combat systems options. The OMOR process is detailed in Section 3.4.2.

• OMOE Module

Finally, this module quantifies the effectiveness of a particular concept using an Overall Measure Of Effectiveness (OMOE). An OMOE value is obtained by creating a weighted sum of ship design characteristics. Each characteristic or Measure Of Performance (MOP) is assigned a Value Of Performance (VOP) between a threshold value of zero and goal value of one. OMOE is calculated as in Section 3.4.1. The OMOE is calculated based on the seventeen MOPs in this module.

3.4 Objective Attributes

3.4.1 Overall Measure of Effectiveness (OMOE)

The Overall Measure of Effectiveness (OMOE) is a single overall figure of merit ranging from 0-1.0 and is based on Measures of Performance (MOP_i), Values of Performance (VOP_i), and weighting factor (w_i). The equation for this OMOE is:

$$OMOE = g[VOP_i(MOP_i)] = \sum_i w_i VOP_i(MOP_i)$$
(1)

To build the OMOE function, the first step is to identify the MOPs that are critical to the ship mission with goal values of 1.0 and threshold values of 0 (Table 22 and Table 23). These MOPs are then organized into an OMOE hierarchy (Figure 28) which assigns the MOPs into groups such as mission, mobility, susceptibility, vulnerability, etc. Each of these groups receives its own weight and is incorporated into the OMOE under specific mission types such as SAG or CBG. At this point Expert Choice is used to conduct pairwise comparison to calculate the weights for the MOPs based off of their relative importance to a specific mission type, where the sum of these weights equals 1. A VOP with goal value of 1.0 and threshold value of 0 is assigned to a specific MOP to a specific mission area for a specific mission type. Figure 29 shows the overall pairwise comparison results, and Figures D1 - D16 in Appendix D show the lower level pairwise comparison results.

ROCs	Description	МОР	Related DV	Goal	Threshold
AAW 1	Provide anti-air defense	AAW	AAW, GMLS, SEW	AAW=1 GMLS=1 SEW=1	AAW=3 GMLS=2 SEW=1
AAW 1.1	Provide area anti-air defense	AAW	AAW GMLS SEW	AAW=1 GMLS=1 SEW=1	AAW=3 GMLS=2 SEW=1
AAW 1.2	Support area anti-air defense	AAW	AAW GMLS SEW	AAW=1 GMLS=1 SEW=1	AAW=3 GMLS=2 SEW=1

 Table 22 – ROC/MOP/DV Summary

AAW 1.3	Provide unit anti-air self defense	AAW, RCS, IR	SSD, VD, PSYS	SDS=1 VD=1500 m3	SDS=2 VD=2000 m3
AAW 2	Provide anti-air defense in cooperation with other forces	AAW	CCC	CCC=1	CCC=2
AAW 3	Support Theater Ballistic Missile Defense (TBMD)	AAW	CCC	CCC=1	CCC=2
AAW 5	Provide passive and soft kill anti-air defense	AAW, IR, RCS	SEW VD PSYS	SEW=1 VD=1500 m3	SEW=1 VD=2000 m3
AAW 6	Detect, identify and track air targets	AAW, IR, RCS	SEW VD PSYS	SEW=1 VD=1500 m3	SEW=1 VD=2000 m3
AAW 9	Engage airborne threats using surface-to- air armament	AAW, IR, RCS	SEW VD PSYS	SEW=1 VD=1500 m3	SEW=1 VD=2000 m3
AMW 6	Conduct day and night helicopter, Short/Vertical Take-off and Landing and airborne autonomous vehicle (AAV) operations	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 6.3	Conduct all-weather helo ops	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 6.4	Serve as a helo hangar	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 6.5	Serve as a helo haven	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 6.6	Conduct helo air refueling	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 12	Provide air control and coordination of air operations	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
AMW 14	Support/conduct Naval Surface Fire Support (NSFS) against designated targets in support of an amphibious operation	NSFS	NSFS	NSFS=1	NSFS=2
ASU 1	Engage surface threats with anti-surface armaments	ASUW	ASUW LAMPS	ASUW=1 LAMPS=1	ASUW=2 LAMPS=3
ASU 1.1	Engage surface ships at long range	ASUW	ASUW LAMPS	ASUW=1 LAMPS=1	ASUW=2 LAMPS=3
ASU 1.2	Engage surface ships at medium range	ASUW	ASUW LAMPS	ASUW=1 LAMPS=1	ASUW=2 LAMPS=3
ASU 1.3	Engage surface ships at close range (gun)	ASUW	NSFS	NSFS=1	NSFS=2
ASU 1.5	Engage surface ships with medium caliber gunfire	ASUW	NSFS	NSFS=1	NSFS=2
ASU 1.6	Engage surface ships with minor caliber gunfire	ASUW	NSFS	NSFS=1	NSFS=2
ASU 1.9	Engage surface ships with small arms gunfire	ASUW	NSFS	NSFS=1	NSFS=2
ASU 2	Engage surface ships in cooperation with other forces	ASUW, FSO	CCC	CCC=1	CCC=2

ASU 4	Detect and track a surface target	ASUW	ASUW LAMPS	ASUW=1 LAMPS=1	ASUW=2 LAMPS=3
ASU 4.1	Detect and track a surface target with radar	ASUW	ASUW LAMPS	ASUW=1 LAMPS=1	ASUW=2 LAMPS=3
ASU 6	Disengage, evade and avoid surface attack	ASUW	ASUW	ASUW=1	ASUW=2
ASW 1	Engage submarines	ASW	ASW	ASW=1	ASW=3
ASW 1.1	Engage submarines at long range	ASW	ASW	ASW=1	ASW=3
ASW 1.2	Engage submarines at medium range	ASW	ASW	ASW=1	ASW=3
ASW 1.3	Engage submarines at close range	ASW	ASW, PSYS	ASW=1 PSYS=5- 16	ASW=3 PSYS=1-4
ASW 4	Conduct airborne ASW/recon	ASW	LAMPS	LAMPS=1	LAMPS=3
ASW 5	Support airborne ASW/recon	ASW	LAMPS CCC	LAMPS=1, CCC=1	LAMPS=3 CCC=2
ASW 7	Attack submarines with antisubmarine armament	ASW	ASW LAMPS CCC	ASW=1 LAMPS=1 CCC=1	ASW=3 LAMPS=3 CCC=2
ASW 7.6	Engage submarines with torpedoes	ASW	ASW LAMPS CCC	ASW=1 LAMPS=1 CCC=1	ASW=3 LAMPS=3 CCC=2
ASW 8	Disengage, evade, avoid and deceive submarines	ASW	ASW	ASW=1	ASW=3
CCC 1	Provide command and control facilities	CCC	CCC	CCC=1	CCC=2
CCC 1.6	Provide a Helicopter Direction Center (HDC)	CCC, ASW, ASUW	CCC	CCC=1	CCC=2
CCC 2	Coordinate and control the operations of the task organization or functional force to carry out assigned missions	CCC, FSO	CCC	CCC=1	CCC=2
CCC 3	Provide own unit Command and Control	CCC	CCC	CCC=1	CCC=2
CCC 4	Maintain data link capability	ASW, ASUW, AAW	CCC	CCC=1	CCC=2
CCC 6	Provide communications for own unit	CCC	CCC	CCC=1	CCC=2
CCC 9	Relay communications	CCC	CCC	CCC=1	CCC=2
CCC 21	Perform cooperative engagement	CCC, FSO	CCC	CCC=1	CCC=2
FSO 5	Conduct towing/search/salvage rescue operations	FSO	LAMPS	LAMPS=1	LAMPS=3
FSO 6	Conduct SAR operations	FSO	LAMPS	LAMPS=1	LAMPS=3
FSO 8	Conduct port control functions	FSO	CCC, ASUW, LAMPS	CCC=1 ASUW=1 LAMPS=1	CCC=2 ASUW=2 LAMPS=3
FSO 9	Provide routine health care	All designs			
FSO 10	Provide first aid assistance	All designs			
FSO 11	Provide triage of casualties/patients	All designs			
INT 1	Support/conduct intelligence collection	INT			
INT 2	Provide intelligence	INT			
INT 3	Conduct surveillance and reconnaissance	INT	LAMPS	LAMPS=1	LAMPS=3

INT 8	Process surveillance and reconnaissance information	INT, CCC			
INT 9	Disseminate surveillance and reconnaissance information	INT, CCC			
INT 15	Provide intelligence support for non- combatant evacuation operation (NEO)	INT, CCC			
MIW 4	Conduct mine avoidance	MIW	Degauss	Yes	Yes
MIW 6	Conduct magnetic silencing (degaussing, deperming)	Magnetic Signature	Degauss	Yes	Yes
MIW 6.7	Maintain magnetic signature limits	Magnetic Signature	Degauss	Yes	Yes
MOB 1	Steam to design capacity in most fuel efficient manner	Sustained Speed, Endurance Range	Hullform PSYS	$V_{S} = 30$ knts E=5000	Vs = 20 knt $E = 3500$ nm
MOB 2	Support/provide aircraft for all-weather operations	ASW, ASUW, FSO (NCO)	LAMPS	LAMPS=1	LAMPS=3
MOB 3	Prevent and control damage	VUL	Cdhmat	Cdhmat =1 Composite	Cdhmat = 3 steel
MOB 3.2	Counter and control NBC contaminants and agents	NBC	CPS	CPS=2 (full)	CPS=0 (none)
MOB 5	Maneuver in formation	All designs			
MOB 7	Perform seamanship, airmanship and navigation tasks (navigate, anchor, mooring, scuttle, life boat/raft capacity, tow/be-towed)	All designs			
MOB 10	Replenish at sea	All designs			
MOB 12	Maintain health and well being of crew	All designs			
MOB 13	Operate and sustain self as a forward deployed unit for an extended period of time during peace and war without shore- based support	provisions	Ts	60 days	45 days
MOB 16	Operate in day and night environments	All designs			
MOB 17	Operate in heavy weather	Seakeeping index	hullform	MCR=15	MCR=4
MOB 18	Operate in full compliance of existing US and international pollution control laws and regulations	Compensated Fuel System/ Clean Ballast	BalType	BalType=1	BalType=1
NCO 3	Provide upkeep and maintenance of own unit	All designs			
NCO 19	Conduct maritime law enforcement operations	NCO	ASUW NSFS	ASUW =1 NSFS=1	ASUW = 1 $NSFS = 2$
SEW 2	Conduct sensor and ECM operations	AAW	SEW	SEW=1	SEW=1
SEW 3	Conduct sensor and ECCM operations	AAW	SEW	SEW=1	SEW=1
SEW 5	Conduct coordinated SEW operations with other units	AAW	CCC	CCC=1	CCC=2
STW 3	Support/conduct multiple cruise missile strikes	STK	GMLS CCC	GMLS=1 CCC=1	GMLS=2 CCC=2

			1	
MOP #	MOP	Metric	Goal	Threshold
		AAW option	AAW=1	AAW=3
1	A A W/	GMLS option	GMLS=1	GMLS=2
1	AAW	SDS option	SDS=1	SDS=3
		CCC option	CCC=1	CCC=2
		ASW option	ASW=1	ASW=2
2	ΔSW	LAMPS option	LAMPS=1	LAMPS=3
2	ABW	GMLS option	GMLS=1	GMLS=2
		CCC option	CCC=1	CCC=2
3	Modules (xLCS)	MODULE option	MODULE=1	MODULE=2
4	NSFS/ASUW	NSFS option	NSFS=1	NSFS=2
5	CCC/ISR	CCC option	CCC=1	CCC=2
6	СТV	STK option	CCC=1	CCC=2
0	51K	GMLS option	GMLS=1	GMLS=2
7	Seakeeping	McCreight index	McC=15	McC=4
8	Е	nm	E=5000nm	E=3500nm
9	Ts	days	Ts=60	Ts=45
10	Vs	knots	Vs=35knt	Vs=30knt
11	Environmental	Ballast option	BALtype=1	BALtype=0
12	RCS	Deckhouse volume	VD=2500m3	VD=3300m3
12	A constita Signatura	DEVE ontion	PSYS=9,10,	PSYS=1-8,
15	Acoustic Signature	r s i s option	17-26	11-16
14	Magnetic Signature	Degaussing option	Ndegaus $= 1$	Ndegaus $= 0$
15	ID Signature	PSVS option	PSYS=9,10,	PSYS=1-8,
13	ik signature	r s i s option	17-26	11-16
16	VUL	Deckhouse material	Cdhmat=3	Cdhmat=1
17	NBC	CPS option	Ncps=2	Ncps=1
17	NBC	CPS option	Ncps=2	Ncps=1

Table 23 – MOPs

Figure 28 – OMOE Hierarchy

3.4.2 Overall Measure of Risk (OMOR)

In the design of naval ships there are systems and new technologies that have not yet undergone thorough testing. Each ship system and design variables present a certain amount of risk in the overall ship. The overall measure of risk (OMOR) is the numerical value of risk involved in the overall ship design. Consider three types of risk: performance, cost, and schedule. The risk for a selected technology is found by the following equation where P_i is the probability that risk event *i* will occur, and C_i is the consequence of risk event *i*.

$$Risk = R_i = P_i \cdot C_i$$

Table 24 shows the estimates for the probability of a risk event occurring. Table 25 show the consequence level of that risk when it occurs. Table 26 is the risk register, which lists the risk events for schedule, cost, and performance of each DV option. Pair wise comparison is used to calculate the hierarchy weights (performance, cost, and schedule) as required.

$$OMOR = W_{perf} \sum_{i} \frac{W_i}{\sum_{i} W_i} P_i C_i + W_{cost} \sum_{j} W_j P_j C_j + W_{sched} \sum_{k} W_k P_k C_k$$

|--|

Probability	What is the Likelihood the Risk Event Will Occur?
0.1	Remote
0.3	Unlikely
0.5	Likely
0.7	Highly likely
0.9	Near Certain

Consequence	Given the Risk is Realized, What Is the Magnitude of the Impact?					
Level	Performance	Schedule	Cost			
0.1	Minimal or no impact	Minimal or no impact	Minimal or no impact			
0.2	Acceptable with some	Additional resources required;	<5%			
0.5	reduction in margin	able to meet need dates				
0.5	Acceptable with significant	Minor slip in key milestones;	5-7%			
0.5	reduction in margin	not able to meet need date				
0.7	Acceptable; no remaining	Major slip in key milestone or	7-10%			
0.7	margin	critical path impacted				
0.0	Unacceptable	Can't achieve key team or	>10%			
0.9		major program milestone				

 Table 25 – Event Consequence Estimate

Table 26 – Risk Register

Related	DV	DV	Risk	Risk Description	Event	<u>Pi</u>	Ci	Ri
DV #	Options	Description	Event Ei		#		1	ĺ
DV9	3	Deckhouse	Composite material producibility	USN lack of experience	1	0.5	0.6	0.3
		Material	problems	with material				
DV9	3	Deckhouse	Composite material RCS, and fire	In development and test	2	0.4	0.5	0.2
		Material	performance does not meet					
			performance predictions					
DV9	3	Deckhouse	Composite material cost overruns	In development and test	3	0.5	0.3	0.15
		Material	impact program					
DV9	3	Deckhouse	Composite material schedule delays	In development and test	4	0.5	0.2	0.1
		Material	impact program					
DV10	2	Hull Type	Tumblehome Seakeeping	Seakeeping not satisfactory	5	0.7	0.8	0.56
			Performance					
DV12	19-26	Propulsion	IPS Development and	Reduced reliability and	6	0.3	0.6	0.18
		Systems	Implementation	performance (un-proven)				
DV12	19-26	Propulsion	IPS Development, acquisition and	Research and Development	7	0.4	0.4	0.16
		Systems	integration cost overruns	cost overruns				
DV12	19-26	Propulsion	IPS Schedule delays impact program	In development and test	8	0.3	0.4	0.12
		Systems		-				
DV12	9,10,17,18	Propulsion	CODLAG Development and	Unproven USN Ships	9	0.4	0.5	0.2
		Systems	Implementation					
DV12	9,10,17,18	Propulsion	CODLAG Development, acquisition	Unproven USN Ships	10	0.4	0.4	0.16
		Systems	and integration cost overruns					
DV12	9,10,17,18	Propulsion	CODLAG Schedule delays impact	Unproven USN Ships	11	0.4	0.5	0.2
		Systems	program					
DV12	PENGtype	Propulsion	ICR Development and	Unproven, recuperator	12	0.6	0.5	0.3
	=2	Systems	Implementation	problems				
DV12	PENGtype	Propulsion	ICR Development, acquisition and	Unproven, recuperator	13	0.6	0.4	0.24
	=2	Systems	integration cost overruns	problems				
DV12	PENGtype	Propulsion	ICR Schedule delays impact program	Unproven, recuperator	14	0.6	0.5	0.3
	=2	Systems		problems				
DV12	23-26	Propulsion	Development and Implementation of	Reduced Reliability (un-	15	0.7	0.4	0.28
		Systems	podded propulsion	proven)				
DV12	23-26	Propulsion	Development and Implementation of	Shock and vibration of full	16	0.7	0.6	0.42
		Systems	podded propulsion	scale system unproven				
DV12	23-26	Propulsion	Podded Propulsion Implementation	Unproven for USN, large	17	0.6	0.5	0.27
		Systems	Problems	size				
DV12	23-26	Propulsion	Podded Propulsion Schedule delays	Unproven for USN, large	18	0.6	0.6	0.36
]		Systems	impact program	size				

DV18	1,2	AAW	SPY-3 and AEGIS MK 99 FCS	Reduced Reliability and	19	0.3	0.8	0.24
		Systems	Development and implementation	Performance (un-proven)				
DV18	1,2	AAW	SPY-3 and AEGIS MK 99 FCS	Research and Development	20	0.4	0.5	0.2
		Systems	Development, acquisition and	cost overruns				
			integration cost overruns					
DV18	1,2	AAW	SPY-3 and AEGIS MK 99 FCS	Research and Development	21	0.4	0.7	0.28
		Systems	Schedule delays impact program	schedule delays				
DV17	0.5	Automation	Automation systems development	Reduced Reliability and	22	0.6	0.7	0.42
			and implementation	Performance (un-proven)				
DV17	0.5	Automation	Automation systems development,	Research and Development	23	0.5	0.5	0.25
			acquisition and integration cost	cost overruns				
			overruns					
DV17	0.5	Automation	Automation systems schedule delays	Research and Development	24	0.5	0.7	0.35
			impact program	schedule delays				
DV24	1	GMLS	PVLS	Vulnerability performance	25	0.3	0.6	0.18
DV24	1	GMLS	PVLS	Research overruns cost	26	0.4	0.3	0.12
DV24	1	GMLS	PVLS	Research overruns time	27	0.4	0.3	0.12

3.4.3 Cost

The lead ship and follow ship acquisition cost are estimated using a weight-based approach with producibility and complexity factors. The total lead ship acquisition cost is illustrated in Figure 30. The sum of the SWBS costs is used to estimate the basic construction cost. The material furnished by the government and the program manager's cost are accounted for in the total government cost. The post delivery cost accounts for any changes or update from new technology that occur during the construction of the ship. The total life cycle cost is a sum of the total ship cost, manning, fuel, maintenance, and disposal fee that the ship will need for operation.

Figure 30 – Naval Ship Acquisition Cost Components

3.5 Multi-Objective Optimization

The Multi-Objective Genetic Optimization (MOGO) is performed in Model Center using the Darwin optimization plug-in. The objective attributes include effectiveness, risk, and cost. These are discussed in Section 3.4. Figure 31 is a flow chart of the MOGO process. In the first design generation, the optimizer defines a random set of 200 balanced ships using the ship synthesis model (Section 3.3) to calculate cost and measures of effectiveness and risk. This population is ranked according to dominance of each design in the objective attributes. This ranking is called the ship's fitness level. Penalties are applied to designs that occur at bunching (or "niching") points in the design space, and for infeasibility. The second generation consists of designs randomly selected from the first generation. These are then weighted to apply higher selection probabilities to ships with higher fitness levels. Twenty-five percent of these are selected for crossover (or swapping) of some of their design variable values. In addition, a small percentage of randomly selected design variable values are mutated or replaced with a new random value. As each generation of ships is selected, the ships spread across the effectiveness/cost/risk design space and form a frontier. After 300 generations of evolution, the non-dominated frontier (or surface) of designs is defined as shown in Figure 33. Each ship on the non-dominated frontier provides the highest effectiveness for a given cost and risk compared to other designs in the design space. The optimal design is determined by the customer's preferences for effectiveness, cost and risk.

Figure 31 – Multi-Objective Genetic Optimization (MOGO)

In order to perform the optimization, quantitative objective functions are developed for each objective attribute. Effectiveness and risk are quantified using overall measures of effectiveness and risk developed as illustrated in Figure 32 and described in Sections 3.4.1 and 3.4.2.

Figure 32 – OMOE and OMOR Development Process

3.6 Optimization Results

The multi-objective genetic optimization (MOGO) (Figure 33) calculates the non-dominated frontier for the cost, risk and effectiveness for several ships. The X-axis represents the ship cost, the Y-axis represents the effectiveness, and the Z-axis represents the risk. Close attention is paid to the "knees" of the curve. The "knee" of the curve is where there can be a large increase in overall effectiveness with a small cost or risk increase. The design that was chosen for Team 5 is represented on the graph by a large X. This design has high risk, high cost, and a high overall effectiveness.

Figure 33 – Non-Dominated Frontier, Design # 95

3.7 Baseline Concept Design

The baseline design that was chosen from the non-dominated frontier for Team 5 was a concept with high cost, high risk and high effectiveness. It is a high-end non-dominated design. It has the highest effectiveness in the design space for this level of cost and risk. The high cost and high risk were likely due to the IPS propulsion system, the tumblehome hull form, and the extensive combat systems onboard. High effectiveness was achieved from a good compromise of the seventeen Measures of Performance (MOP). Table 30 shows these MOPs and the weight that each one carries to ultimately yield a favorable Overall Measure of Effectiveness (OMOE).

Table 27 shows the design options that were chosen in this baseline design. Weights and vertical centers of gravity for each SWBS subgroup appear in Table 28 and a ship area summary appears in Table 29. Finally, the baseline principal characteristics appear in Table 31.

DV #	Description	Design Range/Option	ADF Baseline Value
1	Waterline Length	100-150m	139m
2	Length to Beam ratio	7.0-10.0	8.09
3	Length to Depth ratio	10.5-17.8	11.11
4	Beam to Draft ratio	2.8-3.2	2.96
5	Prismatic coefficient	0.56 - 0.64	0.579
6	Maximum section coefficient	0.75 - 0.85	0.779
7	Raised deck coefficient	0.7 - 1.0	0.783
8	Deckhouse volume	2000-4000 m ³	3413
9	Deckhouse material	1 = Steel, 2 = Aluminum, 3 = Advanced Composite	Steel
10	Hull: Flare or Tumblehome	1: flare= 10 deg; 2: flare = -10 deg	Tumblehome, -10 deg flare
11	Ballast/fuel system type	0 = clean ballast, $1 =$ compensated fuel tanks	Compensated fuel tanks
12	Propulsion system alternative	Option 1) 1 shaft, mechanical, CRP, 2xLM2500+	Option 23) 2 pods, IPS, 2 x
		Option 2) 1 shaft, mechanical, CRP, 2xMT30	LM2500+GTG, 1 x PC2/16DG
		Option 3) 1 shaft, mechanical, CRP, CODOG 1xLM2500+, 1x PC2/16	
		Option 4) 1 shaft, mechanical, CRP, CODOG 1xMT30, 1x PC2/16	
		Option 5) 1 shaft. mechanical, CRP, CODAG 1xLM2500+, 1x PC2/16	
		Option 6) 1 shaft. mechanical, CRP, CODAG 1xMT30, 1x PC2/16	
		Option 7) 1 shaft. mechanical, CRP, COGAG 1xLM2500+, 1x WR21/29	
		Option 8) 1 shaft. mechanical, CRP, COGAG 1xMT30, 1x WR21/29	
		Option 9) 1 shaft. mechanical, FPP, CODLAG 1x LM2500+, 1x PC2/16DG	
		Option 10) 1 shaft. mechanical, FPP, CODLAG 1x MT30, 1x PC2/16DG	
		Option 11) 2 shafts, mechanical, CRP, GT 2x LM2500+ 2x Epicycle gear	
		Option 12) 2 shafts, mechanical, CRP, GT 2xMT30, 2x Epicycle gear	
		Option 13) 2 shafts, mechanical, CRP, GT 4x LM2500+	
		Option 14) 2 shafts, mechanical, CRP, CODOG 2x LM2500+, 2x PC2/16	
		Option 15) 2 shafts, mechanical, CRP, CODAG 2x LM2500+, 2x PC2/16	
		Option 16) 2 shafts, mechanical, CRP, COGAG 2x LM2500+, 2x WR21/29	
		Option 17/ 2 shafts, mechanical, FPP, CODLAG 2X LM2500+, 1X PC2/16DG	
		Option 18) 2 sharts, mechanical, FPP, CODLAG 2x M130, 1x PC2/10DG	
		Option 19) 2 shafts, IPS, FPP, 2x LM2500+GTG, 1x PC2/16DG	
		Option 20) 2 shafts, IPS, FPP, 2X M150010, 1X PC2/10D0	
		Ontion 22) 2 shafts IPS EPP 3x MT30GTG 1xPC2/16DG	
		Ontion 23) 2 mars, II 5, 111, 5X W150010, 1XI C2/10D0	
		Ontion 24) 2 pods, IPS, 2x EM2500 (GTG, 1x PC2/16DG	
		Option 25) 2 pods, IPS, 3xLM2500+GTG, 1x PC2/16DG	
		Option 26) 2 pods, IPS, 3x MT30 GTG, 1x PC2/16DG	
13	Ship Service Generator system	Option 1) 3 x DDA Allison 501K34 GTG (@3.500 kW)	Option 3) 4 x CAT3608 IL8 DG
	alternatives	Option 2) 4 x CAT 3515V16 DG	1 /
		Option 3) 4 x CAT3608 IL8 DG	
		Option 4) 3 x CAT3608 IL8 DG	
		Option 5) 2 x DDA Allison 501K34 GTG (@3,500 kW)	
		Option 6) 2 x CAT3516V16 DG	
		Option 7) 2 x CAT3608 IL8 DG	
		For PSYS=9,10,17-26: GSYS=5,60r7	
14	Provisions duration	45-60 days	50 days
15	Collective Protection System	0 = none, 1 = partial, 2 = full	Full
16	Degaussing system	0 = none, 1 = degaussing system	Degaussing System
1/	automation factor	0.5 - 0.1	0.08
18	Anti-Air Warfare alternatives	Ontion 1) SPY-3 (4 nanel) AEGIS MK 99 ECS	Ontion 2) SPY-3 (3 panel) AEGIS MK 99
10		Option 2) SPY-3 (3 panel), AEGIS MK 99 FCS	FCS
		Option 3) SPY-1D (2 panel), AEGIS MK 99 FCS	
19	Anti-Submarine Warfare and	Option 1) SQS-56, SQQ 89, 2xMK 32 Triple Tubes, NIXIE, SQR-19	Option 1) SQS-56, SQQ 89, 2xMK 32
	Mine Countermeasures	TACTAS, mine avoidance sonar	Triple Tubes, NIXIE, SQR-19 TACTAS,
	alternatives	Option 2) LFA/VDS, SQQ 89, 2xMK 32 Triple Tubes, NIXIE	mine avoidance sonar
20	Naval Surface Fire Support /	Option 1) MK 45 5IN/62 Mod 4 gun, MK86 GFCS, SPS-73(V)12, 1 RHIB,	Option 2) MK 3 57 mm gun, MK86
	ASUW alternatives	Small Arms Locker	GFCS, SPS-73(V)12, 1 RHIB, Small
		Option 2) MK 3 57 mm gun, MK86 GFCS, SPS-73(V)12, 1 RHIB, Small Arms	Arms Locker
21	Commond C. (1	Locker	Order 1) Erba 1000
21	Communication alternatives	Option 1) Enhanced CCC	Option 1) Ennanced CCC
22	LAMPS alternatives	Option 1) Embarked 2xLAMPS w/Hangar	Option 1) Embarked 2vI AMDS w/Har ar
44	LANI S anomatives	Upuon 17 Eniuarkeu ZAEANII 5 W/Hangal	Option 1) Enloarkey ZALAWES W/Hallgal

Table 27 – Design	Variables Summary

		Option 2) LAMPS haven	
		Option 3) LAMPS refueling	
23	Self Defense System	Option 1) 2xCIWS, SLQ-32(V) 3, SRBOC, NULKA	Option 1) 2xCIWS, SLQ-32(V) 3,
	alternatives	Option 2) 1xCIWS, SLQ-32(V) 3, SRBOC, NULKA	SRBOC, NULKA
		Option 3) SLQ-32(V) 3, SRBOC, NULKA	
24	Guided Missile Launching	Option 1) 64 cells, MK 41 and/or MK57 PVLS	Option 2) 32 cells, MK 41 and/or MK57
	System alternatives	Option 2) 32 cells, MK 41 and/or MK57 PVLS	PVLS
25	LCS-equivalent Modules	Option 1) 2xLCS	Option 2) 1xLCS
		Option 2) 1xLCS	

Table 28 – Concept Exploration Weights and VCG Summary

Group	Weight (MT)
SWBS 100	2516
SWBS 200	532
SWBS 300	286
SWBS 400	283
SWBS 500	749
SWBS 600	504
SWBS 700	116
Payload	530
Lightship	5483
Lightship w/ Margin	5982
Full Load w/ Margin	7029

Table 29 – Concept Exploration Area Summary

Area	Required	Available
Total-Arrangeable	5155	5158
Deck House	1128	1138

Table 30 – MOP/ VOP/ OMOE/ OMOR Summary

Measure	Description	Metric	Value of	MOP Weight	Measure of
			Periormance	weight	Effectiveness
MOP I	AAW	AAW = 2, $GMLS = 2$, $SDS = 1$, $CCC = 1$	0.863	0.204	0.176
MOP 2	ASW	ASW = 1, $LAMPS = 1$, $GMLS = 2$, $CCC = 1$	0.978	0.169	0.165
MOP 3	Modules (xLCS)	MODULES = 2	0.641	0.119	0.076
MOP 4	ASUW/NSFS	NSFS = 2	0.845	0.094	0.079
MOP 5	CCC/ISR	CCC = 1	1.000	0.071	0.071
MOP 6	STK	CCC = 1, GMLS = 2	0.830	0.036	0.030
MOP 7	Seakeeping	MCC = 11.08, Hulltype = 2	0.087	0.040	0.003
MOP 8	Endurance Range, E	E = 5362	1.000	0.020	0.020
MOP 9	Provisions Duration, Ts	Ts = 60	1.000	0.014	0.014
MOP 10	Sustained Speed, Vs	$V_{S} = 31.78$	0.623	0.011	0.007
MOP 11	Environmental	BALtype = 1	0.286	0.005	0.001
MOP 12	RCS	VD = 3413	1.000	0.075	0.075
MOP 13	Acoustic Signature	PSYS = 23	1.000	0.053	0.053
MOP 14	Magnetic Signature	Ndegaus = 1	0.800	0.032	0.026
MOP 15	IR Signature	PSYS = 23	0.619	0.023	0.014
MOP 16	Vulnerability	Cdhmat = 1	0.778	0.017	0.013
MOP 17	NBC	Ncps = 2	1.000	0.016	0.016
OMOE	Overall Measure of Effectiveness				0.841
OMOR	Overall Measure of Risk				0.509
Cfola	Follow-Ship Acquisition Cost				641.99

Characteristic	Baseline Value
Hull form	Wave-Piercing Tumblehome, -10 deg Flare
D (MT)	12.5
LWL (m)	139.0
Beam (m)	17.2
Draft (m)	5.8
D10 (m)	12.5
Displacement to Length Ratio, C _{DL} (lton/ft)	14.10
Beam to Draft Ratio, C _{BT}	2.96
W1 (MT)	2516
W2 (MT)	532
W3 (MT)	286
W4 (MT)	283
W5 (MT)	749
W6 (MT)	504
W7 (MT)	116
Lightship D (MT)	5483
KG (m)	7.28635
GM/B=	0.08055
Propulsion system	2 Pods, IPS, 2 x LM2500+GTG, 1 x PC2/16DG
Engine inlet and exhaust Area (m ²)	178.8
ASW/MCM system	SQD-56, SQQ 89, 2 x MK 32 Triple Tubes,
	NIXIE, SQR-19 TACTAS
ASUW system	MK 3 57 mm gun, MK86 GFCS, SPS-73(V)12,
	1 RHIB, Small Arms Locker
AAW system	SPY-3 (2 panel), AEGIS MK 99 FCS
Number of LAMPS	1
Average deck height (m)	3
Total Officers	23
Total Enlisted	223
Total Manning	246
Lead Ship Acquisition Cost (\$M)	919.35
Average Follow Ship Acquisition Cost (\$M)	641.99
Life Cycle Cost (\$M)	1119.46

3.8 ASSET Final Concept Baseline

The hullform of ADF 95 is based on a conventional DD-1000 Wave-Piercing Tumblehome (WPTH) parent hullform from the Advanced Surface Ship Evaluation Tool (ASSET). ASSET creates a hullform to baseline characteristics: length (L), beam (B), draft (T), depth (D), prismatic coefficient (Cp), and cross-sectional coefficient (Cx). Baseline characteristics were chosen according to mission requirements, standard naval combatant vessel requirements, expert opinion, and the multi-objective genetic optimization results stemming from the ship synthesis model. Once all ship parameters were entered into Asset, the program returned baseline values for propulsion, combat, electrical, and mechanical systems that were modified throughout the design spiral to best address the needs of the Initial Capabilities Document and the Acquisition Decision Memorandum.

Views of the hull, machinery arrangements, pods, hull midsection, and their respective data summaries are shown in Figure 34 -

Figure 41. Additional ASSET data summaries are given in Appendix E.

Figure 34 – Hull Isometric View

PRINCIPAL CHARACTERI	STICS - M	WEIGHT SUMMARY - MTON
LBP	139.0	GROUP 1 - HULL STRUCTURE 2191.1
HULL LOA	141.9	GROUP 2 - PROP PLANT 795.6
BEAM, DWL	17.2	GROUP 3 - ELECT PLANT 383.7
DEPTH @ STA 10	12.5	GROUP 4 - COMM + SURVEIL 270.0
DRAFT TO KEEL DWL	5.8	GROUP 5 - AUX SYSTEMS 644.1
DRAFT TO KEEL LWL	5.8	GROUP 6 - OUTFIT + FURN 489.9
FREEBOARD 0 STA 3	8.0	GROUP 7 - ARMAMENT 125.8
GMT	4.3	
CP	0.579	SUM GROUPS 1-7 4900.2
сх	0.779	DESIGN MARGIN 503.9
		LIGHTSHIP WEIGHT 5404.0
SPEED(KT): MAX= 32.7	SUST= 30.8	LOADS 1138.6
ENDURANCE: 5294.0 NM	AT 20.0 KTS	
		FILL LOAD DISPLACEMENT 6542.7
TRANSMISSION TYPE:	TPS	FILL LOAD KG: M 5.5
MAIN FNG. 2 GT 0	26099 5 KW	
SEC ENC. 1 DOT 0	21655 1 KW	MILITARY RAVIOAD NT- MTON 620 5
SEC ENG. I KOI 6	27000 5 VM	USABLE FUEL NT _ MTON 765.6
DECEMBERT SHAFT.	2(333.J KW	DIADLE FOLL WI - MICH (05.0
PROPOLISORS: 2 - FF	- 5.2 M	DIX
GED CEN. 2 D DIEGEL 0	1200 0 22	
SEP GEN: 2 D DIESEL 0	1200.0 KW	
PD GEN: 3 DC-BUS 0	2000.0 KW	
	00 00 5	OFF CPO ENL TOTAL
24-HR LOAD	2378.5	MANNING 23 25 198 246
MAX MARG ELECT LOAD	4927.3	ACCOM 25 27 208 260
REQUIRED AREA SUMM	ARY - M2	AVAILABLE AREA SUMMARY - M2
OTHER AREA	- 4410.	HULL AREA – 4309.
SUPERSTRUCTURE AREA	- 942.	SUPERSTRUCTURE AREA - 1253.
TOTAL AREA	- 5352.	TOTAL AREA - 5562.
REQUIRED VOLUME SU	MMARY - M3	AVAILABLE VOLUME SUMMARY - M3
OTHER VOLUME	- 17992.	HULL VOLUME - 18021.
SUPERSTRUCTURE VOLUME	- 2825.	SUPERSTRUCTURE VOLUME - 3836.
TOTAL NOLINE	20017	
ICIAL VOLUME	- 20017.	101 AL VOLUME - 21857 .

Figure 35 – Design Summary Report

Figure 36 – Ship Machinery Layout

TRANS TYPE INDIPSMAX SPEED, KT32.65ELECT PRPLN TYPE INDACC-ACSUSTN SPEED INDCALCSHAFT SUPPORT TYPE INDPODSUSTN SPEED POWER FRAC0.800SEC ENG USAGE INDANDENDUR SPEED POWER FRAC0.800SEC ENG USAGE INDANDENDUR SPEED INDGIVENSS SYS TYPE INDPDENDUR SPEED, KT20.00PD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTMAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000AUX STEAM FAC0.000ELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DG ARR 2 INDS-SPG111ELECT DG ARR 1 INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM1200. KW200FUG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516416ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLEDQ1212ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122 </th <th></th> <th></th> <th></th> <th></th>					
ELECT PRPLN TYPE INDACC-ACSUSTN SPEED INDCALCSHAFT SUPPORT TYPE INDPODSUSTN SPEED INDGALCSNO PROP SHAFTS2.SUSTN SPEED POWER FRAC0.800SC ENG USAGE INDANDENDUR SPEED INDGIVENSS SYS TYPE INDPDENDUR SPEED, KT20.00PD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTMAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON363.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NO <online< td="">NO ONLINENO ONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM1200. KW311ENG SELECT INDGIVENGIVENGIVENGIVENENG NDEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGIVENGIVENGIVENGIVENENG SELECT INDGIVENGIVENGIVENGIVENENG SELECT INDGIVENGIVENGIVENGIVENENG SELECT INDGIVENGIVENGIVEN<!--</td--><td>TRANS TYPE IND</td><td>IPS</td><td>MAX SPEED, KT</td><td>32.65</td></online<>	TRANS TYPE IND	IPS	MAX SPEED, KT	32.65	
SHAFT SUPPORT TYPE IND POD SUSTN SPEED, KT 30.83 NO PROP SHAFTS 2. SUSTN SPEED, KT 0.800 SEC ENG USAGE IND AND ENDUR SPEED IND GIVEN SS SYS TYPE IND PD ENDUR SPEED, KT 20.00 PD SS TYPE IND DC-BUS DESIGN MODE IND FUEL WT MAX MARG ELECT LOAD, KW 4927. ENDURANCE, NM 5294. AVG 24-HR ELECT LOAD, KW 2379. USABLE FUEL WT, MTON 765.6 SWBS 200 GROUP WT, MTON 795.6 SWBS 300 GROUP WT, MTON 383.7 NO BOLLERS PER SHAFT 0. NO RESERVE BOLLERS 0. AUX STEAM FAC 0.000 NO ONLINE NO ONLINE NO ONLINE ELECT PG ARR 1 IND M-PG 2 2 0 ELECT PG ARR 1 IND MTR 2 2 2 0 PD SHIP-SERVICE SYSTEM 1200. KW 2 0 0 PD SHIP-SERVICE SYSTEM 1200. KW 2 0 0 PD SHIP-SERVICE SYSTEM 1200. KW 3 1 1 ENG SELECT IND GIVEN GIVEN GIVEN <td>ELECT PRPLN TYPE IND</td> <td>ACC-AC</td> <td>SUSTN SPEED IND</td> <td>CALC</td>	ELECT PRPLN TYPE IND	ACC-AC	SUSTN SPEED IND	CALC	
NO PROP SHAFTS2.SUSTN SPEED POWER FRAC0.800SEC ENG USAGE INDANDENDUR SPEED INDGIVENSS SYS TYPE INDDC-BUSDESIGN MODE INDFUEL WTPD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTAVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWES 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NONO NO ONLINENO ONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SSP SHIP-SERVICE SYSTEM1200. KW311MAIN ENGSEC ENGSS ENG11ENG SELECT INDGIVENGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.03600.03600.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.339.939.979	SHAFT SUPPORT TYPE IND	POD	SUSTN SPEED, KT	30.83	
SEC ENG USAGE INDANDENDUR SPEED INDGIVENSS SYS TYPE INDPDPDENDUR SPEED, KT20.00PD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTMAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000INSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT DG ARR 2 INDS-SPG111ELECT DL AR RINDMTR220FLECT DL AR RINDMTR200PD SHIP-SERVICE SYSTEM1200. KW311MAIN ENGSEC ENGSS ENG11ENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG SIZE INDGIVENGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2121NO INSTALLED2121NO INSTALLED2121ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG CAD FRAC0.939.939.979	NO PROP SHAFTS	2.	SUSTN SPEED POWER FRA	LC 0.800	
SS SYS TYPE INDPDENDUR SPEED, KT20.00PD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTMAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NO NO ONLINENO ONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR220PD SHIP-SERVICE SYSTEM1200. KW311MAIN ENGSEC ENGSS ENG	SEC ENG USAGE IND	AND	ENDUR SPEED IND	GIVEN	
PD SS TYPE INDDC-BUSDESIGN MODE INDFUEL WTMAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000AUX STEAM FAC0.000ELECT PG ARR 1 INDM-PG220ELECT PG ARR 1 INDM-PG220ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG FC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	SS SYS TYPE IND	PD	ENDUR SPEED, KT	20.00	
MAX MARG ELECT LOAD, KW4927.ENDURANCE, NM5294.AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NONO NO ONLINENO ONLINEARRANGEMENT OR SS SYSTEMTYPENONO ONLINENO ONLINEELECT PG ARR 1 INDM-PG220ELECT DG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW311MAIN ENGSEC ENGSS ENG11ENG SELECT INDGIVENGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG PWR AVAIL, KW26099.21655.1275.ENG FPM3600.03600.01800.0ENG FPM3600.03600.01800.0ENG PWA LOAD FRAC0.939.939.979	PD SS TYPE IND	DC-BUS	DESIGN MODE IND	FUEL WT	
AVG 24-HR ELECT LOAD, KW2379.USABLE FUEL WT, MTON765.6SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NO ONLINENO ONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNELECT PG ARR 1 INDM-PG220ELECT DG ARR 2 INDS-SPG11ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG SELECT INDGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	MAX MARG ELECT LOAD, KW	4927.	ENDURANCE, NM	5294.	
SWBS 200 GROUP WT, MTON795.6SWBS 300 GROUP WT, MTON383.7NO BOILERS PER SHAFT0.NO RESERVE BOILERS0.AUX STEAM FAC0.000NO NO ONLINE NO ONLINE0.ARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR220PD SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM1200. KW311MAIN ENGSEC ENGSS ENG11ENG SELECT INDGIVENGIVENGIVENGIVENENG SELECT INDGI MAXHONGIVENGIVENGIVENNO INSTALLED2121NO INSTALLED2122ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	AVG 24-HR ELECT LOAD, KW	2379.	USABLE FUEL WT, MTON	765.6	
NO BOILERS PER SHAFT O. NO RESERVE BOILERS O. AUX STEAM FAC O.000 NO NO ONLINE NO ONLINE ARRANGEMENT OR SS SYSTEM TYPE INSTALLED MAX+SUSTN ENDURANCE 	SWBS 200 GROUP WT, MTON	795.6	SWBS 300 GROUP WT, MT	TON 383.7	
AUX STEAM FAC0.000ARRANGEMENT OR SS SYSTEMTYPENONOONLINENOONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1INDM-PG220ELECT PG ARR 2INDS-SPG111ELECT DL ARR INDMTR2222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG SELECT INDGE LM2500-PLUSWESTHS WR2129CAT 3516V16ENG MODEL INDGE LM2500-PLUSWESTHS WR2129CAT 3516V16ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED2122ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	NO BOILERS PER SHAFT	Ο.	NO RESERVE BOILERS	Ο.	
NONONOONLINENOONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1INDM-PG220ELECT PG ARR 2INDS-SPG111ELECT DL ARR INDMTR2222SEP SHIP-SERVICE SYSTEM1200. KW2000PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR2129CAT 3516V16ENG SIZE INDGIVENGIVENGIVENGIVENNO INSTALLED212ENG SPR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	AUX STEAM FAC	0.000			
NONOONLINENOONLINEARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG SELECT INDGI CINGIVENGIVENENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG SFC, KG/KW-HR0.226.199.221ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979					
ARRANGEMENT OR SS SYSTEMTYPEINSTALLEDMAX+SUSTNENDURANCEELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979			NO NO ONLINE	E NO ONLINE	
ELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGI1<	ARRANGEMENT OR SS SYSTEM	TYPE	INSTALLED MAX+SUSTN	I ENDURANCE	
ELECT PG ARR 1 INDM-PG220ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG SIZE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979					
ELECT PG ARR 2 INDS-SPG111ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	ELECT PG ARR 1 IND	M-PG	2 2	0	
ELECT DL ARR INDMTR222SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	ELECT PG ARR 2 IND	S-SPG	1 1	1	
SEP SHIP-SERVICE SYSTEM1200. KW200PD SHIP-SERVICE SYSTEM2000. KW311MAIN ENGSEC ENGSS ENG	ELECT DL ARR IND	MTR	2 2	2	
PD SHIP-SERVICE SYSTEM 2000. KW 3 1 1 MAIN ENG SEC ENG SS ENG ENG SELECT IND GIVEN GIVEN GIVEN GIVEN ENG MODEL IND GE LM2500-PLUS WESTHS WR21 29 CAT 3516V16 ENG TYPE IND GT RGT D DIESEL ENG SIZE IND GIVEN GIVEN GIVEN NO INSTALLED 2 1 2 ENG PWR AVAIL, KW 26099. 21655. 1275. ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	SEP SHIP-SERVICE SYSTEM	1200. KW	2 0	0	
MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	PD SHIP-SERVICE SYSTEM	2000. KW	3 1	1	
MAIN ENGSEC ENGSS ENGENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979					
ENG SELECT INDGIVENGIVENGIVENENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	MA:	IN ENG	SEC ENG	SS ENG	
ENG MODEL INDGE LM2500-PLUSWESTHS WR21 29CAT 3516V16ENG TYPE INDGTRGTD DIESELENG SIZE INDGIVENGIVENGIVENNO INSTALLED212ENG PWR AVAIL, KW26099.21655.1275.ENG RPM3600.03600.01800.0ENG SFC, KG/KW-HR0.226.199.221ENG LOAD FRAC0.939.939.979	ENG SELECT IND	GIVEN	GIVEN	GIVEN	
ENG TYPE IND GT RGT D DIESEL ENG SIZE IND GIVEN GIVEN GIVEN NO INSTALLED 2 1 2 ENG PWR AVAIL, KW 26099. 21655. 1275. ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	ENG MODEL IND GE LM2	2500-PLUS	WESTHS WR21 29	CAT 3516V16	
ENG SIZE IND GIVEN GIVEN GIVEN NO INSTALLED 2 1 2 ENG PWR AVAIL, KW 26099. 21655. 1275. ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	ENG TYPE IND	GT	RGT	D DIESEL	
NO INSTALLED 2 1 2 ENG PWR AVAIL, KW 26099. 21655. 1275. ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	ENG SIZE IND	GIVEN	GIVEN	GIVEN	
ENG PWR AVAIL, KW 26099. 21655. 1275. ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	NO INSTALLED	2	1	2	
ENG RPM 3600.0 3600.0 1800.0 ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	ENG PWR AVAIL, KW	26099.	21655.	1275.	
ENG SFC, KG/KW-HR 0.226 .199 .221 ENG LOAD FRAC 0.939 .939 .979	ENG RPM	3600.0	3600.0	1800.0	
ENG LOAD FRAC 0.939 .939 .979	ENG SFC, KG/KW-HR	0.226	.199	.221	
	ENG LOAD FRAC	0.939	.939	.979	

Figure 37 – Machinery Module Summary

Figure 38 – Propulsion Inboard Appendages Profile View

PROP TYPE IND PROP DIA IND CA PROP AREA IND CA SHAFT SUPPORT TYPE IND P	P PROP SERIES IND ANALYTIC C PROP LOC IND CALC C PROP ID IND
MAX SPEED, KT 32. MAX EHP (/SHAFT), KW 2032 MAX SHP (/SHAFT), KW 2800 MAX PROP RPM 150 MAX PROP COEF 0.7	55 ENDUR SPEED, KT 20.00 5. ENDUR EHP (/SHAFT), KW 2742. 0. ENDUR SHP (/SHAFT), KW 3691. 0 ENDUR PROP RPM 82.8 26 ENDUR PROP COEF 0.743
SUSTN SPEED, KT30.SUSTN EHP (/SHAFT), KW1633SUSTN SHP (/SHAFT), KW2240SUSTN PROP RPM140SUSTN PROP COEF0.7NO PROP SHAFTS2	PROP DIA, M5.22NO BLADES5.PITCH RATIO1.51EXPAND AREA RATIO0.884CAVITATION NO1.10
SUSIN PROP RPM140SUSIN PROP COEF0.7NO PROP SHAFTS2TOTAL PROPELLER WT, MTON52.	2 EXPAND AREA RA 29 CAVITATION NO 0

Figure 40 – Section View at the Structural Design Location

STRUCTURAL DESIGN IND-ALL			STRUC	TURAL DESIG	N LOC- O	.500
STRUCTURAL CRITERIA IND-NAVY			ACTUA	L DESIGN LO	C- 0.495	
INNER BOT IND- P	RESENT		HULL	LOADS IND-B	M CONSTANT	
	HULL	STRENGTH	AND ST	RESS		
HOGGING BM, M-MTON	4	1217.	PRIM	STRESS KEEL	-HOG, MPA	128.24
SAGGING BM, M-MTON	3	4347.	PRIM	STRESS KEEL	-SAG, MPA	106.86
MIDSHIP MOI, M2-CM	2 20	1691.	PRIM	STRESS DECK	-HOG, MPA	122.47
DIST N.A. TO KEEL,	М	6.40	PRIM	STRESS DECK	-SAG, MPA	102.06
DIST N.A. TO DECK,	М	6.11	HULL	MARGIN STRE	SS, MPA	15.44
SEC MOD TO KEEL, M	-СМ2 З	1520.	SEC M	OD TO DECK,	M-CM2	33003.
HULL STRUCTURE COM	PONENTS					
	MATERIAL	NO OF	NO	STIFFENER		
	TYPE	SEGMENT		TYPE		
WEATHER DECK	HSS	4	1	T-BEAM		
SIDE SHELL	HSS	5	1	T-BEAM		
BOTTOM SHELL	HSS	3	1	T-BEAM		
INNER BOTTOM	HSS	3	1	T-BEAM		
INT. DECK	HSS	3	4	T-BEAM		
STRINGER, SHEER	HY 80	1	1	T-BEAM		
LONG BULKHEAD	HSS		0	T-BEAM		
TRANS BULKHEAD	HSS		13	T-BEAM		
HULL STRUCTURE WEI	GHT					
SWBS COMPONENT		WEIGH	т, мто	N VCG, M		
					-	
100 HULL STRUCTUR	E	139	7.5	6.15		
110 SHELL+SUPP	ORT		602.6	3.5	7	
120 HULL STRUC	TURAL BHD		170.9	6.6	9	
130 HULL DECKS			504.9	9.6	5	
140 HULL PLATF	ORM/FLATS		78.6	3.6	7	
160 SPECIAL ST	RUCTURES		40.5	3.4	1	

4 Concept Development (Feasibility Study)

Concept Development of ASC follows the design spiral in sequence after Concept Exploration. In Concept Development the general concepts for the hull, systems and arrangements are developed. These general concepts are refined into specific systems and subsystems that meet the ORD requirements. Design risk is reduced by this analysis and parametrics used in Concept Exploration are validated.

4.1 Preliminary Arrangement (Cartoon)

As a preliminary step in finalizing hull form geometry, deck house geometry, and all general arrangements, an arrangement cartoon was developed for areas supporting mission operations, propulsion, and other critical constrained functions. The arrangement cartoon was created to ensure all the necessary volumes, areas and large objects would fit into the ship. To accomplish this, transverse bulkheads, decks, major tanks, and primary spaces were determined. While creating the cartoon, many things were taken into consideration including stability, trim, radar cross section, damage stability, large object placement, engine intake and exhaust, structural efficiency, survivability, and function.

The first step in creating the cartoon was to create profile and plan views of our ship in Rhino and then print them out to use as an outline. Required areas and volumes were determined from the baseline synthesis model and were used to help determine arrangements. The transverse bulkheads and decks were sketched by hand on the profile and plan views along with topside arrangements, mission spaces, machinery spaces, inlet and exhaust trunks and major tanks. The preliminary arrangement cartoon is shown in Figure 42.

Figure 42 – Preliminary Arrangement Cartoon

After reviewing the cartoon, several corrections were required including a continuous deckhouse, a reduction in Vertical Launch System (VLS) space, the re-orientation of engines, and the addition of more combat systems topside.

4.2 Design for Producibility

The ideal build strategy for ADF 95 is to create a highly producible hull form. Wherever possible, flat plates and straight frames will be used in place of contoured members. Single curvature plates will be used to create most contours, and in circumstances in which double curvature plates are required, only slight contours will be used. The deckhouse will also be comprised predominately of flat plates and straight frames to maximize producibility. The shape of the bulb at the bow will be a constant elliptical cross-section, and a lengthy parallel midbody will also be used for ease of production. The performance penalty of these production-favorable attributes will be minimal as shown in model testing.

For construction purposes, a block breakout, claw chart, and master construction schedule were created. For the block breakout, the ship was section according to groups. Blocks within the bow were given numbers in 1000, blocks in the stern 4000, blocks containing hull cargo 2000, blocks containing machinery 3000, on board construction blocks 5000, and high-skill construction blocks were 6000. The claw chart is the construction of blocks by week, and the master construction schedule is the process from contract to delivery. The block breakout is shown in Figure 43, the claw chart in Table 32, and the master construction schedule in Table 33.

						T.	. 42 T		14						
139) 1:	30 1	120 1	10	100	85	75	60		50 42	2.5 32	2.5 2	5	15 7	.5 FP
		1	1	1	3410	I		1			l		1		
			4220			-1.3310	5	3210	2320	2220	3110	2110	1310	1210	1120
		<u>4550</u> _	4230	4130	-	2000	<u></u>	5240	2000	2230	0140	2100	1000	1200	$ \rightarrow $
E	_4430	4330	4230	4130	3440	333(3240	2330	2220	3140	2130	1330	1230	1150
- [4440	4340	4240	4140		3340)		2340	2240		2140	1340	1240	
1	4450	4350	4250	4150	3450	3350	0	3250	2350	2250	3150	2150	1350	1250	
							5210	5110							_
				1	5320		5220	5120							
						533	30	5130							
								/ 5140 \							

Week	4400	4300	4200	4100	5300 3400	5200 3300	5100 3200	2300	2200	2100	3100	1300	1200	1100
1						3320	3210							
2					3440			2320						
3					GEN #1				2220					
4				4130			3240							
5								2330		2120				
6					ENG #1						3110			
7			4240			3330								
8									2230		3140			
9							GEN #2			2130				
10		4350										1320		
11				4150									1220	
12							ENG #2					1330		
13			4250		3450									
14	4450													1120
15						3350					GEN #3			
16					5320		3250							
17						5220					ENG #3			
18							5220		2250				1230	
19								2350		2150				
20											3150		1250	
21												1350		1150
22	POD				5330									
23	POD						5120							
24	POD						5130							

Table 32 – Claw Chart

25 DOD 5140	
25 POD 5140	

EVENT	DESCRIPTION	DURATION (MONTHS)	MBD
001	AWARD CONTRACT (M)	0	60
002	DETAIL PROCUREMENT	38	60
003	MATERIAL PROCUREMENT	42	59
004	MFG/PRODUCTION PLANNING	40	58
005	LOFTING	21	52
006	START CONSTRUCTION (M)	0	42
007	STRUCTURAL FAB/ASSEMBLY	24	42
008	LAY KEEL (M)	0	38
009	STRUCTURAL ERECTION	20	38
010	MACHINERY INSTALLATION	30	37
011	PIPING INSTALLATION	32	35
012	ELECT/ELEX INSTALLATION	30	34
013	HVAC INSTALLATION	25	32
014	TANK/VOID CLOSEOUTS	16	24
015	STERN RELEASE (M)	0	23
016	SYSTEMS TESTING	20	22
017	LAUNCH (M)	0	20
018	ON-BOARD OUTFITTING	14	19
019	COMPARTMENT CLOSEOUTS	14	17
020	DRYDOCKING	1	14
021	INCLINING	0	13
022	DOCK TRIALS (M)	0	7
023	BUILDER'S TRIALS (M)	0	5
024	ACCEPTANCE TRIALS (M)	0	3
025	DELIVERY (M)	0	0

 Table 33 – Master Construction Schedule

4.3 Hull Form and Deck House

4.3.1 Hullform

There were several objectives for designing the hull including minimum drag by having a fair hullform, minimum radar cross section (RCS), large enough deck and volume areas to support propulsion and mission systems, and good sea keeping ability. The hullform for ADF 95 was created to ASSET baseline characteristics using DD 1000 as a parent hull. The hull surface was lofted in Rhino and the transom, top deck, and sonar dome were modified. The baseline hull characteristics are given in Table 34.

at acter istic
Value
6530 MT
139 m
17.18
5.81
12.51
.579
.779
-10°
3836 m ³

Table 34 – Baseline Hull Characteristics

The hull form of ADF 95 is a wave piercing tumblehome (WPTH). The hull above the water line, the transom, and the deckhouse are angled at 10 degrees to reduce radar cross section. Originally ADF 95 was designed with a raised deck, however for structural strength to support the pods, the entire top deck was made continuous. The body view in Figure 44 and the profile view of the hullform in Figure 45 show the 10 degree flare, the 45 degree rake of the bow, the shape of the deckhouse, the pilot house and the angled transom. A lines drawing is shown in Figure 46.

Figure 44 – Body View

Figure 45 – Profile View

Figure 46 – Lines Drawing

4.3.2 Deck House

The deckhouse for ADF 95 is made of steel and has four levels. The top level, deck 03, contains the Spy-3 and other radar equipment. Deck 02 contains the pilot house and communications room and deck 01 contains the captain and XO living quarters. The helicopter hangar is two stories tall and is located on the aft portion of the deckhouse. An isometric view of the deckhouse is shown in Figure 47.

Figure 47 – Isometric View of Deckhouse

4.4 Structural Design and Analysis

4.4.1 Procedure

The midship section and two boarding hull sections were originally modeled in MAESTRO. This model reflects the second main machinery room section and two neighboring sections. Notice that continuous decks were accounted for however non-continuous platforms like those found in the machinery room were omitted. Figure 48 shows a rendering of the model that was created.

Figure 48 – MAESTRO Model Showing Mid and Neighboring Sections

Due to limitations in MAESTRO, the model would not analyze loads properly with only a section of the ship. In order to still assess the structural integrity, a more basic method was adopted. In this method, a 2D midsection was created using plates, stiffeners, and longitudinal girders. By calculating moments of inertia and using the parallel axis theorem, the section modulus for the keel and strength deck were calculated. Knowing the Section Modulus and bending moment values, the longitudinal stress due to bending was found and compared to the yield values for the hull material type. Figure 49 shows the 2D midsection model that was created in HECSALV Section Modulus Editor and

Table 35 shows the values of Section Modulus and other associated properties of the cross-section.

Figure 49 – 2D Cross-Section at Midships

Property	Value
Total Area (m ²)	1.306
NA from Bottom (m)	4.590
I (m ⁴)	30.350
Section Modulus at Keel (m ³)	6.612
Section Modulus at Strength Deck (m ³)	3.831

Table 35 -	- Properties	of the	Midsection
-------------------	--------------	--------	------------

4.4.2 Materials and Geometry

ADF 95 is constructed predominately of HSS with HY80 steel used as the stringer plate where high bending stress is expected and greater yield strength is required. Table 36 shows the material properties of these two types of steel.

Material Properties	HSS	HY80
Modulus (GPa)	204.1	204.1
Density (kg/m ³)	7833	7833
Yield Strength (MPa)	352	552

Table 36 – Material Properties

The hull structure geometry is composed of weather deck, stringer, deck, side shell and bottom shell plating. Each of these plates is stiffened using T-stiffeners. Longitudinal girders are located below the lowest internal deck and extend across the length of the ship. Transverse deck beams and side frames are spaced 2.5m apart and are used to provide adequate support to decks and shell plating.

The scantlings of these stiffeners, girder supports, and frames appear in the list of materials arranged by catalog number shown in Table 37. Note that "S" designates that a particular member is a stiffener; "G" designates a girder, "B" a deck beam, and "F" a transverse frame.

_ Catalog # _	Web Height (mm)	Flange Width (mm)	Web Thickness (mm)	Flange Thickness (mm)
1 S/B	95.12	100.08	4.32	5.21
2 S/B	120.14	100.58	4.83	5.33
3 S	99.57	50.80	3.05	4.57
4 S	124.97	50.80	3.05	4.57
5 S	145.67	100.84	5.08	5.72
6 S/F/B	195.20	100.08	4.32	5.21
7 B	144.40	100.08	4.32	5.46
9 S	145.70	101.35	5.59	6.73
14 S/B	245.36	100.58	4.83	5.33
21 S	197.99	102.11	6.22	8.00
33 G	250.06	102.11	6.35	10.03
35 F	299.97	101.85	5.97	8.89
40 S	340.49	127.00	5.84	8.51
41 G	301.88	102.36	6.60	10.80
51 G/S	389.76	139.70	6.35	8.76
67 G	391.92	177.55	7.49	10.92
69 G	438.79	152.40	7.62	10.80
75 G	441.33	152.91	8.00	13.34
80 F	397.00	179.58	9.65	16.00
81 F	442.47	190.50	9.02	14.48
87 F	517.53	209.30	10.16	15.62
88 F	171.20	171.20	25.40	6.35
89 F	664.50	317.50	4.76	6.35
99 G	589.79	228.09	10.67	17.27
109 G	664.21	253.75	12.45	19.05
127 G	823.98	293.12	16.26	26.92
128 G	986.59	317.50	10.32	6.35
129 G	341.79	317.50	101.60	6.35

 Table 37 – Dimensions of Scantlings

4.4.3 Loads

Shear Force and Bending Moment Diagrams were found using HECSALV for three conditions. The first condition is still water and it represents the shear force and bending moment experienced by the hull under full load with no waves. The second and third conditions represent the worst case hogging and sagging scenarios whereby severe waves are used to assess these conditions. In the case of conditions two and three, the wave height, $H = 1.1 \times \sqrt{L_{WL}}$ (in feet), and the wave length, $L = L_{WL}$. Note that for the hogging condition, the crest location occurs at amidships, and for the sagging condition, the crest location occurs at the forward perpendicular. The three conditions are pictured below with their associated Shear Force and Bending Moment Diagrams in Figure 50 – Figure 52.

Figure 50 - Condition 1: Still Water at Full Load, Shear Force and Bending Moment

Figure 51 – Condition 2: Severe Hogging at Full Load, Shear Force and Bending Moment

Figure 52 – Condition 3: Severe Sagging at Full Load, Shear Force and Bending Moment

4.4.4 Adequacy

These conditions were used to determine the moment acting on the midships section and the maximum bending stress produced for each condition was found. Table 38 shows the bending stresses on the deck and keel panels.

Table 38 – Moments and Stresses Based on Condition	n Number
Condition 1: Still Water	
M _{max} (m*MT)	-14291
σ _{max} at Keel (MPa)	-21.2
σ _{max} at Strength Deck (MPa)	36.6
Condition 2: Severe Hogging	
M _{max} (m*MT)	-31655
σ _{max} at Keel (MPa)	-47.0
σ_{max} at Strength Deck (MPa)	81.1
Condition 3: Severe Sagging	
M _{max} (m*MT)	27400
σ_{max} at Keel (MPa)	40.7
σ_{max} at Strength Deck (MPa)	-70.2

Since all the bending stresses produced were substantially below 351.6 MPa, the accepted yield stress of HSS, other possible modes of failure were examined. Portions of the hull girder were chosen and treated as panel and plate elements to check for structural adequacy. The portions of the hull shown in

Figure 53 were chosen in regions likely to experience high bending or shear stress. The appropriate panel/plate regions are highlighted in blue.

Panels were chosen at the deck and keel where the maximum stress due to bending occurs. Also, a panel was chosen at the neutral axis. These regions of the hull were assessed for plate buckling, the combined bending and compressive stress of a panel, the ultimate stress of a panel and panel tension. The calculation of the second section tested, the side shell plating, is shown in Appendix I. Table 39 shows the factor or safety for each of the failure modes and panel locations where a value greater than one is representative of a safe structure.

Figure 53 – Regions Checked for Failure

Plate Buckling	FOS	Panel Ultimate Strength	FOS
Stringer Plate (at Deck)	22.60	Stringer Plate (at Deck)	11.69
Side Shell Panel (at NA)	2.14	Side Shell Panel (at NA)	3.25
Bottom Shell Panel (at Keel)	3.64	Bottom Shell Panel (at Keel)	3.11
Panel Comb. Bending And Comp. Stress	FOS	Panel Tension	FOS
Panel Comb. Bending And Comp. Stress Stringer Plate (at Deck)	FOS 3.10	Panel Tension Stringer Plate (at Deck)	FOS 2.99
Panel Comb. Bending And Comp. Stress Stringer Plate (at Deck) Side Shell Panel (at NA)	FOS 3.10 1.39	Panel Tension Stringer Plate (at Deck) Side Shell Panel (at NA)	FOS 2.99 1.78

Table 39 – Factors of Safety for Various Failure Modes

For all three panels, the most critical modes appear to be panel combined bending and compressive stress, and panel tension. Panel combined bending and compressive stress is especially critical for the bottom shell plating nearest to the keel. The factor of safety of 0.95 indicates structural inadequacy. A possible solution to this problem is to increase the size of the stiffeners and given another design iteration,

larger stiffeners would be used for this plate. The final midship section drawing of the hull is shown in Figure 54.

Figure 54 – Midship Section Drawing

4.5 Power and Propulsion

ADF 95 uses an Integrated Power System (IPS) with two pods and fixed pitch propellers for propulsion. The IPS is driven by two LM2500+ gas turbine engines and one ICR. There are also two back up generators that are driven by two CAT 3516V16 diesel engines.

4.5.1 Resistance

Ship resistance calculations were made using the Holtrop-Mennen equations. Values for length between perpendiculars, beam, draft, block coefficient, prismatic coefficient, endurance speed, and propeller diameter were used to compute the ship's bare hull resistance, wave making drag, and viscous drag. Figure 55 shows a plot of the bare hull resistance versus ship speed. The total effective horsepower was then calculated for ship speeds ranging from 20 to 35 knots in 1 knot increments. Figure 56 shows tables of the effective horsepower versus the ship speed and Figure 57 shows a plot of effective horsepower versus ship speed. Supporting calculations can be found in Appendix I.

Figure 55 – Resistance vs. Ship Speed

Figure 57 – EHP vs. Ship Speed

4.5.2 Propulsion

ADF 95 is propelled by two pods with fixed pitch propellers. The characteristics of the propellers were determined by iterating Michigan's Propeller Optimization Program (POP) to achieve the highest possible open water efficiency at endurance speed. Using these characteristics, POP was rerun to determine if

sustained speed could be achieved. The propeller design with the highest open water efficiency at endurance speed and with the ability to reach sustained speed was the design chosen.

A diameter of 5.59m was used in the propeller design because it was the largest diameter that would allow sufficient clearance to avoid interference between the screw and the hull. Table 40 - Table 42 show the design characteristics from POP including the pitch to diameter ratio, BHP, RPM, and open water efficiency. Table 40 shows the propeller characteristics of each fixed propeller and Table 41 and Table 42 show the performance characteristics of the propeller at endurance and sustained speed.

Propeller Characteristics		
Ζ	4 blades	
Z	5.41 m	
EAR	0.5929	
P/Dp	1.3956	
Dp	5.59 m	
Туре	Fixed Pitch	

Table 40 – Optimum Propeller Characteristics

Table 41 – Propeller Performance	Characteristics at Endurance Speed
----------------------------------	------------------------------------

Ve	20 knt
EHPe	7354 hp
Те	296.5 kN
THP	3848.4 hp
DHP	4834.7 hp
SHP	4834.7 hp
BHP	5980.5 hp
PROP RPM	87 RPM
open water efficiency	0.796

Fable 42 – Propeller Performance Characteristics at Sustained Spe
--

Vs	<u>32.9 knt</u>
EHPs	56164 hp
Ts	1263.8 kN
THP	29391.3 hp
DHP	38621.9 hp
SHP	38621.9 hp
BHP	95549.4 hp
PROP RPM	153 RPM
open water efficiency	0.761

4.5.3 Electric Load Analysis (ELA)

Throughout the design spiral, an ASSET electric load baseline was updated with expert advice and design considerations to a final electric load analysis. The analysis is shown in

Table 43 and is broken down into major ship operating conditions by SWBS group. Table 44 shows which generators will need to be in use during the different operating conditions.
SWBS	Description	Connected Load (kW)	Battle Power Factor	Battle (kW)	Cruise Power Factor	Cruise (kW)	Anchor Power Factor	Anchor (kW)	Inport Power Factor	Inport (kW)	Emergency Power Factor	Emergency (KW)
200	Propulsion Plant	1831.2	0.5	915.6	0.3	461.1	0.05	85.4	0.0	0.0	0.17	305.2
230	Propulsion Units	1329.5	0.4	531.8	0.2	224.0	0.02	30.0	0.0	0.0	0.12	224.0
235	Electric Propulsion	58671.0	1.0	58671.0	0.3	17601.3	0.00	0.0	0.0	0.0	0.00	0.0
240	Transmission + Propulsors	6.5	0.4	2.6	0.4	2.6	0.00	0.8	0.0	0.0	0.00	0.0
250	Support Systems	950.5	0.4	380.2	0.2	224.3	0.03	52.1	0.0	0.0	0.04	81.2
260	Propulsion Fuel & Lube Oil	2.5	0.4	1.0	4.1	10.2	0.00	2.5	0.0	0.0	0.00	0.0
300	Electric	327.8	0.6	196.7	0.5	174.3	0.08	152.7	0.4	131.1	0.05	96.7
310	Electric Power Generator	132.3	0.6	79.4	0.4	57.0	0.02	35.4	0.4	52.9	0.01	18.5
330	Lighting System	195.5	0.6	117.3	0.6	117.3	0.06	117.3	0.4	78.2	0.04	78.2
400	Command + Surveillance	2264.4	0.5	1132.2	0.4	980.0	0.26	484.4	0.4	905.8	0.27	499.2
410	Command + Control Sys.	124.2	0.6	74.5	0.6	74.5	0.01	14.9	0.0	0.0	0.00	0.0
430	Interior Communications	89.5	0.4	35.8	0.4	35.8	0.02	28.6	0.1	9.0	0.01	17.9
450	Surf Surv Sys (RADAR)	1545.5	0.4	618.2	0.4	617.4	0.17	308.7	0.1	154.6	0.17	309.1
460	Underwater Surveillance	191.3	0.4	76.5	0.4	76.3	0.01	22.9	0.1	19.1	0.02	38.2
470	Countermeasures	347.5	0.4	139.0	0.2	57.2	0.03	49.6	0.1	34.8	0.02	45.6
480	Fire Control Sys.	387.5	0.4	155.0	0.2	89.9	0.02	45.0	0.1	38.8	0.04	77.5
490	Special Purpose Sys.	83.3	0.4	33.3	0.3	29.0	0.01	14.7	0.1	8.3	0.01	10.9
500	Auxiliary Systems	1792.0	0.5	896.0	0.6	1160.7	0.69	1254.7	0.1	179.2	0.22	396.4
510	Climate Control	1630.3	0.4	652.1	0.5	826.6	0.50	912.3	0.0	0.0	0.14	260.6
520	Sea Water Sys.	142.9	0.7	100.0	0.6	86.4	0.05	86.1	0.4	57.1	0.05	100.0
530	Fresh Water Sys	510.8	0.4	77.8	0.4	204.3	0.11	204.3	0.4	204.3	0.02	35.7
540	Fuels/Lubricants, Handling	102.0	0.4	40.8	0.2	20.9	0.02	28.5	0.1	10.2	0.00	0.0
550	Air, Gas + Misc Fluid Sys.	39.8	0.4	15.9	0.3	13.0	0.01	13.0	0.0	0.0	0.00	0.0
560	Ship Control Sys.	0.3	0.4	0.1	0.4	0.1	0.00	0.0	0.1	0.0	0.00	0.1
580	Mechanical Handling Sys.	11.0	0.4	4.4	0.4	4.4	0.00	4.4	0.1	1.1	0.00	0.0
590	Special Purpose Sys.	12.5	0.4	5.0	0.4	5.0	0.00	6.0	0.1	1.3	0.00	0.0
600	Outfit + Furnishing, General	129.8	0.4	51.9	1.4	185.4	0.10	184.6	0.4	51.9	0.00	4.0
620	Hull Compartmentation	10.5	0.4	4.2	0.4	4.2	0.00	3.4	0.4	4.2	0.00	0.0
630	Preservatives + Coverings	18.3	0.4	7.3	0.4	7.3	0.00	7.3	0.4	7.3	0.00	0.0
650	Service Spaces	418.5	0.4	40.4	0.4	167.4	0.09	167.4	0.4	167.4	0.00	4.0
660	Working Spaces	6.5	0.4	0.0	1.0	6.5	0.00	6.5	0.4	2.6	0.00	0.0
700	Armament	147.7	0.6	88.6	0.3	49.7	0.02	40.7	0.0	0.0	0.03	52.0
710	Guns + Ammunition	86.7	0.6	52.0	0.2	18.0	0.00	9.0	0.0	0.0	0.03	52.0
720	Missiles + Rockets	51.8	0.6	31.1	0.6	31.1	0.02	31.1	0.0	0.0	0.00	0.0
750	Torpedoes	1.8	0.6	1.1	0.3	0.6	0.00	0.6	0.0	0.0	0.00	0.0
780	Aircraft Related Weapons	7.3	0.6	4.4	0.0	0.0	0.00	0.0	0.0	0.0	0.00	0.0
	Total Required	65163.9		61952.0		20612.5		2202.5		1268.0		1353.5
	24 Hour Average			25448.2		8626.2		1023.9		585.9		782.5

 Table 43 - Electric Load Analysis Summary

Table 44 – Generator Power Usage

Number	Generator	Rating (kW)	Avertage Connected (kW)	Online	Battle (kW)	Online	Cruise (kW)	Online	Anchor (kW)	Online	Port (kW)	Online	Emergency (KW)
2	GE LM2500+	26099.0	52198.0	2	52198.0	0	0.0	0	0.0	0	0.0	0	0.0
1	WESTHS WR21 29	21655.0	21655.0	1	21655.0	1	21655.0	0	0.0	0	0.0	0	0.0
2	CAT 3516V16	1275.0	2550.0	0	0.0	0	0.0	2	2550.0	2	2550.0	2	2550.0
	Total		76403.0		73853.0		21655.0		2550.0		2550.0		2550.0

4.5.4 Fuel Calculation

A fuel calculation was performed for endurance range and sprint range in accordance with DDS 200-1. The range of the IPS system was calculated based on its maximum rating of 3600 RPM. Next, the specific fuel rate was read from the Engine Performance Curve in Figure 58 as $0.33 \frac{lbf}{hp*hr}$. This equates to an

average fuel rate of $0.357 \frac{lbf}{hp*hr}$ when accounting for propulsion plant deterioration over two years.

From fuel consumption, endurance speed, and volume of fuel available, an endurance range of 6005 nm was calculated. This calculation can be found in the "Prop Selection, Engine Match, and Fuel Calculation" file in Appendix I.

Figure 58 – Engine Performance Curve

4.6 Mechanical and Electrical Systems

Mechanical and electrical systems were selected according to mission requirements, standard naval combatant vessel requirements, and expert opinion. The machinery equipment list (MEL) includes weights, dimensions, and locations by compartment for all major non-mission mechanical and electrical equipment to support propulsion, ship service, and habitability systems. The complete MEL is provided in Appendix F. The following subsections describe the major components of the mechanical and electrical systems and the methods used to size them. The arrangement of these components is detailed in Section 4.7.2.

4.6.1 Integrated Power System (IPS)

Figure 59 is an electrical diagram that represents a basic one-line connection of generators, propulsors, and ship service power buses in an Integrated Power System (IPS), in which the ship service power is distributed from any of the three propulsion generators or SSDG's via a zonal bus. Power Control Modules (PCMs) are located in each zone to convert power, and these units direct ship service power where it is needed. They are able to convert AC to DC and DC to AC as required. Two Ship Service Gas Turbine Generators (SSGTGs) provide 480V AC 60 HZ power to a ship service switchboard which has direct connection to port and starboard ship service zonal buses. Two Main Gas Turbine Generators (MGTGs) and one Secondary RGT Generator provide 4160V AC 60HZ power to a propulsion switchboard. This power can be routed to ship service loads through Power Conversion Modules (PCMs) to the ship service switchboard or directly to the port and starboard zonal buses. Each generator set has a control panel for local control, and they may be automatically or manually started locally or remotely from the EOS. Automatic paralleling and load sharing capability are provided for each set. Electric power is taken from the zonal buses in each zone through the power conversion modules. If there is a vital system in a zone it draws power from both the port and starboard buses through a power conversion module and an ABT which is an automated switch to either bus in case of power loss of one of the zonal buses.

Figure 59 – One-Line Electrical Diagram

4.6.2 Service and Auxiliary Systems

Tanks designated for lube oil, fuel oil, and waste oil are sized according to capacity values from the Ship Synthesis Model. Equipment is sized based on capacity ratings, similar ship designs, and expert opinion. Fuel and lube oil purifiers and pumps are sized relative to the fuel and oil consumption of each engine, and are located in a purifier room and in the main machinery rooms (MMR1 and MMR2). Two distillers are used to produce potable water from seawater at a capacity of 76 cubic meters each per day. Two proportioning and two recalculating brominators are used with this system, which are sized based on crew numbers and are located in the Auxiliary Machinery Room (AMR). A sewage collection unit and a sewage plant, also sized according to crew numbers, are located in a separate sewage treatment room. Other ship service equipment includes hydraulic starting units, lube oil filters and coolers, and pumps for chilled water, potable water, bilge, and ballast.

4.6.3 Ship Service Electrical Distribution

Ship service power is distributed from either of the switchboards to port and starboard zonal buses. Electric power is taken from the zonal buses in each zone through the power conversion modules. If there is a vital system in a zone it draws power from both the port and starboard buses through a power conversion module and an ABT which is an automated switch to either bus in case of power loss of one of the zonal buses.

4.7 Manning

ADF 95 was designed to meet the current Navy guidelines for ship manning. Through the use of automation and unmanned systems the total ship manning has been significantly reduced. The manning for ADF 95 is broken down into 5 departments: Executive/Administration, Operations, Weapons, Engineering, and Supply. ADF 95 will accommodate 25 Officers, 27 CPO and 208 enlisted men for a total crew size of 260 members. Table 45 shows a breakdown of the number of required crew members for each department.

Departments	Division	Officers	СРО	Enlisted	Total Department
	CO/XO	2			2
	Department Heads	4			
Executive/Admin	Executive/Admin	0	1	5	6
Operations	Communications	1	2	11	57
	Navigation and Control	1	1	11	
	Electronic Repair	1	1	8	
	CIC,EW,Intelligence	1	2	16	
Weapons	Air	2	2	10	73
	Boat and Vehicle	1	2	11	
	Deck	1	2	16	
	Ordnance/Gunnery	1	2	9	
	ASW/MCM	1	1	11	
Engineering	Main Propulsion	1	2	20	68
	Electrical/IC	1	1	11	
	Auxiliaries	1	1	11	
	Repair/DC	1	1	16	
Supply	Stores	1	2	8	40
	Material/Repair	1	1	8	
	Mess	1	1	16	
	Total	23	25	198	246
	Accommodations	25	27	208	260

Table	45	- Manning	Summary
Lanc	чυ.	- wiamme	Summary

Figure 60 – Manning Organization

4.8 Space and Arrangements

HECSALV and AutoCAD were used to produce the general arrangements for ADF 95. HECSALV was used for primary subdivision to create tanks, unassigned spaces, and loading. Rhino was used to create a 2-D profile drawing of the decks, platforms, and locations of rooms inside the unassigned spaces from HECSALV. A profile showing the internal arrangements is shown in Figure 61.

Figure 61 - Profile View of Internal Arrangements

4.8.1 Volume

The initial volume requirements for the ship were found using the ship synthesis model. HECSALV was used to create tanks which were arranged for producibility, accessibility, stowage, survivability, damage stability, floodable length, trim and heel. A floodable length curve was developed to adjust subdivision so that the ship was capable of surviving if three continuous sections were flooded. The floodable length curve is shown in Figure 62 and the primary subdivision and tank capacities are shown in Figure 63.

Figure 62 – Floodable Length Curve

Figure 63 – Primary Subdivision

4.8.2 Main and Auxiliary Machinery Spaces and Machinery Arrangement

There are three machinery compartments in ADF 95. These spaces include two main machinery rooms (MMR1 and MMR2) and one auxiliary machinery room (AMR). All machinery equipment is arranged to produce port and starboard symmetry wherever possible to avoid heel. Machinery is spaced to allow access to crew members for maintenance and inspection. Equipment near bulkheads is required to have a minimum clearance of 0.3 meters. A profile drawing of the machinery arrangements is shown in Figure 64, and arrangement drawings of MMR1 and MMR2 are shown in Figure 65 and Figure 66. Two LM2500+ Main Gas Turbine Generators rated at 26 MW each are located in MMR1, while one ICR Secondary Gas Turbine Generator rated at 21.6 MW is located in MMR2. The AMR contains two Caterpillar 3516V16 Diesel Generators rated at 1275 kW each. A machinery arrangement drawing of the AMR is shown in Figure 67.

Figure 64 – Profile View Showing Arrangements

Figure 65 – MMR 1 Platform Arrangements

Figure 66 – MMR 2 Platform Arrangements

Figure 67 – AMR Platform Arrangements

4.8.3 Internal Arrangements

ADF 95 contains 5 decks, 3 platforms, and a holding area below the third platform. AutoCAD was used to layout areas for the 6 different classifications in the internal arrangements including combat systems, mission support, human support, ship support, hangar space, and machinery rooms. The volumes and areas required for each were found using the ship synthesis model and relevant areas are given in the SSCS Space Summary in Appendix H.

The human support area is located the damage control deck, Deck 2. This deck includes the crew's berthing, CPOs berthing, officers berthing, mess rooms, and other basic human support areas. Platform 1 consists of ship support and storage areas. The ships maintenance areas and stores are located throughout the platform. Each department requires its own storage which is arranged in the bow of Platform 1.

Mission support is located in the stern of Deck 2 and Platform 1 for close proximity to the RHIB, Spartan, NIXIE, and TACTAS. The machinery rooms run vertically from the inner bottom of the hull to the Damage Control Deck. The inlet and exhaust ducts for the engines move vertically through the ship and are located along the centerline to reduce the heat signature along the hull. The slopes of the ducts are small to ensure maximum flow. The general arrangements of the ship are shown in Figure 68 – Figure 73.

Figure 68 – Deck 03 and Deck 02 Arrangements

Figure 69 – Deck 01 and Deck 1 Arrangements

Figure 70 – Deck 2 Arrangements

Figure 71 – Platform 1 Arrangements

Figure 72 – Platform 2 Arrangements

Figure 73 – Platform 3 and Holding Area Arrangements

4.8.4 Living Arrangements

The initial volume requirements for the living areas were found using the ship synthesis model. There were 6 different living areas included on the ship for: the commanding officer (CO), the executive officer (XO), department heads, officers, Chief Petty Officers (CPO), and the enlisted crew. Each area was arranged to maximize protection, privacy, and functional ability. The manning accommodation space is summarized in Table 46.

	Tuble 40 Multining Recommodutions					
Item	Accommodation Quantity	Per Space	Number of Spaces	Area Each (m ²)	Total Area (m ²)	
СО	1	1	1	22.9	22.9	
XO	1	1	1	13.9	13.9	
Department Head	4	1	4	11.15	44.6	
Other Officer	19	2	10	10.68	106.8	
СРО	26	13	2	34.5	69	
Enlisted	208	23	9	41.87	376.8	

Table 46 – Manning Accommodations

The CO and XO accommodations are on Deck 01 and the four department heads' housing is on Deck 1. The 19 officer rooms and 26 CPO spaces are arranged on Deck 2 and crew accommodations are located on Platform 3.

4.8.5 External Arrangements

The primary objective for external arrangements is to maximize effectiveness of combat systems. To do this, all combat systems are placed in areas that give the system the highest productivity, with minimum effect on radar cross section.

To ensure 360 degrees of coverage for the Spy-3 radar, two panels are placed on the front of the deckhouse and one is on the aft end of Deck 02. Two CIWS are located off center on top of the deckhouse to guarantee complete coverage of the hull. The placement is designed to protect against incoming missiles and aircraft at different angles of attack. A 57mm MK3 is placed forward on the bow to achieve maximum shooting range.

To minimize radar cross section, the SVTTs and DLSs are placed inside the hanger. Hatches are on both sides of the hangar that allow the systems to be fired when needed, but still maintain the low radar cross section when stowed. An isometric view of the external arrangements is shown in Figure 74.

Figure 74 – Isometric View of External Arrangements

4.9 Weights and Loading

4.9.1 Weights

ADF 95's weights are grouped together by SWBS number. The value of weight for each SWBS group was obtained either from manufacturer's specifications or derived from ASSET. The vertical and horizontal centers of gravity were calculated based on component locations in the machinery and general arrangements models. Weights and centers of gravity were then used to calculate moments. Table 47 shows a summary of the lightship weights, centers of gravity, and moments. A more detailed weights summary is given in Appendix G with the LCGs measured from the forward perpendicular.

SWBS	COMPONENT	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
100	HULL STRUCTURES	2191.20	6.55	14345.52	77.18	169116.51	0.00	0.00
200	PROPULSION PLANT	795.60	3.48	2770.38	106.07	84389.54	0.00	0.00
300	ELECTRIC PLANT, GENERAL	383.80	6.03	2313.08	67.02	25722.10	0.00	0.00
400	COMMAND+SURVEILLANCE	270.10	11.17	3018.11	61.23	16538.40	0.28	75.56
500	AUXILIARY SYSTEMS, GENERAL	643.90	7.26	4674.03	56.23	36205.79	0.28	180.48

 Table 47 – Lightship Weight Summary

600	OUTFIT+FURNISHING,GENERAL	489.90	6.69	3278.46	81.61	39981.56	-0.44	-214.24
700	ARMAMENT	125.70	7.57	951.76	67.87	8531.80	0.27	34.14
	LIGHTSHIP WEIGHT	4900.20	6.40	31351.33	77.65	380485.71	0.02	75.94
	MARGIN	490.02	6.40	3135.13	77.65	38048.57	0.02	7.59
	LIGHTSHIP WEIGHT + MARGIN	5390.22	6.40	34486.47	77.65	418534.28	0.02	83.53

4.9.2 **Loading Conditions**

The U.S. Navy's DDS 079-1 defines two independent loading conditions that were evaluated for ADF 95. The first condition is the Full Load Condition and the second is the Minimum Operating Condition. Each load condition uses the Lightship weight combined with a percentage of the load weight, as specified in the DDS 079-1. In Full Load Conditions; the ammunitions, provisions and personnel stores, general stores, reserve feed, fresh water, and diesel fuel marine are at 100% capacity. The lube oil, aviation fuels are at 95% capacity and the sewage and ballast tanks are empty. In the Minimum Operating Condition; the ammunition, provisions, personnel stores, general stores, lube oil, and aviation fuel are at 33% capacity. The diesel fuel marine is at 50% capacity, and the reserve feed and fresh water are at 67% capacity. The aviation fuel is at 95% capacity, the sewage tanks are at 95% capacity and the ballast tanks are empty. Table 48 shows the weights, centers of gravity and moments for the Full Load condition, and Table 49 shows weights, centers of gravity and moments for the Minimum Operating Condition.

	I able 48	– Full Load	Condition	weight Su	mmary			
	FULL LOAD CONDITION	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
F00	LOADS	1119.90	2.85	3187.14	62.24	69703.47	0.14	153.10
F10	SHIPS FORCE	29.00	8.19	237.51	65.33	1894.57	1.80	52.20
F21	SHIP AMMUNITION	77.90	7.80	607.62	121.80	9488.22	0.00	0.00
F22	ORD DEL SYS AMMO	10.00	7.50	75.00	48.00	480.00	0.00	0.00
F23	ORD DEL SYS (AIRCRAFT)	30.70	13.90	426.73	89.00	2732.30	0.00	0.00
F31	PROVISIONS+PERSONNEL STORES	30.80	10.00	308.00	65.00	2002.00	4.06	125.05
F32	GENERAL STORES	6.90	7.30	50.37	103.00	710.70	-3.50	-24.15
F41	DIESEL FUEL MARINE	805.90	1.00	805.90	50.00	40295.00	0.00	0.00
F42	JP-5	81.20	5.26	427.11	103.80	8428.56	0.00	0.00
F46	LUBRICATING OIL	8.20	6.15	50.43	100.35	822.87	0.00	0.00
F47	SEA WATER	0.00	6.10	0.00	57.70	0.00	0.00	0.00
F52	FRESH WATER	39.30	5.05	198.47	72.50	2849.25	0.00	0.00
	Total Weight	6510.12	5.79	37673.60	75.00	488237.75	0.04	236.63

Watabe C 1.4.

Table 49 – Minimum Operating Condition Weight Summary

	MINIMUM OPERATING CONDITION	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
F00	LOADS	426.16	3.59	1529.05	64.07	27305.64	0.19	80.39
F10	SHIPS FORCE	29.00	8.19	237.51	65.33	1894.57	0.00	0.00
F21	SHIP AMMUNITION	25.97	7.80	202.57	121.80	3163.15	1.80	46.75
F22	ORD DEL SYS AMMO	3.33	7.50	24.98	48.00	159.84	0.00	0.00
F23	ORD DEL SYS (AIRCRAFT)	30.70	13.90	426.73	89.00	2732.30	0.00	0.00
F31	PROVISIONS+PERSONNEL STORES	10.27	6.00	61.62	75.06	770.87	4.06	41.70
F32	GENERAL STORES	2.30	6.79	15.62	75.06	172.64	-3.50	-8.05
F41	DIESEL FUEL MARINE	268.60	1.00	268.60	50.00	13430.00	0.00	0.00
F42	JP-5	27.06	5.26	142.34	103.80	2808.83	0.00	0.00
F46	LUBRICATING OIL	2.73	6.15	16.79	100.35	273.96	0.00	0.00
F47	SEA WATER	0.00	6.10	0.00	57.70	0.00	0.00	0.00
F52	FRESH WATER	26.20	5.05	132.31	72.50	1899.50	0.00	0.00
	Total Weight	5816.38	6.19	36015.52	76.65	445839.92	0.03	163.93

4.10 Hydrostatics and Stability

The hydrostatics, intact stability, and the damage stability of ADF 95 were calculated using HECSALV. The hullform of the ship was imported from RHINO and tanks and unassigned compartments were then defined within bulkheads. Loading and damage conditions were created in HECSALV and analyzed.

4.10.1 Intact Stability

In each condition, trim, stability and righting arm data are calculated. All conditions are assessed using DDS 079-1 stability standards for beam winds with rolling. For intact stability analysis, the full load and minimum operating conditions were evaluated. The tanks and compartments were filled to the Navy's DDS 079-1 standards and the stability and trim were determined for each condition. The righting arm curve was used to ensure that the area under the curve was greater than 1.4 times the area under the heeling arm curve. Table 50 shows the stability and trim calculations for the full load condition, and Figure 75 shows the righting and heeling arm curve for the full load condition. Table 51 shows the stability and trim calculations for the minimum operating condition, and Figure 76 shows the righting and heeling arm curve for the minimum operating condition.

±.	Tuble 20 Tuble Condition Trini and Stubility Tuble					
Stability	Calculation	Trim	Calculation			
KMt	10.507 m	LCF Draft	6.384 m			
VCG	5.804 m	LCB (even keel)	74.636A m-FP			
GmT (solid)	4.703 m	LCF	83.224a m-FP			
FSc	0.009 m	MT1cm	150 m-MT/cm			
GMt (corrected)	4.694 m	Trim	0.541 m-A			
Specific Gravity	1.0250	List	0.0 deg			

 Table 50 – Full Load Condition Trim and Stability Table

Figure 75 – Full Load Condition Righting Arm and Heeling Arm Curve

	. – Minimum Operating C	onultion Trini and Star	Junty Table			
Stability C	alculation	Trim Calculation				
KMt	10.746 m	LCF Draft	6.154 m			
VCG	5.890 m	LCB (even keel)	74.003A m-FP			
GmT (solid)	4.856 m	LCF	83.321a m-FP			
FSc	0.103 m	MT1cm	147 m-MT/cm			
GMt (corrected)	4.753 m	Trim	0.653 m-A			
Specific Gravity	1.0250	List	0.0 deg			

Table 51 – Minimum Operating Condition Trim and Stability Table

Figure 76 – Minimum Operating Condition Righting Arm and Heeling Arm Curve

4.10.2 Damage Stability

The damage stability of ADF 95 was checked under both full load and minimum operating conditions. In accordance with DDS 079-1, ADF 95 should be able to flood a section of the ship that is 15% of the length along the waterline (21 meters) at any longitudinal position along the hull. Starting at the forward perpendicular, 21 meter sections were flooded and analyzed under both loading conditions. Under both load conditions the worst case scenario occurred when ADF 95 was flooded from 100m to 130m aft of the forward perpendicular.

The righting and heeling arm curve was also examined for each load condition. The ship passed the damage stability test because the waterline did not rise above the flood deck for either load condition under any damage scenario.

Figure 77 shows the worst case damage scenario at full load and Table 52 gives the corresponding stability data. Figure 79 shows the worst case damage scenario at minimum operating conditions and Table 53 gives the corresponding stability data. Figure 78 shows the righting arm curve for the full load condition and Figure 80 shows the righting arm curve for the minimum operating condition.

Figure 77 – Full Load Condition Worst Case Damage Scenario

Stability	Calculations
Draft FP	4.425m
Draft AP	7.547m
Trim	3.123m AFT
GMt	2.019m

Table 52 – Full Load Worst Case Damage Stability Calculations

Figure 78 – Full Load Condition Worst Case Damage Righting Arm Curve

Figure 79 – Minimum Operating Condition Worst Case Damage Scenario

rubie ee minimum operating worse ouse Damage Stubinty outeautor	Table	53 -	Minimum	Operating	Worst	Case	Damage	Stability	Calculation	ns
---	-------	------	---------	-----------	-------	------	--------	-----------	-------------	----

Stability	Calculations
Draft FP	4.143m
Draft AP	7.416m
Trim	3.222m AFT
GMt	1.941m

Figure 80 – Minimum Operating Condition Worst Case Damage Righting Arm Curve

4.11 Seakeeping

A seakeeping analysis in the full load condition was performed using How was it modeled? Sea states? Speeds? Headings? Velocities and accelerations at what locations? Tables. ORD and US Navy Motion Limit Criteria by subsystem. Polar plots show the ship response for various headings and forward speeds. Significant amplitude criteria are listed in Table 54. Describe and discuss. Include all limiting polar plots. Assess.

Tuble of Elimiting filterior official (Significant Amplitude) and Results								
Application	Roll	Pitch	Yaw	Longitudinal Acceleration	Transverse Acceleration	Vertical Acceleration	ORD Threshold SeaState	Sea State Achieved

Table 54 - Limiting Motion Criteria (Significant Amplitude) and Results

4.12 Cost Analysis

Cost was estimated using parametric models for both the lead ship and follow ship acquisition as part of the multi-objective genetic optimization within the concept exploration phase (see sections 3.4.3, 3.5, and 3.6). These models used rough estimates for the weight of SWBS groups determined by parametric math models to estimate the basic cost of construction. Other factors that were considered included endurance range, brake horsepower, propulsion system type (IPS vs. mechanical), and engine type. Estimates for shipbuilder profit, government costs and change orders, and other capital-consuming aspects were added to this cost to come up with the final cost estimates. In concept development, many of the assumptions on which the original cost estimate was based were recalculated as new numbers were determined or as the design changed. Therefore, a re-estimation of cost was performed at the end of concept development by using the MATHCAD model given in Appendix G. Table 55 shows the results of the re-calculated cost model.

Cost Factor		Values
Lightship Weight (ltor	n)	5319
	Officers	23
Crew	CPOs	25
	Enlisted	198
Ship Service Life (yrs)	40	
Initial Operational Ca	2015	
Base Year	2010	
Total Lead Ship Cost	1.3	
Total Follow-Ship Ac	824.08	
Total Life Cycle Cost	60.12	
Total Discounted Life Cycle Cost (Billion Dollars) 10.2		

Table 55 -	- Revised	Cost Estimates
------------	-----------	-----------------------

5 Conclusions and Future Work

5.1 Assessment

Discuss Table 56. Compare to ORD goals and thresholds and to baseline.

Technical Performance Measure	ORD TPM (Threshold)	Original Goal	Concept BL	Final Concept BL
	-			
	-			

5.2 Future Work

Provide a list of things to be done next time around spiral. All areas.

5.3 Conclusions

Sell your design based on assessment.

******this section will be completed before submission to SNAME*****

6 References

- 1. Brown, Dr. Alan and LCDR Mark Thomas, USN. "Reengineering the Naval Ship Concept Design Process." 1998.
- 2. Brown, A.J., "Ship Design Notes", Virginia Tech AOE Department, 2006.
- 3. Comstock, John P., ed. <u>Principles of Naval Architecture</u>, New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1967.
- 4. U.S. NavyFact File. 2004. U.S. Navy Home Page. http://www.chinfo.navy.mil/navpalib/factfile/ffiletop.html

Appendix A – Initial Capabilities Document (ICD)

UNCLASSIFIED

INITIAL CAPABILITIES DOCUMENT

FOR AN

AREA DEFENSE FRIGATE (ADF)

1. JOINT FUNCTIONAL AREA(S).

- Force Application
- Force Protection
- Battlespace Awareness

The range of military application for the functions in this ICD includes: force application from the sea; force application, protection and awareness at sea; and protection of homeland and critical bases from the sea. Timeframe considered: 2010-2050. This extended timeframe demands flexibility in upgrade and capability over time.

2. REQUIRED FORCE CAPABILITY(S).

- · Assure access for the Joint Force from the sea.
- · Project defense around friends, joint forces and critical bases of operations at sea.
- Provide sea-based layer of homeland defense.
- Provide persistent surveillance and reconnaissance.

3. CONCEPT OF OPERATIONS SUMMARY

The 2001 Quadrennial Defense Review identifies seven critical US military operational goals. These are: 1) protecting critical bases of operations; 2) assuring information systems; 3) protecting and sustaining US forces while defeating denial threats; 4) denying enemy sanctuary by persistent surveillance, 5) tracking and rapid engagement; 6) enhancing space systems; and 7) leveraging information technology.

The "Naval Transformational Roadmap" and "Sea Power 21" provide the US Navy's plan to support these goals including nine necessary warfighting capabilities in the areas of Sea Strike – strategic agility, maneuverability, ISR, time-sensitive strikes; Sea Shield – project defense around allies, exploit control of seas, littoral sea control, counter threats; and Sea Base – accelerated deployment & employment time, enhanced seaborne positioning of joint assets.

These goals and capabilities must be achieved with <u>sufficient numbers</u> of ships <u>for</u> <u>worldwide and persistent coverage</u> of all potential areas of conflict, vulnerability or interest.

Forward-deployed naval forces will be the first military forces on-scene having "staying and convincing" power to promote peace and prevent crisis escalation. The force must have the ability to provide a "like-kind, increasing lethality" response to influence decisions of regional political powers. It must also have the <u>ability to remain invulnerable to enemy attack</u>. New ships must complement and support this force.

Power Projection requires the execution and support of flexible strike missions and support of naval amphibious operations. This includes protection to friendly forces from enemy attack, unit self defense against littoral threats, area defense, mine countermeasures and support of theater ballistic missile defense. Ships must be able to support, maintain and conduct operations with the most technologically advanced unmanned/remotely controlled tactical and C^4/I reconnaissance vehicles. Naval forces must possess sufficient mobility and endurance to perform all missions on extremely short notice, at locations far removed from home port. To accomplish this, they must be pre-deployed, virtually on station in sufficient numbers around the world.

Naval forces must also be able to support non-combatant and maritime interdiction operations in conjunction with national directives. They must be flexible enough to support peacetime missions yet be able to provide instant wartime response should a crisis escalate.

4. CAPABILITY GAP(S)

The overarching capability gap addressed by this ICD is:

 Provide and support functional areas specified above with <u>sufficient numbers</u> of reconfigurable-mission (modular, open systems architecture) ships <u>for worldwide and</u> <u>persistent coverage</u> of all potential areas of conflict, vulnerability or interest. – Projected force numbers of US Navy ships will not provide this coverage. LCS ships will contribute, but are not able to support <u>adequate inherent core capabilities for AAW/BMD (with queuing)</u>, and <u>blue/green water ASW necessary for many strike group and independent</u> <u>operations</u>. <u>DDG-51 class ships are too costly</u> for this force-multiplier.

Specific capability gaps resulting from insufficient force numbers with adequate inherent core capabilities include: <u>AAW/BMD</u> (with queuing); blue/green water ASW. Additional capabilities include capacity and interfaces for special mission packages and personnel (mine countermeasures, ISR, ASUW, special operations, maritime interdiction and limited disaster relief).

Priority	Capability Description	Threshold Systems or metric	Goal Systems or metric
1	Core AAW/BMD (with queuing)	SPY-3 w/32 cell VLS, Nulka/ SRBOC, SLQ-32V2	SPY-3 w/64 cell VLS, Nulka/ SRBOC, SLQ-32V3
2	Core Blue/green water ASW	SQS-56 sonar, TACTAS, NIXIE, 2xSH-2G, SSTD	SQS-53C sonar, TACTAS, NIXIE, 2xSH-60, SSTD
3	Special-Mission Packages (MCM, SUW, ASW, ISR, Special Forces)	1xLCS Mission Packages with UAVs, USVs and stern launch	2xLCS Mission Packages with UAVs, USVs and stern launch
4	Core ISR	2xSH-2G, advanced C4I	2xSH-60, advanced C4I
5	Mobility	30knt, full SS4, 3500 nm, 45days	35knt, full SS5, 5000 nm, 60days
6	Survivability and self-defense	DDG-51 signatures, mine detection sonar, CIWS or CIGS	DD1000 signatures, mine detection sonar, CIWS or CIGS
7	Maritime interdiction, ASUW	2xSH-2G, 57mm gun, 2x.50 caliber guns	2xSH-60, 57mm gun, 2x.50 caliber guns, Netfires

5. THREAT AND OPERATIONAL ENVIRONMENT

The shift in emphasis from global Super Power conflict to numerous regional conflicts requires increased flexibility to counter a variety of asymmetric threat scenarios which may rapidly develop. Two distinct classes of threats to U.S. national security interests exist:

- Threats from nations with either a significant military capability, or the demonstrated interest in acquiring such a capability. Specific weapons systems that could be encountered include ballistic missiles, land and surface launched cruise missiles, significant land based air assets and submarines.
- Threats from smaller nations who support, promote, and perpetrate activities which cause regional instabilities detrimental to international security and/or have the potential for development of nuclear weapons. Specific weapon systems include diesel/electric submarines, land-based air assets, and mines (surface, moored and bottom).

Since many potentially unstable nations are located on or near geographically constrained (littoral) bodies of water, the tactical picture will be on smaller scales relative to open ocean warfare. Threats in such an environment include: (1) technologically advanced weapons - cruise missiles like the Silkworm and Exocet, land-launched attack aircraft, fast gunboats armed with guns and smaller missiles, and diesel-electric submarines; and (2) unsophisticated and inexpensive passive weapons – mines (surface, moored and bottom), chemical and biological weapons. Many encounters may occur in shallow water which increases the difficulty of detecting and successfully prosecuting targets. Platforms chosen to support and replace current assets must have the <u>capability to dominate all aspects of the littoral environment</u>.

The platform or system must be capable of operating in the following environments:

- Open ocean (sea states 0 through 9) and littoral
- Shallow and deep water
- Noisy and reverberation-limited
- Degraded radar picture
- Crowded shipping
- · Dense contacts and threats with complicated targeting
- Biological, chemical and nuclear weapons
- All-Weather Battle Group
- All-Weather Independent operations

6. FUNCTIONAL SOLUTION ANALYSIS SUMMARY.

- a. Ideas for Non-Materiel Approaches (DOTMLPF Analysis).
- Change the U.S. role in the world by reducing U.S. international involvement.
- Keep ships forward-deployed and rotate crews.
- · Increase reliance on foreign political and military activity to meet the interests of the U.S.
- Increase reliance on non-military assets and options to enhance the U.S. performance of the missions identified above while requiring a smaller inventory of naval forces.
- b. Ideas for Materiel Approaches.
- Retain and upgrade current fleet assets as necessary. Possibilities include a service life extension to current assets. Continue production of the DDG-51 class mixed with LCS

ships at a rate that provides sufficient surface force numbers and sufficient inherent capability.

- Design and build a new frigate or corvette-sized ship design, larger than LCS, but smaller and much less expensive than DDG-51 class. This ship would use the same mission packages as LCS, but with additional AAW/BMD (with queuing) and blue/green water ASW capabilities.
- Purchase and build an existing corvette or frigate design such as the Israeli Eilat Class (Sa'ar 5), Swedish Visby Plus or MEKO D Frigate.

7. FINAL RECOMMENDATIONS.

- a. Maintaining LCS and possibly ADFs forward-deployed with crew rotation has the potential to provide a significant low cost effective force multiplier and should be tested.
- b. Upgrade and service life extension of existing assets has the undesirable effect of maintaining larger crews and resulting life cycle costs.
- c. Existing foreign navy designs do not provide the right mix or flexibility of core and modular capabilities.
- d. <u>A new frigate-sized ship with more capable core systems and the same modular systems as LCS provides the potential for significant acquisition and life cycle cost savings while providing core systems more consistent with independent missions and direct support of CSGs and ESGs. These core capabilities are AAW/BMD (with queuing) and blue/green water ASW. It is essential that the acquisition cost of a new frigate be kept to the absolute minimum, no more than 50% of a DDG-51 class ship. The platforms must be highly producible, minimizing the time from concept to delivery to the fleet and maximizing system commonality with LCS. The platforms must operate within current logistics support capabilities. Inter-service and Allied C⁴/I (inter-operability) must be considered. The new ship must have absolute minimum manning.</u>

Appendix B – Acquisition Decision Memorandum (ADM)

 Virginia
 Aerospace and Ocean Engineering

 Virginia POLYTECHNIC INSTITUTE
 215 Randolph Hall

 Mail Stop 0203, Blacksburg, Virginia 24061
 Phone # 540-231-6611 Fax: 540-231-9632

August 16, 2006

From:Virginia Tech Naval Acquisition ExecutiveTo:ADF Design Teams

Subject: ACQUISITION DECISION MEMORANDUM FOR an Area Defense Frigate (ADF)

- Ref: (a) Virginia Tech ADF Initial Capabilities Document
- This memorandum authorizes concept exploration of a single material alternative proposed in Reference (a) to the Virginia Tech Naval Acquisition Board on 16 August 2006. Additional material and non-material alternatives supporting these capabilities may be authorized in the future.
- 2. Concept exploration is authorized for a new frigate or corvette-sized ship design, larger than LCS, but smaller and much less expensive than DDG-51 class. This ship would use the same mission packages as LCS, but with additional AAW/BMD (with queuing) and blue/green water ASW capabilities. Design capabilities must be consistent with the capabilities and constraints specified in Reference (a). The design must minimize personnel vulnerability in combat through automation, innovative concepts for minimum crew size, and signature reduction. Average follow-ship acquisition cost shall not exceed \$500M (\$FY2010) with a lead ship acquisition cost less than \$1B. It is expected that 20 ships of this type will be built with IOC in 2015.
- 3. The AOA shall be conducted in accordance with the Virginia Tech Concept Exploration process.

A.J. Brown VT Acquisition Executive

A Land-Grant University The Commonwealth Is Our Campus An Equal Opportunity/Affirmative Action Institution

Appendix C – Capability Development Document (CDD)

UNCLASSIFIED

CAPABILITY DEVELOPMENT DOCUMENT

FOR

AREA DEFENSE FRIGATE (ADF) Variant #95 VT Team 5

1. Capability Discussion.

The Initial Capabilities Document (ICD) for this CCD was issued by the Virginia Tech Acquisition Authority on 31 August 2006. The overarching capability gaps addressed by this ICD are: Provide and support functional areas with <u>sufficient numbers</u> of reconfigurable-mission (modular, open systems architecture) ships <u>for worldwide and persistent coverage</u> of all potential areas of conflict, vulnerability or interest. Projected force numbers of US Navy ships will not provide this coverage. LCS ships will contribute, but are not able to support <u>adequate inherent core capabilities for AAW/BMD</u> (with queuing), and blue/green water ASW necessary for many strike group and independent operations. DDG-51 and DD-1000 class ships are too costly for this force-multiplier.

Specific capability gaps resulting from insufficient force numbers with adequate inherent core capabilities include: <u>AAW</u>/BMD (with queuing); blue/green water ASW. Additional capabilities include capacity and interfaces for special mission packages and personnel (mine countermeasures, ISR, ASUW, special operations, maritime interdiction and limited disaster relief).

Priority	Capability Description	Threshold Systems or metric	Goal Systems or metric	
1	Core AAW/BMD (with queuing)	SPY-3 w/32 cell VLS, Nulka/ SRBOC, SLQ-32V2	SPY-3 w/64 cell VLS, Nulka/ SRBOC, SLQ-32V3	
2	Core Blue/green water ASW	SQS-56 sonar, TACTAS, NIXIE, 2xSH-2G, SSTD	SQS-53C sonar, TACTAS, NIXIE, 2xSH-60, SSTD	
3	Special-Mission Packages (MCM, SUW, ASW, ISR, Special Forces)	1xLCS Mission Packages with UAVs, USVs and stern launch	2xLCS Mission Packages with UAVs, USVs and stern launch	
4	Core ISR	2xSH-2G, advanced C4I	2xSH-60, advanced C4I	
5	Mobility	30knt, full SS4, 3500 nm, 45days	35knt, full SS5, 5000 nm, 60days	
6	Survivability and self-defense	DDG-51 signatures, mine detection sonar, CIWS or CIGS	DD1000 signatures, mine detection sonar, CIWS or CIGS	
7	Maritime interdiction, ASUW	2xSH-2G, 57mm gun, 2x.50 caliber guns	2xSH-60, 57mm gun, 2x.50 caliber guns, Netfires	

2. Analysis Summary.

An Acquisition Decision Memorandum issued on 7 September 2006 by the Virginia Tech Acquisition Authority directed Concept Exploration and Analysis of Alternatives (AoA) for a new frigate-sized ship with more capable core systems and modular systems similar to LCS. Required core capabilities are AAW/BMD (with queuing) and blue/green water ASW. The platforms must be highly producible, minimizing the time from concept to delivery and maximizing system commonality with LCS. The platforms must operate within current logistics support capabilities. Inter-service and Allied C^4/I (inter-operability) must be considered. The new ship must have minimum manning.

Concept Exploration was conducted from 12 September 2006 through 5 December 2006. A Concept Design and Requirements Review was conducted on 23 January 2007. This CDD presents the baseline requirements approved in this review.

Available technologies and concepts necessary to provide required functional capabilities were identified and defined in terms of performance, cost, risk and ship impact (weight, area, volume, power). Trade-off studies were performed using technology and concept design parameters to select trade-off options in a multi-objective genetic optimization (MOGO) for the total ship design. The result of this MOGO was a non-dominated frontier, Figure 1. This frontier includes designs with a wide range of risk and cost, each having the highest effectiveness for a given risk and cost. Preferred designs are often "knee in the curve" design selected for Virginia Tech Team 5, and specified in this CDD, is the low-cost and low-risk design shown with an X in Figure 1. Selection of a point on the non-dominated frontier specifies requirements, technologies and the baseline design.

Figure 1 – ADF Non-Dominated Frontier

3. Concept of Operations Summary.

The range of military operations for the functions in this ICD includes: force application from the sea; force application, protection and awareness at sea; and protection of homeland and critical bases from the sea. Timeframe considered: 2010-2050. This extended timeframe demands flexibility in upgrade and capability over time. The 2001 Quadrennial Defense Review identifies seven critical US military operational goals. These are: 1) protecting critical bases of operations; 2) assuring information systems; 3) protecting and sustaining US forces while defeating denial threats; 4) denying enemy sanctuary by persistent surveillance, 5) tracking and rapid engagement; 6) enhancing space systems; and 7) leveraging information technology.

These goals and capabilities must be achieved with <u>sufficient numbers</u> of ships <u>for worldwide and persistent</u> <u>coverage</u> of all potential areas of conflict, vulnerability or interest.

Forward-deployed naval forces will be the first military forces on-scene having "staying and convincing" power to promote peace and prevent crisis escalation. The force must have the ability to provide a "like-kind, increasing lethality" response to influence decisions of regional political powers. It must also have the <u>ability to remain</u> invulnerable to enemy attack. New ships must complement and support this force.

Power Projection requires the execution and support of flexible strike missions and support of naval amphibious operations. This includes protection to friendly forces from enemy attack, unit self defense against littoral threats, area defense, mine countermeasures and support of theater ballistic missile defense. Ships must be able to support,

maintain and conduct operations with the most technologically advanced unmanned/remotely controlled tactical and C^4/I reconnaissance vehicles. Naval forces must possess sufficient mobility and endurance to perform all missions on extremely short notice, at locations far removed from home port. To accomplish this, they must be pre-deployed, virtually on station in sufficient numbers around the world.

Naval forces must also be able to support non-combatant and maritime interdiction operations in conjunction with national directives. They must be flexible enough to support peacetime missions yet be able to provide instant wartime response should a crisis escalate.

Expected operations for ADF include:

- Escort (CSG, ESG, MCG, Convoy)
 - Provide Area AAW, ASW and ASUW defense
- SAG (Surface Action Group)
 - With CGs, DDGs and/or LCSs
 - Provide Area AAW, ASW and ASUW
 - Provide ISR
 - Support BMD (w/ queuing)
 - Provide MCM and additional ISR/ASW/ASUW w/ mission modules
- Independent Ops
 - Provide Area AAW, ASW and ASUW
 - Provide ISR
 - Support UAVs, USVs and UUVs
 - Support BMD (w/ queuing)
 - Provide MCM and additional ISR/ASW/ASUW w/ mission modules
 - Support Special Operations
 - Humanitarian Support and Rescue
 - Peacetime Presence
- Homeland Defense/Interdiction
 - Support AAW, ASW and ASUW
 - Provide surveillance and reconnaissance, support UAVs
 - Interdict, board and inspect

4. Threat Summary.

The shift in emphasis from global Super Power conflict to numerous regional conflicts requires increased flexibility to counter a variety of asymmetric threat scenarios which may rapidly develop. Two distinct classes of threats to U.S. national security interests exist:

- Threats from nations with either a significant military capability, or the demonstrated interest in acquiring such a capability. Specific weapons systems that could be encountered include ballistic missiles, land and surface launched cruise missiles, significant land based air assets and submarines.
- Threats from smaller nations who support, promote, and perpetrate activities which cause regional instabilities detrimental to international security and/or have the potential for development of nuclear weapons. Specific weapon systems include diesel/electric submarines, land-based air assets, and mines (surface, moored and bottom).

Since many potentially unstable nations are located on or near geographically constrained (littoral) bodies of water, the tactical picture will be on smaller scales relative to open ocean warfare. Threats in such an environment include: (1) technologically advanced weapons - cruise missiles like the Silkworm and Exocet, land-launched attack aircraft, fast gunboats armed with guns and smaller missiles, and diesel-electric submarines; and (2) unsophisticated and inexpensive passive weapons – mines (surface, moored and bottom), chemical and biological weapons. Many encounters may occur in shallow water which increases the difficulty of detecting and successfully prosecuting targets. Platforms chosen to support and replace current assets must have the <u>capability to dominate all aspects of the littoral environment</u>.

The platform or system must be capable of operating in the following environments:

- Open ocean (sea states 0 through 8) and littoral, fully operational through SS4
- Shallow and deep water
- Noisy and reverberation-limited
- Degraded radar picture

- Crowded shipping
- Dense contacts and threats with complicated targeting
- Biological, chemical and nuclear weapons
- All-Weather Battle Group
- All-Weather Independent operations

5. System Capabilities and Characteristics Required for the Current Development Increment.

Key Performance Parameter (KPP)	Development Threshold or Requirement
AAW	SPY-3 (2 panel), Aegis MK 99 FCS
ASUW/NSFS	MK 3 57 mm gun, MK86 GFCS, SPS-73(V)12, 1 RHIB, Small Arms Locker
ASW	SQS-56, SQQ 89, 2xMK 32 Triple Tubes, NIXIE, SQR-19 TACTAS, mine avoidance sonar
CCC	Enhanced CCC
LAMPS	2 LAMPS w/ hanger (flight deck, refueling, rearming), SQQ-28
SDS	2x CIWS, SLQ-32(V) 3, SRBOC, NULKA
GMLS	32 cells, MK 41 VLS
LCS Modules	1x LCS
Hull	Wave-piercing Tumblehome
Power and Propulsion	2 pods, LM 2500+ GT, ICR
Endurance Range (nm)	5595 nm
Sustained Speed (knots)	30.8 knots
Endurance Speed (knots)	20 knots
Stores Duration (days)	50
Collective Protection System	full
Crew Size	246
RCS (m ³)	3836
Maximum Draft (m)	5.8 m
Vulnerability (Hull Material)	Steel
Ballast/fuel system	Compensated fuel tanks
Degaussing System	Yes
McCreight Seakeeping Index	11.08

KG margin (m)	0.2m
Propulsion power margin (design)	10%
Propulsion power margin (fouling and seastate)	25% (0.8 MCR)
Electrical margins	5%
Net Weight margin (design and service)	10%

6. Program Affordability.

Average follow-ship acquisition cost shall not exceed \$530M (\$FY2010) with a lead ship acquisition cost less than \$1B. It is expected that 30 ships of this type will be built with IOC in 2015.

Appendix D – Lower Level Pair-wise Comparison Results

Priorities with respect to: Goal: Maximize OMOE >MISSIOH - Escort >Warfighting >ASW		
ASW Options LAMPS Options GMLS Options CCC Options Inconsistency = 0.01 with 0 missing judgments.	.445 .395 .097 .063	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASW >ASW Options		
ASW Option 1 ASW Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .340	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASW >LAMPS Options		
LAMPS Option1 LAMPS Option 2 LAMPS Option 3 Inconsistency = 0.02 with 0 missing judgments.	1.000 .474 .128	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASW >GMLS Options		
GMLS Option 1 GMLS Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .885	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASW >CCC Options		
CCC Option 1 CCC Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .690	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >Module Capacity		
2 LCS 1 LCS Inconsistency = 0. with 0 missing judgments.	1.000 .641	

Figure D2 – MOP2 ASW

Priorities with respect to: Goal: Maximize OMOE > MISSION - Escort > Warfighting > ASUW/NSFS	
ISFS Options LAMPS Options SDS Options CCC Options Inconsistency = 0.02 with 0 missing judgments.	.325 .303 .225
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASUW/NISFS >NISFS Options	
NSFS Option 1 NSFS Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .526
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASUW/INSFS >LAMPS Options	
LAMPS Option1 LAMPS Option 2 LAMPS Option 3 Inconsistency = 0.02 with 0 missing judgments.	1.000 .603 .130
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASUW/INSTS >SDS Options	
SDS Option 1 SDS Option 2 SDS Option 3 Inconsistency = 0.00695 with 0 missing judgments.	1.000 .626 .146
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >ASUW/NSFS >CCC Options	
CCC Option 1 CCC Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .588
	Figure D3 – MOP3 ASUW/NSFS
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >CCC/ISR >CCC Options	
CCC Option 1 CCC Option 2 Inconsistency = 0. with 0 missina judaments.	1.000

Page 103

Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >STK		
GMLS Options CCC Options Inconsistency = 0. with 0 missing judgments.	.737 .263	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >STK >GMLS Options		
GMLS Option 1 GMLS Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .769	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Warfighting >STK >CCC Options		
CCC Option 1 CCC Option 2 Inconsistency = 0. with 0 missing judgments.	1.000 .588 Figure D5 – MOP4 STK	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Mobility >Seakeeping		
6 8 10 12 14	.334 .423 .535 .79 .888	
Inconsistency = 0.00329 with 0 missing judgments.	Figure D6 – MOP5 SeaKeep	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Mobility >Endurance Range		
3500 nm 4000 nm 4500 nm 5000 nm Inconsistency = 0.03 with 0 missing judgments	.209 .424 .712 1.000	
o moong juuginerito.	Figure D7 – MOP6 E	
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Mobility >Provisions Duration		
45 days 50 days 55 days 60 days Inconsistency = 0.00531	.482 .616 .875 1.000	

Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Mobility >Sustained Speed		
30 knots 31 knots 32 knots 33 knots 34 knots 35 knots	.277 .397 .660 .830 .980 1.000	
Inconsistency = 0.02 with 0 missing judgments.		Figure D9 – MOP8 Vs
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Mobility >Environmental		
Clean Balast Compensated fuel System Inconsistency = 0. with 0 missing judgments.	1.000 .286	Figure D10 – MOP9 ENV
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Survivability >RCS		
4000 m3 4500 m3 5000 m3 5000 m3 Inconsistency = 0.0044 with 0 missing judgments.	1.000 .841 .664 .528 .392	Figure D11 – MOP10 RCS
Priorities with respect to: Goal: Maximize OMOE > MISSION - Escort > Survivality > Acoustic Signature		
ILD / CUDIAG / FPP Mechanical Drive / GT / CPP Mechanical Drive / Diesel / CPP Inconsistency = 0.02 with D missing judgments.	1.000 .472 .315	Figure D12 – MOP11 Acoustic
Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Survivability >Magnetic Signature		
Degaussing No degaussing Inconsistency = 0.	1.000 .149	

Priorities with respect to: Goal: Maximize OMOE >MISSION - Escort >Survivability >IR Signature		
GT	.500	
GT w/ICR	1.000	
Inconsistency = 0.00242	.019	
with 0 missing judgments.		
		Figure D14 – MOP13 IR
Priorities with respect to:		
Goal: Maximize OMOE		
>MISSION - Escort >Survivability		
>Structure Vulnerability		
Steel deckhouse	1.000	
Aluminum deckhouse	.462	
Composite DEckhouse Inconsistency = 0.00001	.433	
with 0 missing judgments.		
		Figure D15 – MOP14 Str. Vuln.
		0
Priorities with respect to:		
Goal: Maximize OMOE		
>Survivability		
>NBC		
full CPS	1.000	
partial CPS	.845	
no CPS Inconsistency = 0.00019	.214	
with 0 missing judgments.		
		Figure D16 – MOP15 NRC

APPENDIX E – ASSET Data Summaries

HUL OFFSETS IND- REVISE HUL DIM IND- MORE HUL STA IND- HUL FLAND- HUL FLAND- HUT FLAND-	PRINTED REPORT NO. 1 - HULL GEOMETRY SUMMARY					
HULL DIM IND- MORE HULL DIM IND- HULL STA IND- HULL STA IND- HULL PERMICIPAL DIMENSIONS (ON DIL) 9.14 HUL STAR, M 9.14 HUL STAR, M HULL PERMICIPAL DIMENSIONS (ON DIL)	HULL OFFSETS IND- REVISE					
HULL STA IND- HULL BC IND- MAX BEAR, H 32.19 HULL PRINCIPAL DIMENSIONS (ON DUL) HULL PRINCIPAL DIMENSIONS (ON DUL) LEP, H 139.00 PRISMATIC COFF 0.579 HULL LOA, M 141.89 MAX SECTION COFF 0.579 DER, H 139.00 PRISMATIC COFF 0.579 BEAM, W 17.18 WAX SECTION COFF 0.501 DEFTH STA 0, M 5.60 HALF SIDING WIDTH, H 0.00 DEFTH STA 10, M 12.51 RAISED DECK FMD LIM, STA 0.00 DEFTH STA 20, M 5.60 RAISED DECK FMD LIM, STA 0.00 DEFTH STA 20, M 12.51 RAISED DECK FMD LIM, STA 0.00 DEFTH STA 20, M 12.50 AREA BEAN, H 16.53 DEFTH STA 10, M 12.50 AREA BEAN, H 16.53 DEAR WILL DATA CN LUL STABILITY DATA CN LUL STABILITY DATA CN LUL STABILITY DATA CN LUL LOTH ON UL, M 139.05 KR, M 0.20 0 PRISMATIC COFF 0.537.04 0.251 0.100 MAX SECTION COFF 0.777	HULL DIM IND- NONE		MIN BEAM, M	9.14		
HULL PLARE ANGLE, DEG HULL PLARE ANGLE, DEG HULL PRINCIPAL DIMENSIONS (ON DWL) 1.22 LEP, M 139.00 PRISMATIC COFF 0.579 HULL LOA, M 141.89 MAX SECTION COFF 0.601 DEAM, M 17.18 WATERELANE COFF 0.601 DEAM, M 17.18 WATERELANE COFF 0.601 DEAM, M 14.55 LCF/LSP 0.00 DEFTH STA 0, M 5.80 BALF SIDING WIDTH, M 0.00 DEFTH STA 10, M 12.51 RAISED DECK HT, N 0.00 DEFTH STA 20, M 5.80 RAISED DECK HT, N 0.00 DEFTH STA 3, M 12.58 AREA BEAM, M 16.53 STABILITY BEAM, M 12.58 AREA BEAM, M 16.53 STABILITY BEAM, M 5.76 KG, M 5.53 FREEBOARD & STA 3, M 7.97 FREE OCA, M 0.00 FREEBOARD & STA 3, M 7.97 FREE VILL DISPL, MTON 6327.04 APENDARD E DISPL, NTON 6327.04 APENDARD E DISPL, NTON 6327.04 APENDARE DISPL, NTON	HULL STA IND-		MAX BEAM, M	32.19		
HULL PRINCIPAL DIMENSIONS (ON DWL) 1.22 LEP, M 139.00 PRISNATIC COFF 0.579 BUUL LOA, M 141.89 MAX SECTION COFF 0.779 BEAM, W 17.13 WATERPLANE COFF 0.601 DEAM & WEATHER DECK, H 14.55 LEB/LDP 0.523 DEFTH STA 0, M 5.60 BOT RAKE, M -0.14 DEFTH STA 10, M 12.51 RAISED DECK HT, N 0.00 DEFTH STA 20, M 5.60 RAISED DECK HT, N 0.00 DEFTH STA 20, M 12.51 RAISED DECK HT, N 0.00 DEFTH STA 20, M 5.60 RAISED DECK ATT LIN, STA DECK ATT LIN, STA JETH STA 20, M 5.76 KG, M 5.53 FREEBOARD & STA 3, M 7.93 BARE HULL DISPL, NTON 6405.03 BARF, N 17.19 BHT, M 6.55 DEAH, M 17.19 BHT, M 6.55 DEALT, M 139.05 KB, N 3.55 FREEBOARD & STA 3, N 7.97 FERE SUFF COR, N 0.00 PARISH, N	HULL BC IND-		HULL FLARE ANGLE, DEG	1 00		
HULL PRINCIPAL DIMENSIONS (ON DUD) LBP, M 139.00 PRISMATIC COEF 0.579 HULL LOA, H 141.89 MAX SECTION COEF 0.779 BEAM, M 17.18 WATERLANE COEF 0.601 DEAT, M 5.80 HOLT SIDING UIDTH, M 0.00 DEPTH STA 0, M 5.80 BOT RAKE, M -0.14 DEPTH STA 10, M 12.51 RAISED DECK HT, N 0.00 DEPTH STA 10, M 12.51 RAISED DECK HT, N 0.00 DEPTH STA 20, M 5.80 RAISED DECK HT, N 0.00 DEFTH STA 3, M 12.58 AREA BEAM, M 16.53 STABILITY BEAM, M 12.58 AREA BEAM, M 16.53 DETH STA NLW 139.05 KE, M 5.35 JRAHCON VL, M 139.05 KE, M 5.33 DEAM, M 17.19 BET, M 0.20 RELEAR, M 1.576 KO, M 5.33 DRAFT, H 17.19 BET, M 0.20 MAIS SECTION COEF 0.577 SERV LIFE KEG ALW, M			FORWARD BULWARK, M	1.22		
LEP, N 139.00 PRISHATIC COEF 0.579 HULL LOA, N 141.89 WAX SECTION COEF 0.779 BEAM, N 17.18 WAX SECTION COEF 0.601 DEAM, N 5.80 BALK SECTION COEF 0.601 DEATH, N 5.80 BALK SEDING UIDTH, N 0.00 DEPTH STA 0, N 5.80 BOT RAKE, N -0.14 DEPTH STA 10, N 12.51 RAISED DECK FWI LIN, STA 0.00 DEPTH STA 10, N 12.58 RAISED DECK FWI LIN, STA 0.00 STABILITY BEAN, N 12.58 AREA BEAN, N 16.53 BEAR, N 17.19 BTT, N 6.39 DRAFT, M 17.19 BTT, N 6.39 DRAFT, N 5.76 KG, N 3.65 BEAN, N 17.19 BTT, N 0.20 TREEDOARD & STA 3, N 7.97 FREE SUFF COR, N 0.20 MAX SECTION COEF 0.577 SERV LIFE KG ALW, N 0.20 MAX SECTION COEF 0.600 GRT, N 4.31 MAX SECTION COEF <td>HULL P</td> <td>RINCIPAL DIM</td> <td>ENSIONS (ON DWL)</td> <td></td>	HULL P	RINCIPAL DIM	ENSIONS (ON DWL)			
HULL LOA, N 141.69 NAX SECTION COEF 0.779 BEAM, M 17.18 WATEPLANE COEF 0.801 DEAM, M 14.55 LCF/LSP 0.831 DEAT, H 5.80 HALF SIDING WIDTH, M 0.00 DEPTH STA 0, M 5.80 BOT RAKE, M -0.14 DEPTH STA 20, M 12.51 RAISED DECK HT, M 0.00 DEPTH STA 20, M 5.80 RAISED DECK HT, M 0.00 DEPTH STA 20, M 5.80 RAISED DECK HT LIM, STA 0.00 DEPTH STA 20, M 5.80 RAISED DECK ATLIN, STA 0.00 DEPTH STA 20, M 12.58 AREA BEAM, M 16.53 STABILITY BEAM, M 12.58 AREA BEAM, M 16.53 DRAFT, M 5.70 KEN, M 5.83 FREEBOARD 0 STA 3, H 7.97 FREE SUFF COR, H 0.00 PRISHATIC COEF 0.777 SERV LIFF KG ALW, M 0.20 MAX SECTION COEF 0.777 SERV LIFF KG ALW, M 0.20 MATERPLANE COFF 0.300 GRT, M 4.31 </td <td> LBP, M</td> <td>139.00</td> <td>PRISMATIC COEF</td> <td>0.579</td>	 LBP, M	139.00	PRISMATIC COEF	0.579		
BEAR WATERPLANE COEF 0.801 DEAR Ø WATHER DECK, N 14.55 LCPLAP 0.523 DRAFT, N 5.80 HALF SIDING WIDTH, N 0.00 DEPTH STA 0, M 5.80 BOT RAKE, N -0.14 DEPTH STA 10, M 12.51 RAISED DECK NT LIN, STA DEPTH STA 20, M 5.80 DEPTH STA 10, M 12.51 RAISED DECK NT LIN, STA FREEDOAD @ STA 3, N 7.93 DEAR HULL DATA ON LUL STABILITY DATA ON LUL STABILITY DATA ON LUL STABILITY DATA ON LUL	HULL LOA, M	141.89	MAX SECTION COEF	0.779		
DEAM 0 WATTERD DECK, N 14.55 LCD/LDP 0.523 DPAFT, N 5.80 HALF SIDING WIDTH, N 0.00 DEFTH STA 0, N 12.51 RAISED DECK HT, N 0.00 DEFTH STA 10, N 12.51 RAISED DECK HT, N 0.00 DEFTH STA 20, N 5.80 RAISED DECK HTD LIN, STA 0.00 STABILITY BEAN, N 12.58 RAREA DECK HTD LIN, STA 0.00 STABILITY BEAN, N 12.58 AREA BEAN, N 16.53 DEAR, N 139.05 KB, N STABILITY DATA ON LWL STABILITY DATA ON LWL LGTH ON WL, N 139.05 KB, N S.5.53 FREEDORAD @ STA 3, N 7.97 FREE SUBF COR, N 0.00 GRT, N 4.31 347.40 WATTERLANE COEF 0.600 GRT, N 4.31 347.40 WATTERLANE COEF 0.600 GRT, N 4.31 347.40 WATTERLANEAC COF 0.600 GRT, N 4.31 347.40 WATTERLANFACE, MZ 2262.00 GRT/B REQ 0.100 BARE HULL DISPL, H	BEAM, M	17.18	WATERPLANE COEF	0.801		
DRAFT, H 5.80 HALF SIDING WIDTH, H 0.00 DEFTH STA 0, M 5.80 BOT RAKE, M -0.14 DEFTH STA 10, M 12.51 RAISED DECK HT, H 0.00 DEFTH STA 20, M 5.80 RAISED DECK HT, H 0.00 DEFTH STA 20, M 5.80 RAISED DECK HT, H 0.00 STABILITY BEAM, M 12.58 AREA BEAM, M 16.53 BARE HULL DATA ON LWL STABILITY DATA ON LWL STABILITY DATA ON LWL	BEAM @ WEATHER DECK, M	14.55	LCB/LBP	0.523		
DEFTH STA 0, M 5.80 DOT RAKE, M -0.14 DEFTH STA 10, M 12.51 RAISED DECK HT, M 0.00 DEFTH STA 10, M 12.51 RAISED DECK HT, M 0.00 DEFTH STA 20, M 5.80 RAISED DECK AFT LIM, STA STABILITY BEAN, M 12.58 RAREA BEAN, M 6405.03 STABILITY BEAN, M 12.58 AREA BEAN, M 16.53 STABILITY DATA ON LWL	DRAFT, M	5.80	HALF SIDING WIDTH, M	0.00		
DEPTH STA 3, M 12.51 RAISED DECK HT, M 0.00 DEFTH STA 10, M 12.51 RAISED DECK HTD LIM, STA DEFTH STA 20, M 5.80 RAISED DECK AFT LIM, STA STABILITY BEAM, H 12.58 AREA BEAM, H 16.53 BARE HULL DATA ON LWL STABILITY DATA ON LWL STABILITY DATA ON LWL STABILITY DATA ON LWL LGTH ON WL, M 139.05 KB, M 6.65 5.3 PREEDARD & STA 3, M 7.97 FREE SURF COR, M 0.00 PRESHAT, M 15.76 KG, M 5.53 FREEDOARD & STA 3, M 7.97 FREE SURF COR, M 0.00 MAX SECTION COEF 0.800 GHT, M 4.31 WAITERLANE COEF 0.800 GHT, M 4.31 WAITERLANE COEF 0.800 GHT/B REQ 0.100 BARE HULL DISPL, HTON 6542.66 0.100 0.251 PRINTED REPORT NO. 1 - SUMMARY 260.0 1.523.48 LEP, M 139.0 TOTAL ACCOM 260.0 DATABANK-TEANSMESSOBORTINAL.ENK.HTH SHIP-TEANSDEDFINAL PRESENT	DEPTH STA O, M	5.80	BOT RAKE, M	-0.14		
DEPTH STA 10, H 12.51 RAISED DECK FWD LIR, STA FREEBOARD @ STA 3, H 12.50 RAISED DECK FWD LIR, STA FREEBOARD @ STA 3, H 7.93 BARE HULL DISPL, MTON 6405.03 STABILITY BEAM, H 12.58 AREA BEAM, H 16.53 BARE HULL DATA ON LWL STABILITY DATA ON LWL STABILITY DATA ON LWL STABILITY DATA ON LWL LOTH ON WL, H 139.05 KB, H 3.65 DRAFT, N 5.76 KG, M 5.53 FREEBOARD @ STA 3, H 7.97 FREE SURF COR, H 0.00 PRISTRATIC COEF 0.577 SERV LIFE KG ALW, H 0.20 MAX SECTION COEF 0.777 WATERPLANE AREA, M2 1911.80 GHL, H 347.48 WETTED SURFACE, M2 2628.97 GMT/B AVAIL 0.251 GMT/B REQ 0.100 BARE HULL DISPL, MTON 6542.66 0.100 1.523.48 0.100 PERINTED REPORT NO. 1 - SUMMARY 17.2 COLL POT SYS IND PRESENT 0.100 DATABANK-TEAMENGCSOODBF INAL.ENK.ETH SHET PTPE IND RECORNCAE PRESENT TOTAL AREA, M2 522.7 </td <td>DEPTH STA 3, M</td> <td>12.51</td> <td>RAISED DECK HT, M</td> <td>0.00</td>	DEPTH STA 3, M	12.51	RAISED DECK HT, M	0.00		
DEPIN SIR 20, R 5.80 RAISED DECK RFL RIN, DIA, SIR PREEDOARD 6 STA 3, H 7.93 BARE HULL DATA ON LVL STABILITY DATA ON LVL LGTH ON UL, H 139.05 KB, H 3.65 DEAR, H 17.19 BHT, N 6.39 DRAFT, N 5.76 KG, M 5.53 PREEDOARD 6 STA 3, N 7.97 FREE SURF COR, N 0.20 MAX SECTION COEF 0.577 SERV LIFE KG ALW, N 0.20 MAX SECTION COEF 0.600 GHT, N 4.31 WATERPLANE COEF 0.600 GHT, N 4.31 WATERPLANE COEF 0.800 GHT/B AVAIL 0.20 MAX SECTION COEF 0.800 GHT/B AVAIL 0.21 MAX SECTION COEF 0.800 GHT/B AVAIL 0.22 MAX SECTION COEF 0.800 GHT/B AVAIL 0.22 MAX SECTION COEF 0.800 GHT/B AVAIL 0.22 ASET/HONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSCSODDETINAL.ENK.HTM SHIP-TEAMSDEFINAL PRINTED REPORT NO. 1 - SUHMARY 128.25 <	DEPTH STA 10, M	12.51	RAISED DECK FWD LIM, STA			
STABILITY BEAN, N 12.56 AREA BEAN, N 16.53 BARE HULL DATA ON LUL STABILITY DATA ON LUL STABILITY DATA ON LUL LGTH ON WL, M 139.05 KB, N 3.65 BEAR, N 17.19 BRT, N 6.39 DRAFT, N 5.76 KG, M 5.53 FREEBOARD 8 STA 3, N 7.97 FREE SUFF COR, N 0.00 PRISMATIC COEF 0.577 SERV LIFE KG ALW, N 0.20 MAX SECTION COEF 0.600 GHT, N 4.31 WATERPLANE AREA, N2 1911.60 GHL, N 347.48 WATERPLANE AREA, N2 1921.60 GHT/B REQ 0.100 BARE HULL DISPL, NTON 6522.04 GHT/B REQ 0.100 BARE HULL DATA ON LUL 0.55.61 GHT/B REQ 0.100 BARE HULL DISPL, NTON 6542.66 5 50.00 ASSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 0.100 DATABANK-TEAMSNSCS30DBF INAL.ENK.HTM SHIP-TEAMSDEFINAL 560.0 FULL LOAD WT, MTON 6542.70 AUKOR LOC IND 260.0 DERM, N 17.2 COLL PROT SYS IND PRESENT	PEPIH SIA 20, M Feffenier 6 sti 3 m	5.80	RAISED DECK AFT LIM, STA BADE HULL DISDL MTON	6405 03		
STABILITY BEAM, M 12.56 AREA BEAM, M 16.53 BARE HULL DATA ON LUL STABILITY DATA ON LUL STABILITY DATA ON LUL LGTH ON WL, M 139.05 KB, M 3.65 DEART, N 17.19 BHT, N 6.39 DPART, N 5.76 KG, M 5.53 FFDEEDOARD 8 STA 3, M 7.97 FREE SUFF COR, M 0.00 PRISHATIC COEF 0.577 SERV LIFE KG ALW, M 0.20 MAX SECTION COEF 0.777 WATERPLANE AREA, M2 1911.80 GHL, M 347.48 WETTED SURFACE, M2 2628.97 GMT/B AVAIL 0.251 GMT/B REQ 0.100 BARE HULL DISPL, MTON 6327.04 APPENDAGE DISPL, MTON 6542.66 0 0 FUIL LOAD WT, NTON 6542.66 COLP FOT TS'S IND PRESENT 0 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT 0 0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL ACCOM 263.0 DEACOMPLE MY T	TREEDOARD & JIA J, H	7.55	DARE HOLL DISPL, HIM	0403.03		
BARE HULL DATA ON LUL STABILITY DATA ON LUL LGTH ON WL, M 139.05 KB, M 3.65 DEART, M 17.19 BHT, M 6.39 DPART, M 5.76 KG, M 5.53 FREEBOARD 8 STA 3, N 7.97 FREE SURF COR, M 0.00 PHISHATIC COEF 0.577 SERV LIFE KG ALW, M 0.20 MAX SECTION COEF 0.777 WATERPLANE ARE, M2 1911.80 GMT, M 4.31 WATERPLANE ARE, M2 1911.80 GML, M 347.48 0.251 WATERPLANE ARE, M2 2628.97 GMT/B REQ 0.100 BARE HULL DISPL, MTON 6542.66 0.100 BARE HULL DAD WT, MTON 6542.66 0.100 SET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSCS30DBFINAL.BNK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LBP, M 139.0 TOTAL ACCOM 260.0 EEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL VOLME, MS 21857. DISTLLER TYPE IND RECORNGIS USABLE FUEL WT, MTON <td< td=""><td>STABILITY BEAM, M</td><td>12.58</td><td>AREA BEAM, M</td><td>16.53</td></td<>	STABILITY BEAM, M	12.58	AREA BEAM, M	16.53		
LOTH ON WL, M 139.05 KB, M 3.65 BRAH, M 17.19 BNT, M 6.39 DRAFT, M 5.76 KG, M 5.53 FREEBOARD @ STA 3, M 7.97 FREE SURF COR, M 0.00 PRISHATIC COEF 0.577 SERV LIFE KG ALU, M 0.20 MAX SECTION COEF 0.777 SERV LIFE KG ALU, M 0.21 WATERPLANE AREA, M2 1911.80 GML, M 4.31 WATERPLANE AREA, M2 1911.80 GML, M 347.48 WETTED SURFACE, M2 2628.97 GMT/B AVALL 0.251 GMT/B REQ 0.100 BARE HULL DISPL, MTON 215.61 FULL LOAD WT, MTON 6542.66 0.100 BAREAR, M PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 DATABANK-TEAMSMESCSJODBFINAL.BNK.HTM SHIP-TEAMSDBFINAL PRESENT TOTAL AREA, M2 5562. COLP HRT TYPE IND RESENT MAX SHP, KW 73654. PRATHE SYS IND PRESENT MAX SHP, KW 73654. PRATHE TYPE IND RESENT	BARE HULL DATA ON	LWL 	STABILITY DATA ON I	JWL		
DEAM, M 17.19 BHT, M 6.39 DRAFT, M 5.76 KG, M 5.53 FREEBOARD & STA 3, M 7.97 FREE SURF COR, M 0.00 PRISHATIC COEF 0.577 SERV LIFE KG ALW, M 0.20 MAX SECTION COEF 0.600 GHT, M 4.31 WATERPLANE AREA, M2 1911.80 GML, M 347.48 WATERPLANE AREA, M2 1911.80 GMT/B REQ 0.100 BAR HULL DISPL, MTON 6527.04 GMT/B REQ 0.100 BARE HULL DAD WT, MTON 6527.04 GMT/B REQ 0.100 BARE HULL DAD WT, MTON 6527.04 GMT/B REQ 0.100 SSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSCS30DBFINAL.BNK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LBP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL ACCOM 260.0 USABLE PUEL WT, MTON 65.6 COMP HTR TYPE IND STORAGE FULL LOAD WT, MTON 65.6 COLL PROT SYS IND PR		= 139 05				
DRAFT, N S.76 KG, N S.53 FREEBOARD @ STA 3, N 7.97 FREE SURF COR, N 0.00 PRISNATIC COEF 0.577 SERV LIFF KG ALW, N 0.20 MAX SECTION COEF 0.777 GHT, N 4.31 WATERPLANE AREA, M2 1911.80 GHL, N 347.48 WETTED SURFACE, M2 2628.97 GHT/B AVAIL 0.251 GMT/B AVAIL 0.251 GHT/B AVAIL 0.251 BARE HULL DISPL, MTON 6327.04 GHT/B REQ 0.100 BARE HULL DAD WT, MTON 6542.66 0.100 ASSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSC530DEFINAL.ENK.HTM SHIP-TEAMSDEFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 562. TOTAL AREA, M2 5562. COMP HTR TYPE IND ELCTRIC TOTAL VOLUME, M3 21857. USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND RESENT MAX SHP, KW 73854.	BEAM, M	17.19	BMT, M	6.39		
FREEBOARD @ STA 3, M 7.97 FREE SURF COR, M 0.00 PRISMATIC COFF 0.577 SERV LIFE KG ALW, M 0.20 MAX SECTION COFF 0.777 STRV LIFE KG ALW, M 0.20 WATERPLANE COFF 0.800 GMT, M 4.31 WATERPLANE AREA, M2 1911.80 GML, M 347.48 WETTED SURFACE, M2 2628.97 GMT/B REQ 0.100 BARE HULL DISPL, MTON 6327.04 GMT/B REQ 0.100 BARE HULL DADWT, MTON 6327.04 GMT/B REQ 0.100 BARE HULL DADWT, MTON 6542.66 GMT/B REQ 0.100 ASSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSC530DEFINAL.ENK.HTM SHIP-TEAMSDEFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HT TYPE IND REGORDIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND REATHER PARAMER SYS IND PRESENT MAX SHP, KW 73854. TOTAL STEAM LOAD, KG/HR	DRAFT, M	5.76	KG, M	5.53		
PRINATIC COFF 0.577 SERV LIFE KG ALW, M 0.20 MAX SECTION COFF 0.800 GMT, M 4.31 WATERPLANE COEF 0.800 GMT, M 4.31 WATERPLANE AREA, M2 1911.80 GMT, M 347.48 WETTED SURFACE, M2 2628.97 GMT/B AVAIL 0.251 GMT/B AVAIL 0.251 GMT/B REQ 0.100 BARE HULL DISPL, MTON 6327.04 APFENDAGE DISPL, MTON 6542.66 ASSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMISCSODDEFINAL ENK.HTM SHIP-TEAMSDEFINAL PRINTED REPORT NO. 1 - SUMMARY LBP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND RELECTRIC TOTAL VOLUME, M3 21857. DISTILLER TYPE IND STORAGE FULL LOAD WT, MTON 6542.7 ANCHOR LOC IND WEATHER DK MAX SHP, KW 73854. PRAIRIE SYS IND PRESENT MAX SHP, KW 738.7 <td>FREEBOARD 0 STA 3, M</td> <td>7.97</td> <td>FREE SURF COR, M</td> <td>0.00</td>	FREEBOARD 0 STA 3, M	7.97	FREE SURF COR, M	0.00		
MAX SECTION COEF 0.777 WATERPLANE COEF 0.800 GHT, M 4.31 WATERPLANE AREA, M2 1911.80 GHL, M 347.48 WETTED SURFACE, M2 2628.97 GHT/B AVAIL 0.251 GHT/B REQ 0.100 GHT/B REQ 0.100 BARE HULL DISPL, MTON 6327.04 GHT/B REQ 0.100 APPENDAGE DISPL, MTON 215.61	PRISMATIC COEF	0.577	SERV LIFE KG ALW, M	0.20		
WATERPLANE COFF 0.800 GHT, M 4.31 WATERPLANE AREA, M2 1911.80 GHT, M 347.48 WETTED SURFACE, M2 2628.97 GHT/B AVAIL 0.251 GMT/B REQ 0.100 0 0.100 BARE HULL DISPL, MTON 6327.04 0 0.100 APPENDAGE DISPL, MTON 215.61 0 0.100 FULL LOAD WT, MTON 6542.66 0 0.100 ASSET/MONOSC VS.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 0 0 DATABANK-TEAMSMSC530DBFINAL.BNK.HTM SHIP-TEAM5DEFINAL 0 0 PRINTED REPORT NO. 1 - SUMMARY 260.0 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND RELCTRIC TOTAL VOLUME, M3 21857. DISTILER TYPE IND STORAGE FULL LOAD WT, MTON 765.6 WATER HR TYPE IND STORAGE FULL LOAD WT, MTON 6542.7 ANCHOR LOC IND WEATHER DK MAX SHP,KW 73854. PRAIRTE SYS IND PRESENT <td>MAX SECTION COEF</td> <td>0.777</td> <td></td> <td></td>	MAX SECTION COEF	0.777				
WATERPLANE AREA, M2 1911.00 GHL, M 347.45 WETTED SURFACE, M2 2628.97 GHT/B EVAIL 0.251 GHT/B REQ 0.100 BARE HULL DISPL, MTON 6327.04 APPENDACE DISPL, MTON 6542.66 ASSET/MONOSC V5.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSC530DFINAL.ENK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND ELECTRIC TOTAL AREA, M2 5562. COMP HTR TYPE IND ELECTRIC TOTAL VOLUME, M3 21857. DISTILLER TYPE IND STORAGE USABLE FUEL WT, MTON 765.6 WATER HT TYPE IND STORAGE HAX SHP, KW 73854. PRAIRTE SYS IND PRESENT TOTAL AC LOAD, KW 532.8 TOTAL STEAM LOAD, KG/HR 3205. NO AIRCOND UNITS 4.0 AUX BOILER TYPE IND NONE TOTAL AC CAP, KW 773.7 NO AUX BOILER TYPE IND NONE TOTAL AC CAP, KW 773.7 NO AUX BOILERS 0. SWES S14 WT, MTON 48.8 TOTAL AUX BLE CAP, KG/HR 0. SWES S14 WT, MTON 48.8 TOTAL AUX BLE CAP, KG/HR 0. SWES S14 WT, MTON 9.9 RAS STATIONS 5. SWES S14 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWES 572 WT, MTON 15.0 SUES 671 WT, MTON 8.6	WATERPLANE COEF	0.800	GMT, M	4.31		
GNT/B XXAB GNT/B REQ GNT/B REAL GNT/B REAL GNT/B REAL GNT/B REAL GNT/B REAL GNT/B REAL <td <="" colspan="2" td=""><td>WAIERPLANE AREA, M2 METTED SUDEACE M2</td><td>1911.8U 2628 07</td><td>GML, M GMT/B AVAIL</td><td>347.48</td></td>	<td>WAIERPLANE AREA, M2 METTED SUDEACE M2</td> <td>1911.8U 2628 07</td> <td>GML, M GMT/B AVAIL</td> <td>347.48</td>		WAIERPLANE AREA, M2 METTED SUDEACE M2	1911.8U 2628 07	GML, M GMT/B AVAIL	347.48
BARE HULL DISPL, MTON 6327.04 APPENDAGE DISPL, MTON 215.61 FULL LOAD WT, MTON 6542.66 ASSET/MONOGC V5.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEANSHSC530DBFINAL.ENK.HTM SHIP-TEANSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND RELECTRIC TOTAL ACLUME, M3 21857. DISTLILER TYPE IND RE OSMOSIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND RE OSMOSIS USABLE FUEL WT, MTON 6542.7 ANCHOR LOC IND WEATHER DK MAX SHP, KW 73654. PRAITE SYS IND PRESENT TOTAL AC LOAD, KW 532.8 TOTAL STEAN LOAD, KG/HR 3205. NO AIRCOND UNITS 4.0 AUX BOILER TYPE IND NOME TOTAL AC CAP, KW 773.7 NO AUX BOILES 0. SWBS 514 WT, MTON 48.8 TOTAL AUX BLR CAP, KG/HR 0. SWBS 514 WT, MTON 9.9 RAS STATIONS 5. SWBS 583 WT, MTON 9.9 RAS STATIONS 5. SWBS 583 WT, MTON 9.9 RAS STATIONS 5. STRIKE GEAR: NO TYPE 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 54.9	WEITED SONTACE, ME	2020.91	GMT/B REQ	0.100		
APPENDAGE DISPL, MTON 215.61 FULL LOAD WT, MTON 6542.66 ASSET/MONOSC V5.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSC530DBFINAL.BNK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND ELECTRIC TOTAL VOLUME, M3 21857. DISTILLER TYPE IND RE OSMOSIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND RE OSMOSIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND PRESENT MAX SHP, KW 73854. PRAIRIE SYS IND PRESENT TOTAL AC LOAD, KW 532.8 TOTAL STEAM LOAD, KG/HR 3205. NO AIRCOND UNITS 4.0 AUX BOILERS 0. SWBS 514 WT, MTON 48.8 TOTAL AUX BLR CAP, KG/HR 0. SWBS 514 WT, MTON 84.8 TOTAL AUX BLR CAP, KG/HR 0. SWBS 514 WT, MTON 9.9 RAS STATIONS 5. SWBS 514 WT, MTON 9.9 RAS STATIONS 5. SWBS S83 WT, MTON 9.9 RAS STATIONS 5. SWBS S83 WT, MTON 29.7 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15. 0. SWBS 571 WT, MTON 6.6 SWBS 571 WT, MTON 7. 1. GRAV CONV 1. BAT TRUCK	BARE HULL DISPL, MTON	6327.04				
FULL LOAD WT, MION 5542.56 ASSET/MONOSC V5.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSMSC530DBFINAL.ENK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LBP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND ELECTRIC TOTAL AREA, M2 21857. DISTILLER TYPE IND REOSMOSIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND STORAGE FULL LOAD WT, MTON 6542.7 ANCHOR LOC IND WEATHER DK MAX SHP, KW 73854. PRAIRIE SYS IND PRESENT MAX SHP, KW 73854. PRAIRIE SYS IND PRESENT TOTAL AC LOAD, KW 532.8 TOTAL STEAM LOAD, KG/HR 3205. NO AIRCOND UNITS 4.0 AUX BOILER TYPE IND NOME TOTAL AC LOAD, KW 532.8 TOTAL AUX BLR CAP, KG/HR 0.0 SWBS 514 WT, MTON 48.8 TOTAL AUX BLR CAP, KG/HR 0.0 BOAT SELECT IND GIVEN SUSS 571 WT, MTON 0.0 BOAT COMPLEMENT 1 RIB NO FAS STATIONS: NO <t< td=""><td>APPENDAGE DISPL, MTON</td><td>215.61</td><td></td><td></td></t<>	APPENDAGE DISPL, MTON	215.61				
ASSET/MONOSC V5.3.0 - AUXILIARY SYS MODULE - 5/ 2/2007 15:23.48 DATABANK-TEAMSDESC53ODBFINAL.ENK.HTM SHIP-TEAMSDBFINAL PRINTED REPORT NO. 1 - SUMMARY LEP, M 139.0 TOTAL ACCOM 260.0 BEAM, M 17.2 COLL PROT SYS IND PRESENT TOTAL AREA, M2 5562. COMP HTR TYPE IND ELECTRIC TOTAL VOLUME, M3 21857. DISTILLER TYPE IND RE OSMOSIS USABLE FUEL WT, MTON 765.6 WATER HTR TYPE IND STORAGE FULL LOAD WT, MTON 6542.7 ANCHOR LOC IND WEATHER DR MAX SHP, KW 73854. PRAITRIE SYS IND PRESENT MASKER SYS IND PRESENT TOTAL AC LOAD, KW 532.8 TOTAL STEAM LOAD, KG/HR 3205. NO AIRCOND UNITS 4.0 AUX BOILER TYPE IND NOME TOTAL AC CAP, KW 773.7 NO AUX BOILERS 0. SWES 514 WT, MTON 48.8 TOTAL AUX BLR CAP, KG/HR 0. SWES 517 WT, MTON 0.0 BOAT SELECT IND GIVEN BOAT SELECT IND GIVEN EOAT COMPLEMENT 1 RIE NO FAS STATIONS 5. SWES 583 WT, MTON 9.9 RAS STATIONS 5. STRIKE GEAR: NO TYPE SWES 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWES 572 WT, MTON 15.0 SWES 571 WT, MTON 8.6 SWES 572 WT, MTON 54.9	FULL LOAD WI, MION	6542.66				
DATABANK-TEAMSDESCS3ODDEFINAL.ENK.HTMSHIP-TEAMSDEFINALPRINTED REPORT NO. 1 - SUMMARYLEP, M139.0TOTAL ACCOM260.0BEAM, M17.2COLL PROT SYS INDPRESENTTOTAL AREA, M25562.COMP HTR TYPE INDELECTRICTOTAL VOLUME, M321857.DISTILLER TYPE INDRE OSMOSISUSABLE FUEL WT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNOMETOTAL AC CAP, KW773.7NO AUX BOILER TYPE INDNOMETOTAL AC CAP, KW773.7NO AUX BOILER TYPE INDNOMESWES 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.0BOAT CORPLEMENT 1 RIENO FAS STATIONS5.SWES 583 WT, MTON9.9RAS STATIONS:NO1.CONVEYOR1.BAT TRUCKSUES 571 WT, MTON29.7STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWES 572 WT, MTON15.0SWER 672 WT WTON8.6	ASSET/MONOSC V5.3.0 -	- AUXILIARY S	YS MODULE - 5/ 2/2007 15:	23.48		
PRINTED REPORT NO. 1 - SUMMARYLEP, M139.0TOTAL ACCOM260.0BEAM, M17.2COLL PROT SYS INDPRESENTTOTAL AREA, M25562.COMP HTR TYPE INDELECTRICTOTAL VOLUME, M321857.DISTILLER TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL STEAM LOAD, KG/HR0.0BOAT COMPLEMENT 1 RIBRIBNO FAS STATIONS5.SWES 583 WT, MTON9.9RAS STATIONS:NOTYPE1.CONVEYOR1.BAT TRUCKSUBS 571 WT, MTON29.7STRIKE GEAR:NOTYPESUBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSWBS 671 WT, MTON8.6STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWES 572 WT, MTON15.0SWES 671 WT, MTON5.4	DATABANK-TEAMSMSC530DBFINAL.BNK.HTM SHIP-TEAM5DBFINAL					
LEP, M139.0TOTAL ACCOM260.0BEAM, M17.2COLL PROT SYS INDPRESENTTOTAL AREA, M25562.COMP HTR TYPE INDELECTRICTOTAL VOLUME, M321857.DISTILLER TYPE INDRE OSMOSISUSABLE FUEL WT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON765.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAISTES YS INDPRESENTTOTAL AC LOAD, KW73854.TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILER TYPE INDNONESWES 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENRIBSWES 517 WT, MTON0.0BOAT SELECT INDRIBNO FAS STATIONS5.SWES 583 WT, MTON9.9RAS STATIONS:NOTYPE1.CONVEYOR1.GRAV CONVSWES 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSWES 671 WT, MTON8.6STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWES 572 WT, MTON15.0SWES 671 WT, MTON6.6	PRINTED REPORT NO. 1 - SU	JMMARY				
LEP, H139.0TOTAL ACCOM200.0BEAM, M17.2COLL PROT SYS INDPRESENTTOTAL AREA, M25562.COMP HTR TYPE INDELECTRICTOTAL VOLUME, M321857.DISTILLER TYPE INDRE OSMOSISUSABLE FUEL UT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SUBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT COMPLEMENT1 RIBNO FAS STATIONS5.SUBS 583 WT, MTON9.9RAS STATIONS:NO1.CONVEYOR1.GRAV CONV44.1.GRAV CONV1.BAT TRUCK29.7STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6		100.0	TOTAL 1000			
TOTAL AREA, M2TOTALStoreFRESHULTTOTAL AVEL, VOLUME, M321857.DISTILLER TYPE INDELECTRICTOTAL VOLUME, M321857.DISTILLER TYPE INDRE OSMOSISUSABLE FUEL WT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSUBS 517 WT, MTON0.0BOAT SELECT INDGIVENNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NO1.CONVEYOR1.GRAV CONV1.1.GRAV CONV1.BAT TRUCK24.5STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6	LDF,M BEAM.M	17 2	COLL PROT SVS IND	200.0 PRESENT		
TOTAL VOLUME, M321857.DISTILLER TYPE INDRE OSMOSISUSABLE FUEL WT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSUBS 517 WT, MTON0.0BOAT COMPLEMENT 1 RIBNO FAS STATIONS5.SWES 583 WT, MTON9.9RAS STATIONS:NO1.CONVEYOR1.GRAV CONV44.STRIKE GEAR:NOTYPESWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSWBS 671 WT, MTON8.6STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWES 572 WT, MTON15.0SWES 671 WT, MTON8.6	TOTAL AREA.M2	5562.	COMP HTR TYPE IND	ELECTRIC		
USABLE FUEL WT, MTON765.6WATER HTR TYPE INDSTORAGEFULL LOAD WT, MTON6542.7ANCHOR LOC INDWEATHER DKMAX SHP, KW73854.PRAIRIE SYS INDPRESENTMAX SHP, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT COMPLEMENT 1 RIBNO FAS STATIONS5.SWES 583 WT, MTON9.9RAS STATIONS:NOSTRIKE GEAR:NOTYPESWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSWBS 671 WT, MTON8.6STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6	TOTAL VOLUME, M3	21857.	DISTILLER TYPE IND RE	OSMOSIS		
FULL LOAD WT, MTON6542.7 73854.ANCHOR LOC INDWEATHER DK MAX SHP, KWMAX SHP, KW73854.PRAIRIE SYS INDPRESENT MASKER SYS INDPRESENT PRESENTTOTAL AC LOAD, KW532.8 4.0TOTAL STEAM LOAD, KG/HR AUX BOILER TYPE IND3205. NOAL NONETOTAL AC CAP, KW773.7 4.0NO AUX BOILERS SWBS 514 WT, MTON0.0BOAT SELECT IND BOAT SELECT IND BOAT COMPLEMENT 1 RIB SWBS 583 WT, MTONGIVEN 9.9NO FAS STATIONS SUBS 571 WT, MTON0.0STRIKE GEAR:NO 1.TYPE BAT TRUCKSSCS 3.53 AREA, M2 SWBS 571 WT, MTON24.5STRK DECK AREA, M2 SWBS 572 WT, MTON36.2 15.0STOWAGE AREA, M2 SWBS 671 WT, MTON445.2	USABLE FUEL WT, MTON	765.6	WATER HTR TYPE IND	STORAGE		
MAX SHP, KW73854.PRAIRIE SYS INDPRESENTMAXSHP, KW73854.PRAIRIE SYS INDPRESENTTOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT COMPLEMENT 1 RIBNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NOTYPE4.RETRACTSTRIKE GEAR:NOTYPE1.CONVEYORSWBS 571 WT, MTON29.71.BAT TRUCKSTWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6SWBS 572 WT, MTON15.0SWBS 672 WT MTON5.4 9	FULL LOAD WT, MTON	6542.7	ANCHOR LOC IND WE	ATHER DK		
TOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT SELECT INDGIVENNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NOTYPETYPENO FAS STATIONS:NOSWBS 583 WT, MTON9.9RAS STATIONS:NOSTRIKE GEAR:NOTYPESWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSTWAGE AREA, M2445.2STRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6	MAX SHP,KW	73854.	PRAIRIE SYS IND	PRESENT		
TOTAL AC LOAD, KW532.8TOTAL STEAM LOAD, KG/HR3205.NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT TYPE INDRIBNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NOTYPEYPE4.RETRACTSTRIKE GEAR:NOTYPE1.CONVEYORSWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSTOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6			NASKER SIS IND	FREDEN I		
NO AIRCOND UNITS4.0AUX BOILER TYPE INDNONETOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENSWBS 517 WT, MTON0.0BOAT TYPE INDRIBNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NOTYPE4.RETRACTSTRIKE GEAR:NOTYPE1.CONVEYORSWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSTRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6SWBS 672 WT, MTON52.2WT MTON5.4	TOTAL AC LOAD,KW	532.8	TOTAL STEAM LOAD, KG/HR	3205.		
TOTAL AC CAP, KW773.7NO AUX BOILERS0.SWBS 514 WT, MTON48.8TOTAL AUX BLR CAP, KG/HR0.BOAT SELECT INDGIVENBOAT TYPE INDRIBBOAT COMPLEMENT 1 RIBNO FAS STATIONS5.SWBS 583 WT, MTON9.9RAS STATIONS:NOTYPE4.RETRACTSTRIKE GEAR:NOTYPE1.CONVEYORSWBS 571 WT, MTON29.71.GRAV CONV1.BAT TRUCKSTRK DECK AREA, M236.2STOWAGE AREA, M2445.2SWBS 572 WT, MTON15.0SWBS 671 WT, MTON8.6SWBS 572 WT, MTON15.0SWBS 672 WT MTON5.4	NO AIRCOND UNITS	4.0	AUX BOILER TYPE IND	NONE		
SWBS 514 WT, MTON 48.8 TOTAL AUX BLR CAP, KG/HR 0. SWBS 517 WT, MTON SWBS 517 WT, MTON 0.0 BOAT SELECT IND GIVEN 0.0 BOAT TYPE IND RIB NO FAS STATIONS 5. SWBS 583 WT, MTON 9.9 RAS STATIONS: NO STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6 SWBS 572 WT, MTON 15.0 SWBS 672 WT MTON 54.9	TOTAL AC CAP,KW	773.7	NO AUX BOILERS	ο.		
BOAT SELECT IND GIVEN BOAT TYPE IND RIE BOAT COMPLEMENT 1 RIE NO FAS STATIONS 5. SWBS 583 WT, MTON 9.9 RAS STATIONS: NO TYPE 4. RETRACT STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 8.6 SWBS 672 WT MTON 8.6	SUBS 514 UT, MTON	48.8	TOTAL AUX BLR CAP,KG/HR SWBS 517 WT,MTON	0. 0.0		
BOAT TYPE IND RIB BOAT COMPLEMENT 1 RIB NO FAS STATIONS 5. SWBS 583 WT, MTON 9.9 RAS STATIONS: NO TYPE 4. RETRACT SSCS 3.53 AREA, M2 24.5 STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 8.6	BOAT SELECT IND	GIVEN				
JOAT COMPLEMENT 1 KIB NO FAS STATIONS 5. SWES 583 WT, MTON 9.9 RAS STATIONS: NO TYPE 4. RETRACT STRIKE GEAR: NO TYPE SWES 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 29.7 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWES 572 WT, MTON 15.0 SWES 671 WT, MTON 8.6	BOAT TYPE IND	RIB	NO ENG GENELONG	-		
SUBS SOS 01, HIGH 3.5 KAS STATIONS. HO TTPE 4. RETRACT STRIKE GEAR: NO TYPE SUBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 29.7 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6	SURS 583 NT MTON	0.0	NU FAS STATIONS DIS STITIONS · NO	5. TVDF		
SSCS 3.53 AREA, M2 24.5 STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 29.7 1. GRAV CONV 1. BAT TRUCK 24.5 STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6	Sees 303 wighton		AND DIALLOND. NO	LIFE		
STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 29.7 1. GRAV CONV 1. BAT TRUCK 29.7 STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6		3.3	4.	RETRACT		
STRIKE GEAR: NO TYPE SWBS 571 WT, MTON 29.7 1. CONVEYOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6 SWBS 572 WT, MTON 15.0 SWBS 672 WT WTON 54.9		3.5	4.	RETRACT		
1. CONVETOR 1. GRAV CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STRK DECK AREA, M2 36.2 STRK DECK AREA, M2 15.0 SWBS 572 WT, MTON 15.0 SWBS 672 WT, MTON 54.8		5.5	4. SSCS 3.53 AREA,M2	RETRACT 24.5		
I. OFAC CONV 1. BAT TRUCK STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6 SWBS 572 WT, MTON 54.9 54.9	STRIKE GEAR: NO	TYPE	4. SSCS 3.53 AREA,M2 SWBS 571 WT,MTON	RETRACT 24.5 29.7		
STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6 SWBS 572 WT, MTON 54.8 54.8	STRIKE GEAR: NO 1. 1	TYPE CONVEYOR	4. SSCS 3.53 AREA,M2 SWBS 571 WT,MTON	RETRACT 24.5 29.7		
STRK DECK AREA, M2 36.2 STOWAGE AREA, M2 445.2 SWBS 572 WT, MTON 15.0 SWBS 671 WT, MTON 8.6 SWBS 572 WT, MTON 15.0 SWBS 672 WT MTON 54.9	STRIKE GEAR: NO 1. 1. 1.	TYPE CONVEYOR GRAV CONV BAT TRUCK	4. SSCS 3.53 AREA,M2 SWBS 571 WT,MTON	RETRACT 24.5 29.7		
SWBS 572 WT,MTON 15.0 SWBS 671 WT,MTON 8.6	STRIKE GEAR: NO 1. 1. 1. 1.	TYPE CONVEYOR GRAV CONV BAT TRUCK	4. SSCS 3.53 AREA,M2 SWBS 571 WT,MTON	RETRACT 24.5 29.7		
	STRIKE GEAR: NO 1. 1. 1. 1. STRK DECK AREA, M2	TYPE CONVEYOR GRAV CONV BAT TRUCK 36.2	4. SSCS 3.53 AREA, M2 SWBS 571 WT, MTON	RETRACT 24.5 29.7 445.2		

ASSET/MONOSC V5.3.0 - DATABANK-TEAM5MSC5	HULL SUBDI 300BFINAL.	V MODULE – 5/ 2/2007 15:51.32 BNK.HTM SHIP-TEAM5DBFINAL				
PRINTED REPORT NO. 1 - SUMMARY						
HULL SUBDIV IND- CALC MARGIN LINE IND- CALC		INNER BOT DECK ID- 5				
LBP, M	139.00	HULL AVG DECK HT, M 3.04				
DEPTH STA 10, M	12.51	,				
TOTAL HULL VOLUME, M3	18021.					
TOTAL SPON VOLUME, M3	ο.	NO. OF DECKS 5				
		NO. OF TRANS BHDS 13				
MR VOLUME, M3	2916.	NO. OF LONG BHDS 0				
OP TANKAGE ALLOCATED, M3	1676.	NO. OF MACHY RMS 3				
OP TANKAGE UTILIZED, M3	1676.	NO. OF LARGE OBJECT SPACES 1				
OP TANKAGE REQ, M3	1672.					
SHAFT ALLEY VOL, M3	ο.					
LARGE OBJECT VOL, M3	93.					
HULL ARR AREA AVAIL, M2	4308.7					
SPON ARR AREA AVAIL, M2	0.0					

ASSET/MONOSC V5.3.0 - DECKHOUSE MODULE - 5/ 2/2007 15:15.56 DATABANK-TEAM5MSC530DBFINAL.BNK.HTM SHIP-TEAM5DBFINAL					
PRINTED REPORT NO. 1 - DECKHOUSE SU	PRINTED REPORT NO. 1 - DECKHOUSE SUMMARY				
DKHS GEOM IND-GIVEN DKHS SIZE IND-	BLAST RESIST IND-7 PSI DKHS MTRL TYPE IND-STEEL				
BEAM LINK IND-YES					
LBP, M 139.00	DKHS LENGTH OA, M	42.18			
BEAM, M 17.18	DKHS MAX WIDTH, M	14.56			
AREA BEAM, M 16.53	DKHS HT (W/O PLTHS), M	12.00			
DKHS FWD LIMIT- STA 8.8	OTHER ARR AREA REQ, M2	4410.			
DKHS AFT LIMIT- STA 14.8	HULL ARR AREA AVAIL, M2	4309.			
DKHS AVG DECK HT, M 3.00	SPONSON ARR AREA AVAIL, M2	Ο.			
DKHS NO LVLS 4.	DKHS ARR AREA REQ, M2	942.			
DKHS MIN SIDE CLR, M 0.00	HANGAR ARR AREA REQ, M2	316.			
DKHS AVG SIDE ANG, DEG	PLTHS ARR AREA REQ, M2	54.			
DKHS OUTBOARD SIDE LOC, M 7.28					
DKHS NO PRISMS 14	DKHS MAX ARR AREA, M2	1253.			
DKHS ARR AREA DERIV, M2 25.88	DKHS ARR AREA AVAIL, M2	1253.			
DKHS MIN ALW BEAM, M 9.31	DKHS VOLUME, M3	3836.			
BRIDGE L-O-S OVER BOW, M 10.89					
	DKHS WEIGHT, MTON	182.77			
DKHS SIDE LOC OFFSET, M	DKHS VCG, M	16.95			
DKHS SIDE ANG OFFSET, DEG					
DKHS DECK HT OFFSET, M					
Page	109				
------	-----				

ASSET/MONOSC V5.3.0 - APPENDAGE MODULE - 5/ 2/2007 15:20.50 DATABANK-TEAM5MSC530DBFINAL.BNK.HTM SHIP-TEAM5DBFINAL								
PRINTED REPORT NO. 1 - SUMMARY								
APPENDAGE DISP, MTON	215.6							
SHELL DISP, MTON	30.0	STZED DECT DUDDED AND EIN						
SKEG IND	NONE	DUDDED RECT RODDER AND FIN	SDIDE					
SKEG IND SKEG DISD MTON	0.0	NO DUDDER TIPE IND	JFADE 2					
SKEG DISF, MICH	0.0	AVG DUDDERS CHORD M	0 10					
SKEG THK. M	0.000	AVG RUDDER THK. M	0.10					
SKEG PROJECTED AREA. M2	0.00	RUDDER SPAN. M	0.10					
,		RUDDER PROJECTED AREA. M2	0.0					
BILGE KEEL IND	PRESENT	RUDDER DISP. MTON	0.0					
BILGE KEEL DISP. MTON	11.9							
BILGE KEEL LGTH, M	48.17	FIN SIZE IND						
,		NO FIN PAIRS	0					
SHAFT SUPPORT TYPE IND	POD	FWD FIN						
SHAFT SUPPORT DISP, MTON	162.3	CHORD, M						
SHAFT DISP, MTON	0.0	тнк, м						
		SPAN, M						
PROP TYPE IND	FP	PROJECTED AREA, M2						
PROP BLADE DISP, MTON	2.6	DISP, MTON (PER PAIR)						
NO PROP SHAFTS	2	AFT FIN						
PROP DIA, M	5.22	CHORD, M						
		ТНК, М						
SONAR DOME DRAG IND	HULL	SPAN, M						
SONAR DISP, MTON	8.8	PROJECTED AREA, M2						
		DISP, MTON (PER PAIR)						

ASSET/MONOSC V5.3.0 - RESISTANCE MODULE - 5/ 2/2007 15:21.58 DATABANK-TEAMSMSC530DBFINAL.BNK.HTM SHIP-TEAMSDBFINAL

PRINTED REPORT NO. 1 - SUMMARY

RESID RESIST IND HOLTRUP + MENNEN FRICTION LINE IND ITTC ENDUR DISP IND FULL LOAD PROP TYPE IND FP SONAR DOME DRAG IND HULL SKEG IND NONE	BILGE KEEL INDPRESENTSHAFT SUPPORT TYPE INDPODPRPLN SYS RESIST INDGIVENRUDDER TYPE INDSPADESTERN FLAP INDPRESENT
FULL LOAD LENGTH, M139.05FULL LOAD DRAFT, M5.76FL WETTED SURF AREA, M22629.0FULL LOAD WT, MTON6542.7AVG ENDUR DISP, MTON6542.7USABLE FUEL WT, MTON765.6	FULL LOAD BEAM, M17.19FULL LOAD PRISMATIC COEF0.5775FULL LOAD MAX SECT COEF0.7770CORR ALW0.00040DRAG MARGIN FAC0.080
NO FIN PAIRS O. NO RUDDERS 2. NO PROP SHAFTS 2. PROP DIA, M 5.22	PRPLN SYS RESIST FRAC MAX SPEED 0.350 SUSTN SPEED 0.360 ENDUR SPEED 0.380
CONDIN SPEED EFFECTIVE KT FRIC RESID APPDG MAX 32.65 12478. 16602. 11202 SUSIN 30.83 10560. 12731. 9212 ENDUR 20.00 3004. 853. 1619	HORSEPOWER, KW DRAG WIND STN FLP MARGIN TOTAL N . 4753105. 3011. 40652. 2420011. . 4002650. 2420. 32664. 2059336. . 109507. 406. 5484. 532970.

ASSET/MONOSC V5.3.0 DATABANK-TEAM5MSC	- WEIGHT M 530DBFINAL.	ODULE - BNK.HTM	5/ 2/200 SHIP-TEA	7 15:24.23 M5DBFINAL	
PRINTED REPORT NO. 1 - SU	MMARY				
SWBS GROUP		UEI MTON	GHT PERCEN	LCG T M 	VCG M
100 HULL STRUCTURE 200 PROPULSION PLANT 300 ELECTRIC PLANT		2191.1 795.6 383.7	33. 12. 5.	 5 77.45 2 106.07 9 67.02	6.56 3.49 6.02
400 COMMAND + SURVEILLA 500 AUXILIARY SYSTEMS 600 OUTFIT + FURNISHING	NCE	270.0 644.1 489.9	4. 9. 7.	1 19.04 8 76.45 5 74.98	4.70 6.81 5.98
J. T.G. H.T. S. H.T. P.		125.8 ========= 4900 2	1. ========= 74	9 5.35 ======== 0 75.83	-0.72
M21 PD MARGIN (N	T = 2 0%)	+ 98 0		/KG = 2 08	
M22 CD MARGIN (W M11 D & B MARGIN (W M23 CON MOD MARGIN (W M24 GFM MARGIN	T = 2.0%) T = 5.0%) T = 1.0%)	+ 100.0 + 254.9 + 51.0		(KG = 2.0% (KG = 2.0% (KG = 5.0% (KG = 1.0%	() + .12 + .30 + .06 + .06
LIGHT SHIP WITH MARGINS		5404.0	82.	6 75.83	6.29
F00 FULL LOADS F10 SHIPS FORCE + EFFEC F20 MISSION RELATED EXF F30 SHIPS STORES F40 FUELS + LUBRICANTS F50 LIQUIDS + GASES (NO	TS ENDABLES N. FUEL)	1138.6 28.6 137.8 37.7 895.3 39.3	17.	4 56.53 65.33 0.00 75.06 63.58 69.93	1.95 8.19 0.28 6.15 1.80 2.71
F60 CARGO		0.0		0.00	0.00
FULL LOAD WT		6542.7	100.	0 72.47	5.53
ASSET/MONOSC V5. DATABANK-TEAM5M PRINTED REPORT NO. 1 - SHIP TYPE-SC COLL PROTECT SYSTEM-PRES SONAR DOME-PRESENT	3.0 - SPACI SC530DBFINJ SUMMARY ENT	5 MODULE AL.BNK.H AVIA HAB EMBA	- 5/ 2 TM SHIF TION FAC STANDARI RKED COM	2/2007 15:24.4 -TEAMSDBFINA CILITY-MINOR . -NAVY MANDER-NONE	49 L AVN
FULL LOAD WT, MTON TOTAL CREW ACC	6542.7 260.	PASS	WAY MARG	IN FAC	0.000
MR VOLUME, M3 TANK VOL REQ,M3 SHAFT ALLEY VOLUME,M3	2916. 1672. 0.	SPAC TANK	E MARGIN MARGIN	I FAC FAC	0.000 0.000
	PAYLOAD REQUIRED	AREA TOTA REQUI	M2 L RED A	TOTAL VAILABLE	VOL M3 TOTAL ACTUAL
DKHS ONLY HULL OR DKHS	316. O.	9 44	42. 10.	1253. 4309.	3836. 18021.
TOTAL	316.	53	52.	5562.	21857.
SSCS GROUP	TO AREA	TAL M2 AR	DKHS EA M2	PERCENT TOTAL AREA	
1. MISSION SUPPORT 2. HUMAN SUPPORT 3. SHIP SUPPORT 4. SHIP MOBILITY SYSTEM 5. UNASSIGNED	14 17 10	 533. 415. 752. 552.	397. 46. 173. 326.	10.0 26.4 32.7 30.9 0.0	
TOTAL			942	100.0	

Appendix F – Machinery Equipment List

ITEM	QTY	NOMENCLATURE	CAPACITY RATING	LOCATION	SWBS #	REMARKS	DIMENSIONS LxWxH (m)
1	2	Gas Turbine, Main LM2500+	26MW	MMR2	234	Includes Acoustic Enclosure	8.48x2.65x3.00
2	1	Gas Turbine, Sec ICR	21.6MW	MMR1	234	Includes Acoustic Enclosure	8.00x2.64x2.64
3	1	Secondary Engine Intercooler	-	MMR1	234	Located next to Secondary Engine	2.48x1.37x1.74
4	2	Main Propulsion Generator	26MW	MMR2	234	Located next to Main Engine	5.41 x 2.80 x 3.89
5	1	Secondary Propulsion Generator	21MW	MMR1	234	Located next to Secondary Engine	4.60 x 2.80 x 3.40
6	2	Propulsion Motors	28MW	MMR1, MMR2	234	Pods	5.53 x 2.80 x 2.80
7	2	Unit, MGT Hydraulic Starting	14.8 m^3/hr @ 414 bar	MMR2	556	near end ME away from RG	2x2x2
	2	Main Engine Exhaust Duct	90.5 kg/sec	MMR2 and up	234	Needs to follow almost vertical path up through hull, deckhouse and out stack	5.8 m2
	2	Main Engine Inlet Duct	6.10 m/s	MMR2 and up	234	Needs to follow almost vertical path up through hull, deckhouse and out side of stack or deckhouse	11.9 m2
8	2	Unit, MGT Hydraulic Starting	14.8 m^3/hr @ 414 bar	MMR1	556	near end ME away from RG	2x2x2
	2	Secondary Engine Exhaust Duct	74.4 kg/sec	MMR1 and up	234	Needs to follow almost vertical path up through hull, deckhouse and out stack	3.8 m2
	2	Secondary Engine Inlet Duct	6.10 m/s	MMR1 and up	234	Needs to follow almost vertical path up through hull, deckhouse and out side of stack or deckhouse	9.8 m2
9	2	Console, Main Control	NA	MMR1 and MMR2 Engineering Operation Station (EOS)	252	MMR 2nd or upper level in EOS looking down on RG	3x1x2
10	2	Diesel Engine, Ships Service CAT 3516V16	1275kW, 480 V, 3 phase, 60 Hz, 0.8 PF	AMR	311	Includes enclosure, 2nd or upper level, orient F&A	3.69 x 1.70 x 2.05
11	2	D Generator, Ships Service	1275kW, 480 V, 3 phase, 60 Hz, 0.8 PF	AMR	311	Includes enclosure, 2nd level if possible, orient F&A	1.60 x 1.10 x 1.55
	2	SSD Exhaust Duct	2.4 kg/sec	AMR and up	311	Needs to follow almost vertical path up through hull, deckhouse and out stack	0.1 m2
	2	SSD Inlet Duct	6.1 m/sec	AMR and up	311	Needs to follow almost vertical path up through hull, deckhouse and out side of stack or deckhouse	0.4 m2
12	5	PD SS DC-BUS Rectifier	6.1 m/sec	MMR2, MMR1, AMR	311		2.68 x 1.22 x 1.83
13	5	PD SS DC-BUS .25MW Inverter	0.25MW	MMR2, MMR1, AMR	311		0.61 x 0.61 x 1.83
14	2	Switchboard, Ships Service	-	MMR1, MMR2	324	MMR upper level in EOS	3.096 x 1.220 x 2.286
15	1	Switchboard, Ships Service	-	AMR	324	AMR upper level	2.5x1x2
	6	MMR and AMR ladders	-	MMR2, MMR1, AMR		May have single or double inclined ladders between levels depending on space	1.0x2.0
	3	MMR and AMR escape trunks	-	MMR2, MMR1, AMR		One per space in far corners, bottom to main deck	1.5x1.5
16	2	MN Machinery Space Fan	94762 m^3/hr	FAN ROOM	512	above, outside MMR	1.118 (H) x 1.384 (dia)
17	4	MN Machinery Space Fan	91644 m^3/hr	MMR1, MMR2	512	Upper level in corners	1.118 (H) x 1.384 (dia)
18	2	Aux Machinery Space Fan	61164 m^3/hr	FAN ROOM	512	above, outside AMR	1.092 (H) x 1.118 (dia)
19	2	Aux Machinery Space Fan	61164 m^3/hr	AMR	512	Upper level in corners	1.092 (H) x 1.118 (dia)
20	2	Pump, Main Seawater Circ	230 m^3/hr @ 2 bar	MMR1, MMR2	256	P&S MMR lower level near hull and ME	.622 x .622 x 1.511
21	3	Assembly, MGT Lube Oil Storage and Conditioning	NA	MMR1, MMR2	262	next to each engine	1.525 x 2.60 x 1.040
22	2	Purifier, Lube Oil	1.1 m^3/hr	MMR	264	next to LO transfer pump, 2nd or upper level MMR	.830 x .715 x 1.180
23	2	Pump, Lube Oil Transfer	4 m^3/hr @ 5 bar	MMR	264	next to LO purifier	.699 x .254 x .254

24	2	Filter Separator, MGT Fuel	30 m^3/hr	MMR1, MMR2	541	next to FO purifiers	1.6 (L) x.762 (dia)
25	2	Purifier, Fuel Oil	7.0 m^3/hr	MMR1, MMR2	541	2nd or upper level MMR	1.2 x 1.2 x 1.6
26	2	Pump, Fuel Transfer	45.4 m^3/hr @ 5.2 bar	MMR1, MMR2	541	next to FO purifiers	1.423 x .559 x .686
	2	Fuel Oil Service Tanks	-	MMR1, MMR2		lower level MMR P&S	size for 4 hours at endurance speed
27	4	Air Conditioning Plants	150 ton	AMR	514	either level, side by side	2.353 x 1.5 x 1.5
28	4	Pump, Chilled Water	128 m^3/hr @4.1 bar	AMR	532	next to AC plants	1.321 x .381 x .508
29	2	Refrig Plants, Ships Service	4.3 ton	AMR	516	either level, side by side	2.464 x .813 x 1.5
30	6	Pump, Fire	454 m^3/hr @ 9 bar	MMR2, MMR1, AMR	521	lower levels	2.490 x .711 x .864
31	2	Pump, Fire/Ballast	454 m^3/hr @ 9 bar	MMR2, MMR1	521	lower levels	2.490 x .711 x .864
32	2	Pump, Bilge	227 m^3/hr @3.8 bar	MMR2, MMR1	529	lower levels	1.651 x .635 x 1.702
33	1	Pump, Bilge/Ballast	227 m^3/hr @3.8 bar	AMR	529	lower levels	1.651 x .635 x .737
34	3	Station, AFFF	227 m^3/hr @3.8 bar	above MMR2, MMR1, AMR	555	for entering space	2.190 x 1.070 x 1.750
35	2	Distiller, Fresh Water	76 m^3/day (3.2 m^3/hr)	AMR	531	lower or 2nd level	2.794 x 3.048 x 2.794
36	2	Brominator	1.5 m^3/hr	AMR	531	next to distillers	.965 x .203 x .406
37	2	Brominator	5.7 m^3/hr	AMR	533	next to distillers	.533 x.356 x 1.042
38	2	Pump, Potable Water	22.7 m^3/hr @ 4.8 bar	AMR	533	next to distillers	.787 x .559 x .356
39	2	Pump, JP-5 Transfer	11.5 m^3/hr @ 4.1 bar	JP-5 PUMP ROOM	542	in JP-5 pump room	1.194 x.483 x .508
40	2	Pump, JP-5 Service	22.7 m^3/hr @ 7.6 bar	JP-5 PUMP ROOM	542	in JP-5 pump room	1.194 x .483 x .508
41	1	Pump, JP-5 Stripping	5.7 m^3/hr @ 3.4 bar	JP-5 PUMP ROOM	542	in JP-5 pump room	.915 x .381 x .381
42	2	Filter/Separ., JP-5 Transfer	17 m^3/hr	JP-5 PUMP ROOM	542	in JP-5 pump room	.457 (L) x 1.321 (dia)
43	2	Filter/Separ., JP-5 Service	22.7 m^3/hr	JP-5 PUMP ROOM	542	in JP-5 pump room	.407 (L) x 1.219 (dia)
44	3	Receiver, Starting Air	2.3 m^3	MMR2, MMR1, AMR	551	near ME, compressors and bulkhead	1.067 (dia) x 2.185 (H)
45	3	Compressor, MP Air	80 m^3/hr FADY @ 30 bar	MMR2, MMR1, AMR	551	2nd or upper level	1.334 x .841 x .836
46	1	Receiver, Ship Service Air	1.7 m^3	MMR1	551	near ME, compressors and bulkhead	1.830 (H) x .965 (dia)
47	1	Receiver, Control Air	1 m^3	MMR1	551	near ME, compressors and bulkhead	3.421 (H) x .610 (dia)
48	2	Compressor, Air, LP Ship Service	8.6 bar @ 194 SCFM	MMR1, MMR2	551	2nd or upper level	1.346 x 1.067 x 1.829
49	2	Dryer, Air	250 SCFM	MMR1, MMR2	551	near LP air compressors	.610 x .864 x 1.473
50	2	Hydraulic Pump and Motor	-	aft Steering Gear Room	561	next to ram	0.5x0.8x0.8
51	1	Hydraulic Steering Ram	-	aft Steering Gear Room	561	over pods	1.2x8.5x1.5
52	3	Pump, Oily Waste Transfer	12.3 m^3/hr @ 7.6 bar	MMR2, MMR1, AMR	593	lower level	1.219 x .635 x .813
53	3	Separator, Oil/Water	2.7 m^3/hr	MMR2, MMR1, AMR	593	lower level near oily waste transfer pump	1.321 x .965 x 1.473
54	1	Unit, Sewage Collection	28 m^3	SEWAGE TREATMENT ROOM	593	sewage treatment room	2.642 x 1.854 x 1.575
55	1	Sewage Plant	225 people	SEWAGE TREATMENT ROOM	593	sewage treatment room	1.778 x 1.092 x 2.007

Appendix G – Weights and Centers

	FULL LOAD CONDITION	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
F00	LOADS	1119.9	2.8	3187.1	62.2	69703.5	0.1	153.1
F10	SHIPS FORCE	29.0	8.2	237.5	65.3	1894.6	1.8	52.2
F21	SHIP AMMUNITION	77.9	7.8	607.6	121.8	9488.2	0.0	0.0
F22	ORD DEL SYS AMMO	10.0	7.5	75.0	48.0	480.0	0.0	0.0
F23	ORD DEL SYS (AIRCRAFT)	30.7	13.9	426.7	89.0	2732.3	0.0	0.0
F31	PROVISIONS+PERSONNEL STORES	30.8	10.0	308.0	65.0	2002.0	4.1	125.0
F32	GENERAL STORES	6.9	7.3	50.4	103.0	710.7	-3.5	-24.2
F41	DIESEL FUEL MARINE	805.9	1.0	805.9	50.0	40295.0	0.0	0.0
F42	JP-5	81.2	5.3	427.1	103.8	8428.6	0.0	0.0
F46	LUBRICATING OIL	8.2	6.2	50.4	100.4	822.9	0.0	0.0
F47	SEA WATER	0.0	6.1	0.0	57.7	0.0	0.0	0.0
F52	FRESH WATER	39.3	5.1	198.5	72.5	2849.3	0.0	0.0
	Total Weight	6510.1	5.8	37673.6	75.0	488237.7	0.0	236.6

	MINIMUM OPERATING CONDITION	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
F00	LOADS	426.2	3.6	1529.1	64.1	27305.6	0.2	80.4
F10	SHIPS FORCE	29.0	8.2	237.5	65.3	1894.6	0.0	0.0
F21	SHIP AMMUNITION	26.0	7.8	202.6	121.8	3163.1	1.8	46.7
F22	ORD DEL SYS AMMO	3.3	7.5	25.0	48.0	159.8	0.0	0.0
F23	ORD DEL SYS (AIRCRAFT)	30.7	13.9	426.7	89.0	2732.3	0.0	0.0
F31	PROVISIONS+PERSONNEL STORES	10.3	6.0	61.6	75.1	770.9	4.1	41.7
F32	GENERAL STORES	2.3	6.8	15.6	75.1	172.6	-3.5	-8.1
F41	DIESEL FUEL MARINE	268.6	1.0	268.6	50.0	13430.0	0.0	0.0
F42	JP-5	27.1	5.3	142.3	103.8	2808.8	0.0	0.0
F46	LUBRICATING OIL	2.7	6.2	16.8	100.4	274.0	0.0	0.0
F47	SEA WATER	0.0	6.1	0.0	57.7	0.0	0.0	0.0
F52	FRESH WATER	26.2	5.1	132.3	72.5	1899.5	0.0	0.0
	Total Weight	5816.4	6.2	36015.5	76.7	445839.9	0.0	163.9

SWBS	COMPONENT	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
100	HULL STRUCTURES	2191.2	6.5	14345.5	77.2	169116.5	0.0	0.0
200	PROPULSION PLANT	795.6	3.5	2770.4	106.1	84389.5	0.0	0.0
300	ELECTRIC PLANT, GENERAL	383.8	6.0	2313.1	67.0	25722.1	0.0	0.0
400	COMMAND+SURVEILLANCE	270.1	11.2	3018.1	61.2	16538.4	0.3	75.6
500	AUXILIARY SYSTEMS, GENERAL	643.9	7.3	4674.0	56.2	36205.8	0.3	180.5
600	OUTFIT+FURNISHING,GENERAL	489.9	6.7	3278.5	81.6	39981.6	-0.4	-214.2
700	ARMAMENT	125.7	7.6	951.8	67.9	8531.8	0.3	34.1
	LIGHTSHIP WEIGHT	4900.2	6.4	31351.3	77.6	380485.7	0.0	75.9
	MARGIN	490.0	6.4	3135.1	77.6	38048.6	0.0	7.6
	LIGHTSHIP WEIGHT + MARGIN	5390.2	6.4	34486.5	77.6	418534.3	0.0	83.5

SWBS	COMPONENT	WT-MT	VCG-m	Moment	LCG-m	Moment	TCG-m	Moment
	FULL LOAD WEIGHT + MARGIN	6510.12	5.79	37673.60	75.00	488237.75	0.04	236.63
	MINOP WEIGHT AND MARGIN	5816.38	6.19	36015.52	76.65	445839.92	0.03	163.93
	LIGHTSHIP WEIGHT + MARGIN	5390.22	6.40	34486.47	77.65	418534.28	0.02	83.53
	LIGHTSHIP WEIGHT	4900.20	6.40	31351.33	77.65	380485.71	0.02	75.94
	MARGIN	490.02	6.40	3135.13	77.65	38048.57	0.02	7.59
100	HULL STRUCTURES	2191.20	6.55	14345.52	77.18	169116.51	0.00	0.00
110	SHELL + SUPPORTS	615.70	3.55	2185.74	70.77	43573.09	0.00	0.00
120	HULL STRUCTURAL BULKHDS	170.90	6.69	1143.32	79.61	13605.35	0.00	0.00
130	HULL DECKS	504.90	9.65	4872.29	81.18	40987.78	0.00	0.00
140	HULL PLATFORMS/FLATS	78.60	3.67	288.46	70.79	5564.09	0.00	0.00
150	DECK HOUSE STRUCTURE	182.80	16.80	3071.04	78.40	14331.52	0.00	0.00
160	SPECIAL STRUCTURES	192.10	4.96	952.82	76.08	14614.97	0.00	0.00
170	MASTS+KINGPOSTS+SERV PLATFORM	2.00	28.45	56.90	81.97	163.94	0.00	0.00
180	FOUNDATIONS	332.00	3.18	1055.76	83.09	27585.88	0.00	0.00
190	SPECIAL PURPOSE SYSTEMS	112.20	6.41	719.20	77.45	8689.89	0.00	0.00
200	PROPULSION PLANT	795.60	3.48	2770.38	106.07	84389.54	0.00	0.00
230	PROPULSION UNITS	584.60	2.49	1455.65	108.29	63306.33	0.00	0.00
234	GAS TURBINES			0.00		0.00		0.00
235	ELECTRIC PROPULSION			0.00		0.00		0.00

REDUCTION GEARS

TRANSMISSION+PROPULSOR SYSTEMS

240

241

		Ι	Page 114	
31.56	127.37	10049.49	0.00	0.00
0.00		0.00		0.00
0.00		0.00		0.00
0.00		0.00		0.00

242	CLUTCHES + COUPLINGS			0.00		0.00		0.00
243	SHAFTING			0.00		0.00		0.00
244	SHAFT BEARINGS			0.00		0.00		0.00
245	PROPULSORS			0.00		0.00		0.00
250	SUPPORT SYSTEMS, UPTAKES	112.40	10.74	1207.18	83.97	9438.23	0.00	0.00
260	PROPUL SUP SYS- FUEL, LUBE OIL	6.70	4.88	32.70	78.64	526.89	0.00	0.00
290	SPECIAL PURPOSE SYSTEMS	13.00	3 33	43.29	82.20	1068.60	0.00	0.00
300	ELECTRIC PLANT GENERAL	383.80	6.03	2313.08	67.02	25722.10	0.00	0.00
310	ELECTRIC POWER GENERATION	179.20	3.10	555 52	59.69	10696.45	0.00	0.00
311	SHIP SERVICE POWER GENERATION	179.20	5.10	0.00	57.07	0.00	0.00	0.00
312	EMERGENCY GENERATORS			0.00		0.00		0.00
312	DOWED CONVERSION FOLIDMENT			0.00		0.00		0.00
220	POWER CONVERSION EQUIPMENT	146.40	9.64	1264.00	74.21	10964.24	0.00	0.00
320	POWER DISTRIBUTION SYS	140.40	8.04	1264.90	74.21	10804.34	0.00	0.00
330		31.30	10.20	525.19	/ 5.11	2302.97	0.00	0.00
340	POWER GENERATION SUPPORT SYS	13.50	8.31	57.20	50.77	085.40	0.00	0.00
390	SPECIAL PURPOSE SYS	13.20	4.34	57.29	88.86	11/2.95	0.00	0.00
400	COMMAND+SURVEILLANCE	270.10	11.17	3018.11	61.23	16538.40	0.28	/5.56
410	COMMAND+CONTROL SYS	17.60	19.20	337.92	64.8	1140.48	0.00	0.00
420	NAVIGATION SYS	9.20	19.20	176.64	64.8	596.16	0.00	0.00
430	INTERIOR COMMUNICATIONS	28.90	19.20	554.88	81.8	2364.02	-2.70	-78.03
440	EXTERIOR COMMUNICATIONS	0.00	19.20	0.00	81.8	0.00	-2.70	0.00
450	SURF SURVEILLANCE SYS (RADAR)	45.60	22.10	1007.76	64.5	2941.20	0.00	0.00
460	UNDERWATER SURVEILLANCE SYSTEMS	57.90	-0.50	-28.95	-1.4	-81.06	0.00	0.00
470	COUNTERMEASURES	49.10	7.41	363.83	122.4	6009.84	2.30	112.93
480	FIRE CONTROL SYS	21.40	10.46	223.84	37.4	800.36	1.90	40.66
490	SPECIAL PURPOSE SYS	40.40	9.46	382.18	68.5	2767.40	0.00	0.00
500	AUXILIARY SYSTEMS, GENERAL	643.90	7.26	4674.03	56.23	36205.79	0.28	180.48
510	CLIMATE CONTROL	144.20	6.81	982.00	38.3	5522.86	0.00	0.00
	CPS		6.81	0.00	38.3	0.00	0.00	0.00
520	SEA WATER SYSTEMS (FORWARD)	77.25	6.50	502.13	9	695.25	0.00	0.00
520	SEA WATER SYSTEMS (AFT)	25.75	5.90	151.93	132.4	3409.30	0.00	0.00
530	FRESH WATER SYSTEMS	67.70	5.00	338.50	72.5	4908.25	0.00	0.00
540	FUELS/LUBRICANTS HANDLING+STORAGE	44.40	5.30	235.32	101	4484.40	0.00	0.00
550	AIR GAS+MISC FLUID SYSTEM	70.70	10.46	739.52	37.4	2644.18	1 90	134 33
560	SHIP CNTL SYS	0.00	0.00	0.00	139	0.00	0.00	0.00
570	UNDERWAY REPLENISHMENT SYSTEMS	44 70	7 41	331.23	119.5	5341.65	0.00	0.00
581	ANCHOR HANDI ING+STOWAGE SYSTEMS	49.60	10.46	518.82	28	1388.80	0.00	0.00
582	MOORING+TOWING SYSTEMS	13.80	10.46	144.35	28	386.40	0.00	0.00
583	BOATS HANDLING+STOWAGE SYSTEMS	0.00	7.41	73.36	119.5	1183.05	0.00	0.00
585	AIRCRAFT WEAPONS ELEVATORS	9.90	0.00	0.00	119.5	0.00	0.00	0.00
585	AIRCRAFT WEATONS ELEVATORS	0.00	0.00	0.00	139	0.00	0.00	0.00
587	AIRCRAFT RECOVERT SUITORT STS	0.00	0.00	0.00	139	0.00	0.00	0.00
500	AIRCRAFT LAUNCH SUFFORT STSTEM	21.60	14.50	0.00	139	2(54.40	0.00	0.00
588	AIRCRAFT HANDLING, STOWAGE	31.60	14.30	458.20	120	2654.40	0.00	0.00
589	MISC MECH HANDLING SYS	0.00	0.00	0.00	139	0.00	0.00	0.00
595	ENVIKUNWENTAL PULLUTIUN UNTL SYS	12.60	4.20	55.08	/6.5	963.90	0.00	0.00
598	AUA 5151EWS UPEKATING FLUIDS	44.60	2.50	111.50	124.5	1/39.40	0.00	0.00
599	AUA SYSTEMS KEPAIK TOOLS + PAKTS	/.10	4.72	33.51	124.5	883.95	6.50	46.15
600	OUIFII+FUKNISHING,GENERAL	489.90	6.69	5278.46	81.61	39981.56	-0.44	-214.24
610	SHIP FITTINGS	12.50	1.73	21.63	99	1237.50	0.00	0.00
620	HULL COMPARTMENTATION	95.30	7.00	667.10	77.35	7371.46	0.00	0.00
630	PRESERVATIVES + COVERINGS	195.00	5.73	1117.35	72.45	14127.75	0.00	0.00
640	LIVING SPACES	49.40	6.41	316.65	60	2964.00	0.00	0.00
650	SERVICE SPACES	20.20	8.00	161.60	65	1313.00	-1.70	-34.34
660	WORKING SPACES	49.00	10.46	512.54	122.2	5987.80	-1.50	-73.50
670	STOWAGE SPACES	63.40	7.00	443.80	100	6340.00	-2.00	-126.80
690	SPECIAL PURPOSE SYS	5.10	7.41	37.79	125.5	640.05	4.00	20.40
700	ARMAMENT	125.70	7.57	951.76	67.87	8531.80	0.27	34.14
710	GUNS+AMMUNITION	23.10	7.80	180.18	121.80	2813.58	1.80	41.58
720	MISSLES+ROCKETS	84.90	7.15	607.04	46.28	3929.17	0.00	0.00
750	TORPEDOES	2.70	4.20	11.34	10.00	27.00	0.00	0.00
760	SMALL ARMS+PYROTECHNICS	2.00	13.00	26.00	89.00	178.00	6.00	12.00
780	AIRCRAFT RELATED WEAPONS	2.70	18.50	49.95	75.50	203.85	-7.20	-19.44
790	SPECIAL PURPOSE SYSTEMS	10.30	7.50	77.25	134.00	1380.20	0.00	0.00
· · · · ·	14			· · · · · ·				

0.40

78.90

Appendix H – SSCS Space Summary

SSCS	GROUP	AREA
1.113	VISUAL COM	5.9
1.122	UNDERWATER SURV (SONAR)	23.3
1.13201	PILOT HOUSE	46.8
1.13202	CHART ROOM	7.0
1.15	INTERIOR COMMUNICATIONS	49.9
1.321201	HELICOPTER CONTROL STATION	9.3
1.332202	TACAN EQUIP RM	11.1
1.35306	AVIATION OFFICE	8.4
1.36106	BATTERY SHOP	5.9
1.36905	HELICOPTER SHOP	11.6
1.391102	AVIATION STORE RM	21.4
1.91	SM ARMS (LOCKER)	6.9
1.94	ARMORY	8.1
1.95	SECURITY FORCE EQUIP	1.0
2.1111101	COMMANDING OFFICER CABIN	22.9
2.1111104	COMMANDING OFFICER STATEROOM	16.3
2.1111206	EXECUTIVE OFFICER STATEROOM	13.9
2.111123	DEPARTMENT HEAD STATEROOM	44.6
2.1111302	OFFICER STATEROOM (DBL)	106.8
2.1121101	COMMANDING OFFICER BATH	4.6
2.1121201	EXECUTIVE OFFICER BATH	2.8
2.1121203	OFFICER BATH	4.2
2.1121303	OFFICER WR, WC & SH	16.4
2.1211	SHIP CPO	21.2
2.131101	LIVING SPACE	376.8
2.132101	SANITARY	78.8
2.14002	BRIDGE WASHRM & WC	2.3
2.14003	DECK WASHRM & WC	2.3
2.14004	ENGINEERING WR & WC	2.3
2.15101	ENTERTAINMENT EQUIP STRM	4.8
2.15201	PROJECTION EQUIP RM	1.9
2.15302	ATHLETIC GEARM STRM	2.9
2.16002	RECOGNITION TRAINING LKK	3.3
2.21101	CPO MESSBOOM AND LOUNCE	55.4
2.21201	LET CLASS MESSBOOM	33./
2.21301	CDEW MESSDOOM	13.8
2.21303		10.7
2.22201		10.7
2.22202	CDEW GALLEY	9.0
2.22204	WADDOOM DANTDY	7.4
2.22302		16.7
2.22403	CHILL PROVISIONS	15.7
2.231	FROZEN PROVISIONS	15.4
2.232	DRY PROVISIONS	33.1
2.234	ISSUE	56
2.23401	PROVISION ISSUE ROOM	5.6
2.31012	MEDICAL TREATMENT ROOM	16.1
2.31024	WARD	4.6
2.31025	WARD BATH	5.5
2.33201	FWD BATTLE DRESSNIG STA	7.0
2.33203	AFT BATTLE DRESSING STA	7.0
2.34103	MEDICAL LOCKER	2.0
2.41001	SHIP STORE	15.5
2.41006	SHIP STORE STORERM	21.8
2.42001	LAUNDRY	48.3
2.44002	BARBER SHOP	7.0
2.46001	POST OFFICE	6.5
2.51001	OFFICER BAGGAGE STRM	4.6
2.51002	CPO BAGGAGE STRM	2.5
2.51003	CREW BAGGAGE STRM	9.7
2.52001	WARDROOM STOREROOM	2.3

2.52002	CPO STOREROOM	5.0
2.52003	COMMANDING OFFICER STRM	1.9
2,55001	FOUL WEATHER GEAR LOCKER	19
2.55001	LINEN STOWAGE	2.2
2.50	FOLDING CHAIR STOREPOOM	1.4
2.57	CPR DECON STATIONS	1.4
2.01	CDR DECON STATIONS	25.5
2.62001	CDK DEFENSE EQP STRMS	23.3
2.03		18.5
2.71	LIFEJAUKET LUUKEK	1.9
3.11	STEEKING GEAK	/3.1
3.22	REPAIR STATIONS	39.8
3.25	FIRE FIGHTING	23.9
3.301	GENERAL SHIP	16.9
3.302	EXECUTIVE DEPT	38.9
3.303	ENGINEERING DEPT	23.8
3.304	SUPPLY DEPT	34.3
3.305	DECK DEPT	10.3
3.306	OPERATIONS DEPT	15.7
3.5	DECK AUXILIARIES	16.6
3.51	ANCHOR HANDLING	35.4
3 53	TRANSFER AT SEA	16.6
5.55		7.9
3.611	AUX (FILTER CLEANING)	10.6
3.612	ELECTRICAL	25.0
3.613	MECH (GENERAL WK SHOP)	35.2
3.614	PROPULSION MAINTENANCE	9.9
3.62	OPERATIONS DEPT (ELECT SHOP)	32.5
3.63	WEAPONS DEPT (ORDINANCE SHOP)	5.8
3.711	HAZARDOUS MATL (FLAM LIQ)	26.3
3.712	SPECIAL CLOTHING	11.6
3.713	GEN USE CONSUM+REPAIR PART	168.0
3.714	SHIP STORE STORES	6.7
3.715	STORES HANDLING	36.2
3.72	ENGINEERING DEPT	5.5
3 73	OPERATIONS DEPT	77
3 74	DECK DEPT (BOATSWAIN STORES)	68.3
3.75	WEAPONS DEPT	4 9
3.76	EXEC DEPT (MASTER-AT-ARMS STORE)	5.7
3.78	CLEANING GEAR STOWAGE	3.7
5.70		154.5
3.821	NORMAL ACCESS	773.9
		2.0
3.822	ESCAPE ACCESS	0.2
3 9/1	SEWAGE TANKS	1.9
3.942	OU V WASTE TANKS	7.4
5.774		2.9
4.132	COMBUSITION AIR	1.4
		7.4
4.133	EXHAUST	3.7
4 134	CONTROL	50.2
4.134	CONIROL	110.5
4.142	COMBUSTION AIR	20.8
		120.1
4.143	EXHAUST	137.1
A 1 A A	CONTROL	40.4
4.144		0/.3
4.31	UENERAL (AUA MACH DELIA)	//8.4
4.321	A/U (INUL VENT)	39.5
4.332	PWR DIST & CNTRL	21.4
4.334	DEGAUSSING	8.7
4.341	SEWAGE	12.1
4.342	TRASH	6.0
4.35	MECHANICAL SYSTEMS	14.7
4.36	VENTILATION SYSTEMS	57.1
		196.4

Appendix I – MathCAD Models

Holtrop Resistance and Power

Units definition

$$\begin{split} & hp \equiv \frac{33000 \cdot ft \cdot lbf}{min} & knt \equiv 1.69 \cdot \frac{ft}{sec} & mile \equiv knt \cdot hr \quad lton \equiv 2240 \cdot lbf \quad MT := 1000 \cdot kg \cdot g \\ \hline Physical Parameters \\ & Sea water properties: \\ & \rho_{SW} := 1.9905 \cdot \frac{slug}{ft^3} & \upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec} \\ & \text{Air properties: } \rho_A := 0.0023817 \cdot \frac{slug}{ft^3} & \mu_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec} \\ & \text{Air properties: } \rho_A := 0.0023817 \cdot \frac{slug}{ft^3} & \mu_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec} \\ & \text{Principal characteristics: } LWL := 139 \cdot m & B := 17.18 \cdot m & D_{10} := 12.5 \cdot m & T := 5.8 \cdot m & C_P := .579 & C_X := .779 \\ & \text{Margins: } PMF := 1.1 & N_{fins} := 0 & H_{DK} := 3 \cdot m \\ & \text{SON}_{TYP} := 1 & V_e := 20 \cdot knt & C_A := .0004 & N_P := 2 \\ \hline \end{array}$$

Performance:

Process

$$S_{SD} := \begin{cases} 5 \cdot ft^2 & \text{if } SON_{TYP} = 0 \\ 80 \cdot ft^2 & \text{if } SON_{TYP} = 1 \\ 1400 \cdot ft^2 & \text{if } SON_{TYP} = 2 \end{cases} \qquad V_{SD} := \begin{cases} 5 \cdot m^3 & \text{if } SON_{TYP} = 0 \\ 19.1 \cdot m^3 & \text{if } SON_{TYP} = 1 \\ 163.4 \cdot m^3 & \text{if } SON_{TYP} = 2 \end{cases} \qquad V_{SD} = 19.1 \, m^3$$

$$C_{B} := C_{P} \cdot C_{X} \qquad C_{B} = 0.451$$
$$V_{FL} := C_{B} \cdot LWL \cdot B \cdot T + V_{SD} \qquad V_{FL} = 6.266 \times 10^{3} \text{ m}^{3}$$

$$C_{BT} := \frac{B}{T}$$
 $C_V := \frac{v_{FL}}{LWL^3}$

TSS wetted surface coefficient:

$$\begin{split} A_0 &\coloneqq 7.028 - 2.331 \cdot C_{BT} + 0.299 \cdot C_{BT}^2 \\ A_1 &\coloneqq -11 + 5.536 \cdot C_{BT} - 0.704 \cdot C_{BT}^2 \\ A_2 &\coloneqq 6.913 - 3.419 \cdot C_{BT} + 0.451 \cdot C_{BT}^2 \\ C_{STSS} &\coloneqq A_0 + A_1 \cdot C_P + A_2 \cdot C_P^2 \\ C_{STSS} &\coloneqq C_{STSS} \cdot \sqrt{V_{FL} \cdot LWL} \\ S_{TSS} &\coloneqq C_{STSS} + S_{SD} \\ S &\coloneqq S_{TSS} + S_{SD} \\ C_W &\coloneqq 0.278 + 0.836 \cdot C_P \\ C_W &\coloneqq C_W \\ \end{split}$$

Pre-Process

$$\begin{split} T_{F} &:= T & C_{M} := C_{X} & C_{V} := \frac{V_{FL}}{LWL^{3}} & C_{V} = 2.333 \times 10^{-3} \\ A_{BT} := \frac{S_{SD}}{6} & A_{BT} = 1.239 \text{ m}^{2} \quad \text{(bulb section area at FP)} \\ h_{B} := \sqrt{\frac{A_{BT}}{\pi}} & h_{B} = 0.628 \text{ m} & \text{(height of bulb center)} \\ A_{T} := \frac{B \cdot T \cdot C_{X}}{20} & A_{T} = 3.881 \text{ m}^{2} & \text{(transom area)} \\ L_{R} := (1 - C_{P}) \cdot LWL & L_{R} = 58.519 \text{ m} & \text{(Run length)} \\ \text{formfac} := 1.03 \cdot \left[.93 + \left(\frac{T}{LWL} \right)^{.22284} \cdot \left(\frac{B}{L_{R}} \right)^{.92497} \cdot \left(.95 - C_{P} \right)^{-.521448} \cdot \left(1 - C_{P} + .05 \right)^{.6906} \right] + 2.7 \cdot \frac{S_{SD}}{s} & \text{formfac} = 1.129 \end{split}$$

Appendages drag coefficient:

$$C_{\text{DAPP}} := \left(-4 \cdot 10^{-9} \cdot \frac{\text{LWL}^3}{\text{ft}^3} + 9 \cdot 10^{-6} \cdot \frac{\text{LWL}^2}{\text{ft}^2} - 0.0081 \cdot \frac{\text{LWL}}{\text{ft}} + 5.0717 \right) \cdot \frac{\text{hp} \cdot 10^{-5}}{\text{ft}^2 \cdot \text{knt}^3} \qquad C_{\text{DAPP}} = 5.946 \times 10^{-6} \cdot \frac{\text{hp}}{\text{ft}^2 \cdot \left(\frac{\text{ft}}{\text{sec}}\right)^3}$$

Estimate propeller size:

$C_{PROP} := if(N_P > 1, 1, 1.2)$ $C_{PROP} = 1$ $D_P := (0.64 \cdot T + 0.013 \cdot T)$		1	5.519 m
	1	20	
$i := 1 16$ $V_i := (i - 1) \cdot knt + V_e$ $V_{14} := 32.9 \cdot knt$	2	21	
$\mathbf{R}_{\mathbf{A}} := .5 \cdot \rho_{\mathrm{SW}} (\mathbf{V}_{\mathbf{A}})^2 \cdot \mathbf{S} \cdot \mathbf{C}_{\mathbf{A}}$	3	22	
$A_{i}^{A} = A_{i}^{A} = A_{i}^{A}$	4	23	
<u>Viscous Drag</u>	5	24	
Coefficient of friction:	6	25	
V _i 0.075	7	26	
$R_{N_i} = LWL \cdot \frac{C_{F_i}}{v_{SW}} = \frac{C_{F_i}}{(1 - (P_i)^2)^2} (ITTC)$ V=	8	27	knt
$\left(\log \left(\frac{R_{N_i}}{N_i} \right) - 2 \right)$	9	28	
$R_{XV} := 0.5 \cdot \rho_{SXV} (V)^2 \cdot S \cdot C_E \cdot form fac$	10	29	
v _i ⁱ ⁱ ⁱ ⁱ ⁱ	11	30	
Wave Making Drag	12	31	
V.	13	32	
$\operatorname{Fn}_{i} := \frac{1}{\sqrt{\alpha \cdot I W I}}$	14	32.9	
Vg.T.WL	15	34	
$c_{0} := \frac{.56 \cdot A_{BT}}{} c_{0} = 1.404 \times 10^{-3} c_{0} := exp(-1.8)$	16 ס. [כ	351	-0.932
$\mathbf{B} \cdot \mathbf{T} \cdot \left(.31 \cdot \sqrt{\mathbf{A}_{\mathbf{BT}}} + \mathbf{T}_{\mathbf{F}} - \mathbf{h}_{\mathbf{B}} \right) \qquad \mathbf{C}_{3} = 1.404 \times 10 \qquad \mathbf{C}_{2} := \mathbf{C}_{\mathbf{A}} \mathbf{P} \left(1.01 + \mathbf{C}_{\mathbf{A}} \right)$	10	3) 0	2 - 0.952
$\mathbf{c}_5 \coloneqq 1 - \frac{.8 \cdot \mathbf{A}_{\mathrm{T}}}{\mathbf{B} \cdot \mathbf{T} \cdot \mathbf{C}_{\mathrm{M}}} \qquad \mathbf{c}_5 = 0.96$			
$\lambda_{R} := 1.446 \cdot C_{P}03 \cdot \frac{LWL}{B} \text{if } \frac{LWL}{B} < 12 \lambda_{R} = 0.595$			
$1.446 \cdot C_p036$ otherwise			

$$c_{15} := \begin{vmatrix} -1.69385 & \text{if } \frac{LWL^{3}}{V_{FL}} < 512. \\ 0.0 & \text{if } \frac{LWL^{3}}{V_{FL}} > 1726.91 \\ \frac{LWL}{\frac{1}{V_{FL}}} - 8 \\ -1.69385 + \frac{V_{FL}^{\frac{1}{3}}}{2.36} & \text{otherwise} \end{vmatrix}$$

$$c_{7} := \begin{vmatrix} .229577 \cdot \left(\frac{B}{LWL}\right)^{.33333} & \text{if } \frac{B}{LWL} < .11 \\ .5 - .0625 \cdot \frac{LWL}{B} & \text{if } \frac{B}{LWL} > .25 \\ \frac{B}{LWL} & \text{otherwise} \end{vmatrix}$$

$$c_{16} := 8.07981 \cdot C_p - 13.8673 \cdot C_p^2 + 6.984388 \cdot C_p^3$$
 if $C_p < .8$ $c_{16} = 1.385$
1.73014 - .7067 \cdot C_p otherwise

$$\mathbf{i}_{E} := 1 + 89 \cdot \exp\left[-\left(\frac{LWL}{B}\right)^{.80856} \cdot \left(1 - C_{W}\right)^{.30484} \cdot \left(1 - C_{P}\right)^{.6367} \cdot \left(\frac{L_{R}}{B}\right)^{.34574} \cdot \left(\frac{100 \cdot V_{FL}}{LWL^{3}}\right)^{.16302}\right] \quad \mathbf{i}_{E} = 8.824$$

$$c_1 := 2223105 \cdot c_7^{-3.78613} \cdot \left(\frac{T}{B}\right)^{1.07961} \cdot \left(90 - i_E\right)^{-1.37565} c_1 = 0.593$$

$$m_{1} := .0140407 \cdot \frac{LWL}{T} - 1.75254 \cdot \frac{V_{FL}^{\frac{1}{3}}}{LWL} - 4.79323 \cdot \frac{B}{LWL} - c_{16}m_{1} = -1.873$$

$$m_{4_i} := .4 \cdot c_{15} \cdot \exp\left[-.034 \cdot (Fn_i)^{-3.29}\right]$$
 .6
.62

$$R_{w_{i}} \coloneqq V_{FL} \cdot \rho_{SW} \cdot g \cdot c_{1} \cdot c_{2} \cdot c_{5} \cdot exp\left[m_{1} \cdot \left(Fn_{i}\right)^{-.9} + m_{4} \cdot \cos\left[\frac{\lambda_{R}}{\left(Fn_{i}\right)^{2}}\right]\right]$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$(.64)$$

$$\underbrace{V_{i}}_{P_{B}} = \underbrace{11 \cdot \exp\left(\frac{-3}{P_{B}^{2}}\right) \cdot \left(\operatorname{Fni}_{i}\right)^{3} \cdot A_{BT}}_{P_{B}} \cdot \rho_{SW} \cdot g}_{R}$$

$$\operatorname{Fni}_{i} := \frac{1}{\sqrt{g \cdot \left(T_{F} - h_{B} - .25 \cdot A_{BT}^{.5}\right) + .15 \cdot \left(V_{i}\right)^{2}}} \qquad \operatorname{R}_{B_{i}} := \frac{\left(P_{B}\right)}{1 + \left(\operatorname{Fni}_{i}\right)^{2}} \qquad .83$$

$$\operatorname{FnT}_{i} \coloneqq \frac{\operatorname{V}_{i}}{\sqrt{\frac{2 \cdot g \cdot \operatorname{A}_{T}}{\operatorname{B} + \operatorname{B} \cdot \operatorname{C}_{W}}}} \qquad \operatorname{c}_{6_{i}} \coloneqq \left[\begin{array}{c} .2 \cdot \left(1 - .2 \cdot \operatorname{FnT}_{i}\right) & \text{if } \operatorname{FnT}_{i} < 5 \\ 0. & \text{otherwise} \end{array} \right] \qquad \operatorname{R}_{TR_{i}} \coloneqq .5 \cdot \rho_{SW} \cdot \left(\operatorname{V}_{i}\right)^{2} \cdot \operatorname{A}_{T} \cdot \operatorname{c}_{6_{i}} \qquad \left[\begin{array}{c} .9 \\ .92 \\ .94 \\ .99 \end{array} \right]$$

.588

Bare Hull Resistance

Ship Effective Horsepower

Bare hull:

$$P_{EBH_i} := R_{T_i} V_i$$

$$P_{\text{Efins}_{i}} := \begin{bmatrix} 0 \cdot \text{hp if } N_{\text{fins}} = 0 \\ 0.025 \cdot P_{\text{EBH}_{i}} \end{bmatrix} P_{\text{EAPP}_{i}} := 1.23 \cdot \text{LWL} \cdot D_{\text{P}} \cdot C_{\text{DAPP}} \cdot \left(V_{i} \right)^{3} + P_{\text{Efins}_{i}}$$

Air frontal area (+5% for masts, equip., etc): $A_W := 1.05 \cdot B \cdot (D_{10} - T + 3 \cdot H_{DK})$ $A_W = 283.212 \text{ m}^2$ $C_{AA} := 0.7$ $P_{EAA_i} := \frac{1}{2} \cdot C_{AA} \cdot A_W \cdot \rho_A \cdot (V_i)^3$

 $\text{Total effective horsepower:} \quad P_{\text{ET}_{i}} \coloneqq P_{\text{EBH}_{i}} + P_{\text{EAPP}_{i}} + P_{\text{EAA}_{i}} \qquad \qquad \text{EHP}_{i} \coloneqq \text{PMF} \cdot P_{\text{ET}_{i}} \qquad \qquad \text{EHP}_{1} = 7354 \, \text{hp}$

		1	
	1	20	
	2	21	
	3	22	
	4	23	
	5	24	
	6	25	
	7	26	
=	8	27	knt
	9	28	
	10	29	
	11	30	
	12	31	
	13	32	

13 14 15

16

35

32.9 34

V

			1
		1	5484
		2	6422
		3	7495
		4	8739
		5	10214
		6	11987
		7	14187
nt	EHP =	8	16843
		9	19995
		10	23650
		11	27774
		12	32310
		13	37402
		14	41881
		15	47418
		16	53529

kW

		1	
	1	7354	
	2	8612	
	3	10051	
	4	11719	
	5	13697	
	6	16074	
EHP =	7	19025	
	8	22587	hp
	9	26814	
	10	31715	
	11	37246	
	12	43329	
	13	50157	
	14	56164	
	15	63588	
	16	71783	

Appendix -

Prop Selection, Engine Match and Fuel Calculation - IPS w/GT

Units and Physical Constants

_...

.

knt = $1.69 \cdot \frac{ft}{sec}$ mile = knt·hrIton = $2240 \cdot lbf$ nm := knt·hrkN := $1000 \cdot newton$ RPM := $\frac{1}{min}$ Sea water properties: $\rho_{SW} := 1.9905 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Air properties: $\rho_A := 0.0023817 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Air properties: $\rho_A := 0.0023817 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Air properties: $\rho_A := 0.0023817 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Air properties: $\rho_A := 0.0023817 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Air properties: $\rho_A := 0.0023817 \cdot \frac{slug}{ft^3}$ $\upsilon_{SW} := 1.2817 \cdot 10^{-5} \cdot \frac{ft^2}{sec}$ $\delta_F := 43.6 \cdot \frac{ft^3}{lton}$ MT := $9810 \cdot kg \cdot \frac{m}{sec^2}$ Fincipal characteristics: $T := 5.8 \cdot m$ $C_P := 5.79$ $C_X := .779$ Draft := T $D_P := 5.59 \cdot m$ $D := D_P$ KW24AVG := $1634.98 \cdot kW$ KW_MFLM := 4927 kW $V_{F41} := 979 \cdot m^3$ $V_e := 20 \cdot knt$ $V_S := 32.9 \cdot knt$ $C_B := C_P \cdot C_X$ $C_B = 0.451$ z := 5.41mPMF_e := 1.1PMF_S := 1.1NP := 2w = 0.06wate fractiont := $.7 \cdot w + .06$ t = 0.102thrust deduction fraction - prop changes pressure distribution

V := V _e EHP :	$= 7354 \cdot hp$ (total,	nuii)	
$V_A := V \cdot (1 - W)$	$V_A = 18.79$ knt	speed of advance ·	average wake velocity seen by prop
$T := \frac{EHP}{V \cdot (1-t) \cdot N_{P}}$	T = 66655 lbf	T = 296.489 kN	thrust/shaft
$\eta_{H} \coloneqq \frac{1-t}{1-w}$	$\eta_{\text{H}} = 0.955$	hull efficiency = EH	$IP/(THP_*N_P) = R_{T^*}V/(T_*V_{A^*}N_P)$
η _R := 1.0 estima	ate	relative rotative effi	ciency - due to non-uniform flow into prop = DHPo/DHP

2. Determine the efficiency of an optimum standard propeller using the Wageningen B-screw series and the Propeller Optimization Program from the University of Michigan. The inputs for the program are:

Pitch Type = Fi	xed Pitch	Z := 4 EA	R := 0.5929 PtoD := 1.3	3956 D = 5.59 m T	= 296.489 kN	
$V_e = 20 \text{knt}$	W = 0.06	z = 5.41 m				
Output:						
D = 5.59 m EA	AR := 0.5929	PtoD := 1.3956	n _{eSHAFT} := 87RPM	η _O := .796	$\sigma := .7402$	
$\eta_{B} \coloneqq \eta_{O} \cdot \eta_{R}$	$\eta_{\text{B}}=0.796$	prop effi	ciency behind ship = TH	P/DHP		
$\eta_{D} \coloneqq \eta_{H} \cdot \eta_{B}$	$\eta_{\mbox{D}}=0.761$	quasi-pro	opulsive efficiency			
ηs:= 1.0	estimate	transmis	sion efficiency (mechani	cal external to hull	- stern tube and stru	ts)

ηρ:= ης·ηρ	$\eta_{P} = 0.761$	propulsive efficiency
η gen ≔ .973		generator efficiency
$\eta_{\text{conv}} \coloneqq .955$		convertor efficiency
η _{motor} := .957		motor efficiency
$\eta_{\text{elec}} := \eta_{\text{gen}} \cdot \eta_{\text{den}}$	conv [∙] ηmotor	
$\eta_{\text{elec}} = 0.889$		electrical efficiency
$THP := \frac{EHP}{\eta_H \cdot N_P}$	THP = 3848.433 hp	
$DHP := \frac{THP}{\eta_B}$	DHP = 4834.715 hp	$DHP_O := \eta_R \cdot DHP$ $DHP_O = 4835 hp$
$SHP := \frac{DHP}{\eta_S}$	SHP = 4834.715 hp	(per shaft)
BHP _{ereq} :=	F _e ⋅SHP⋅N _P n _{elec} BHP _{er}	req = 11961 hp (total ship)
3. Calculate "off-	design" performance (ŋ	$_{ m l_O}$ and n) and required BHP at sustained speed
$V := V_S$ $V =$	32.9 knt V := 32knt	EHP := 56164 hp
$T := \frac{EHP}{V \cdot (1-t) \cdot N}$	– T = 318159.83 lbf	$T = 1415.215 \text{ kN}$ $V_A := V \cdot (1 - w)$ $V_A = 30.064 \text{ knt}$ (per shaft)
Determine the ef	ficiency of the propeller	at sustained speed (off-design):
η ο := .761	n _{sSHAFT} := 153RPM	$\sigma := .2476$ propeller cavitates
$THP := \frac{EHP}{\eta_H \cdot N_P}$	THP = 29391.273 hp	
$\eta_{\text{B}}\coloneqq\eta_{\text{O}}\cdot\eta_{\text{R}}$	$\eta_{B} = 0.761$ prop	o efficiency behind ship = THP/DHP
$\eta_{D}\coloneqq \eta_{H}\cdot\eta_{B}$	$\eta_{D} = 0.727$ qua	si-propulsive efficiency
ηρ≔ης∙ηρ	η _P = 0.727 prop	pulsive efficiency
$DHP := \frac{THP}{\eta_B}$	DHP = 38621.909 hp	$DHP_O := \eta_R \cdot DHP$ $DHP_O = 38621.909 hp$
$SHP := \frac{DHP}{\eta_S}$	SHP = 38621.909 hp	(per shaft)
BHP _{Sreq} :=	PMF _S ⋅SHP n _{elec} BHI	P _{Sreq} = 71251.225 kW (total ship)

4. Calculate optimum engine operating characteristics - Electric Bropulsion Summary, per shaft:

Summary, per shaft:
Endurance
Speed:
$$N_{eENG} := 1$$
 $n_{eSHAFT} = 87 RPM$ $P_{BPENGe} := \frac{HP_{ereq} + \frac{KW_{24A \vee G}}{.8}}{N_{eENG}}$ $P_{BPENGe} = 14702 hp$

Sustained Speed: $N_{sENG} := 1$ $n_{sSHAFT} = 153 \text{ RPM}$ $P_{BPENGreq} := \frac{BHP_{Sreq} + \frac{.4 \cdot KW_{MFLM}}{.8}}{N_{sENG}}$ $P_{BPENGreq} = 73715 \text{ kW}$

4a. Select engine RPM for minimum fuel consumption at endurance speed from the engine performance map. Estimate SFC at endurance speed. Calculate the required (optimum) RG ratio.

n _{ePEopt} := 3600 ⋅ RPM	n _{ePE} := n _{ePEopt}	PBPENGe = 10963 kW	$SFC_{ePE} := .33 \frac{lbf}{hp \cdot hr}$
n _{sPEopt} := 3600 ⋅ RPM	n _{sPE} ≔ n _{sPEopt}	PBPENGreq = 73715 kW	$SFC_{SPE} := .375 \frac{lbf}{hp \cdot hr}$

5. Endurance Fuel Calculation

Calculate the endurance range for the specified fuel tank volume and average 24 hour electric load.

 $P_{eBAVG} := P_{BPENGe}$ $P_{eBAVG} = 10962.999 \text{ kW}$ $V_e = 20 \text{ knt}$ $P_{BPENG} = 21655 \text{ kW}$

Correction for instrumentation inaccuracy and machinery design changes:

Specified fuel rate: $FR_{SP} := f_1 \cdot SFC_{ePE}$ $FR_{SP} = 0.34 \frac{Ibt}{hp \cdot hr}$ Average fuel rate allowing for plant deterioration over 2 years: $FR_{AVG} := 1.05 \cdot FR_{SP}$ $FR_{AVG} = 0.357 \frac{Ibf}{hp \cdot hr}$

Tailpipe allowance: TPA := 0.95

Usable Fuel (volume allowance for expansion, 5%, and tank internal structure, 2%) and Endurance Range

$$W_{F41} := \frac{V_{F41}}{1.02 \cdot 1.05 \cdot \delta_F} \qquad E := \frac{W_{F41} \cdot V_e \cdot TPA}{P_{eBAVG} \cdot FR_{AVG}} \qquad E = 6005.618 \text{ nm}$$

 $W_{F41} = 752.016 MT$

PBPENG := 21655 · kW

				Mdol := coul	
	SIM	PLIFIED CO	DST MODEL	Bdol := 1000·Md	01
		FFSH	I	lton := 2240·1b	$Kdol := \frac{Mdol}{M}$
1. Single Digit V	Neight Summary:	i1 :	= 100,200700	$hp := \frac{33000 \cdot ft \cdot lb}{1000 \cdot ft \cdot lb}$	1000
W ₁₀₀ := 215	6.494·1ton W ₄₀₀ :=	265.735-lton	W ₅₀₀ := 633.927·1ton	min	$dol := \frac{Kdol}{1000}$
W ₂₀₀ := 783	.03471ton W ₄₂₀ :=	9.2-1ton	W ₆₀₀ := 482.1621ton	$W_{F_{20}} := 135.621 ton$	
W ₃₀₀ := 377	.641ton W ₄₃₀ :=	28.441ton	W ₇₀₀ := 123.8131ton	$W_{F_{23}} := 30$ ·lton	[helo]
Weight marg	gin: W _M := 495.9	941ton		N _{HELO} := 2	
2. Additional ch Lightship:	<u>narcteristics:</u>		3		
WLS := .	$\sum_{i1} W_{i1} + W_M$	W _{LS} = 5.319	9× 10 ⁻ lton		
Costed M	lilitary Payload: (hel	o and helo fue	el weight not included)		
$W_{MP} := [$	$(W_{400} + W_{700}) - V$	V ₄₂₀ - W ₄₃₀]	$+ W_{F_{20}} - W_{F_{23}} W_{MP} = 0$	457.528lton	
Installed	Propulsion Power:	P _{SUM} := 5	0157hp		
Manning:	(crew + air detachr	nent + staff)			
Officer	s: N _{C1} := 23	CPO's: N	C2:= 25 Enlisted:	N _{C3} := 198	
Ship Serv	vice Life: L _S := 40	In	itial Operational Capabilit	y: Y _{IOC} := 2015	
Total Shi	p Acquisition: N	s := 20	Production Rate (per year	r): Rp:= 3	
3. Inflation:					
Base Yea	ar: Y _B := 2010	iy := 1	Y _B - 1981		
Average (from 198	Inflation Rate (%): 31)	$R_{I} := 3.$	$F_{I} := \prod \left(1 + \frac{R_{I}}{100} \right)$	$F_{I} = 2.357$	
4. Lead Ship C	ost:		iy		
a. Lead Ship Co	st - Shipbuilder Po	ortion:			
SWBS costs	s: (See Enclosure 1	for K _N factor	s); includes escalation es	timate	
Structure I	$K_{N1} := \frac{.55 \cdot Mdol}{lton}$	C _{L100} := .033	$95 \cdot F_{I} \cdot K_{N1} \cdot (W_{100})^{.772}$	$C_{L_{100}} = 16.487 Mdol$	
+ Propulsion	$K_{N2} := \frac{1.2 \cdot Mdol}{hp^{.808}}$	C _{L200} := .001	.808 86.FI.K _{N2} .P _{SUM}	C _{L200} = 33.025 Mdol	
+ Electric I	$K_{N3} := \frac{1.0 \cdot Mdol}{1 ton^{.91}}$	C _{L300} := .075	$^{05\cdot F_{\overline{I}}\cdot K_{N3}\cdot \left(W_{300}\right)^{.91}}$	$C_{L_{300}} = 39.154 Mdol$	

+ Command, Control, Surveillance

$$K_{N4} := \frac{2.0 \cdot Mdol}{1 ton^{.617}} \qquad C_{L_{400}} := .10857 \cdot F_{I} \cdot K_{N4} \cdot (W_{400})^{.617} \qquad C_{L_{400}} = 16.029 \text{ Mdol}$$
(less payload GFM cost)

+ Auxiliary
$$K_{N5} := \frac{1.5 \cdot Mdol}{1 ton^{.782}}$$
 $C_{L_{500}} := .09487 \cdot F_{I} \cdot K_{N5} \cdot (W_{500})^{.782}$ $C_{L_{500}} = 52.083 \text{ Mdol}$

+ Outfit
$$K_{N6} := \frac{1.0 \cdot Mdol}{1 ton^{.784}}$$
 $C_{L_{600}} := .09859 \cdot F_{I} \cdot K_{N6} \cdot (W_{600})^{.784}$ $C_{L_{600}} = 29.494 \, Mdol$

+ Armament
$$K_{N7} := \frac{1.0 \cdot M dol}{lton^{.987}}$$
 $C_{L_{700}} := .00838 \cdot F_{I} \cdot K_{N7} \cdot (W_{700})^{.987}$ $C_{L_{700}} = 2.297 \text{ Mdol}$
(Less payload GFM cost)

+ Margin Cost:

$$C_{LM} := \frac{W_M}{(W_{LS} - W_M)} \cdot \left(\sum_{i1} C_{L_{i1}}\right) \qquad C_{LM} = 19.391 \text{ Mdol}$$

+ Integration/Engineering: (Lead ship includes detail design engineering and plans for class)

$$K_{N8} := \frac{10. \cdot Mdol}{Mdol^{1.099}} \qquad C_{L_{800}} := .034 \cdot K_{N8} \cdot \left(\sum_{i1} C_{L_{i1}} + C_{LM}\right)^{1.099} \qquad C_{L_{800}} = 119.932 \text{ Mdol}$$

+ Ship Assembly and Support: (Lead ship includes all tooling, jigs, special facilities for class)

$$K_{N9} := \frac{2.0 \cdot Mdol}{(Mdol)^{\cdot 839}} \qquad C_{L_{900}} := .135 \cdot K_{N9} \cdot \left(\sum_{i1} C_{L_{i1}} + C_{LM}\right)^{\cdot 839} \qquad C_{L_{900}} = 23.776 \, Mdol$$

= Total Lead Ship Construction Cost: (BCC):

$$C_{LCC} := \sum_{i1} C_{L_{i1}} + C_{L_{800}} + C_{L_{900}} + C_{LM} \qquad C_{LCC} = 351.667 \text{ Mdol}$$

+ Profit:

$$Fp := .10 \qquad C_{LP} := Fp \cdot C_{LCC} \qquad C_{LP} = 35.167 \text{ Mdol}$$

= Lead Ship Price:

$$P_L := C_{LCC} + C_{LP} \qquad P_L = 386.834 \text{ Mdol}$$

+ Change Orders:

$$C_{LCORD} := .12 \cdot P_L$$
 $C_{LCORD} = 46.42 \text{ Mdol}$

= Total Shipbuilder Portion:

 $C_{SB} := P_L + C_{LCORD}$ $C_{SB} = 433.254 \text{ Mdol}$

b. Lead Ship Cost - Government Por	tion		
Other support:	$C_{LOTH} := .025 \cdot P_L$	C _{LOTH} = 9.671 Mdol	
+ Program Manager's Growth:	$C_{LPMG} := .1 \cdot P_L$	C _{LPMG} = 38.683 Mdol	W _{MP} = 457.528 lton
+ Ordnance and Electrical GFE: (Military Payload GFE)	$C_{LMPG} := \left(.319 \cdot \frac{Mda}{1tar}\right)$	ol WMP + NHELO·18.71·N	fdol)·FI
	C _{LMPG} = 432.127 Mo	lo1 (or incl actual cost i	f known)
+ HM&E GFE (boats, IC):	$C_{LHMEG} := .02 \cdot P_L$	$C_{LHMEG} = 7.737 Md$	ol
+ Outfittimg Cost :	$C_{LOUT} := .04 \cdot P_L$	$C_{LOUT} = 15.473 Mdc$	1
= Total Government Portion:			
$C_{LGOV} := C_{LOTH} + C_{LPMG} + C_{LMPG}$	G + C _{LHMEG} + C _{LOUT}	C _{LGOV} = 503.691	Mdol
c. Total Lead Ship End Cost: (Must a	always be less than a	ppropriation)	
* Total End Cost:			
$C_{LEND} := C_{SB} + C_{LGOV}$	CLEND	= 936.945 Mdol	
d. Total Lead Ship Acquisition Cost:			
+ Post-Delivery Cost (PSA):	$C_{LPDEL} := .05 \cdot P_L$	$C_{LPDEL} = 19.342 Md$	ol
= Total Lead Ship Acquisition Cost:	$C_{LA} := C_{LEND} + C$	LPDEL C _{LA} = 956	286 Mdol
5. Follow-Ship Cost:			
Learning Rate/Factor:	$R_L := .97$ $F := 2$	$R_{\rm L} - 1$ F = 0.94 (f	ior N _s /2 ship)
a. Follow Ship Cost - Shipbuilder Po	ortion		
$C_{F_{i1}} := F \cdot C_{L_{i1}}$ $C_{F_{i1}}$	$M := F \cdot C_{LM} \qquad C_{FM}$	= 18.227 Mdol	$\frac{C_{F_{i1}}}{Mdo1} =$
$C_{F_{g00}} \coloneqq \frac{.104 \cdot Mdol}{Mdol^{1.099}} \cdot \left(\sum_{i1}$	$(c_{L_{11}} + c_{LM})^{1.099} C_{F_1}$	= 36.685 Mdol	31.043 36.804 15.067
$C_{F_{900}} := F \cdot C_{L_{900}} C_{F_{900}}$	₀ = 22.35 Mdol		48.958 27.724 2.159
Total Follow Ship Construction Cost: (8	BCC)		

 $C_{FCC} := \sum_{i1} C_{F_{i1}} + C_{F_{g00}} + C_{F_{g00}} + C_{FM}$ $C_{FCC} = 254.516 \text{ Mdol}$

+ Profit:

$$Fp := .1$$
 $CFP := FP \cdot CFCC$ $CFP = 25.452 \text{ Mdol}$

= Follow Ship Price:		
$P_F := C_{FCC} + C_{FP}$	$P_{\rm F} = 279.968 { m Md}$	lol
+ Change Orders:		
C _{FCORD} := .08·P _L	C _{FCORD} = 30.947 Mdo1	
= Total Follow Ship Shipbuilder Portion	1	
$C_{FSB} := P_F + C_{FCORD}$		C _{FSB} = 310.914 Mdo1
b. Follow Ship Cost - Government Po	ortion	
Other support:	$C_{FOTH} := .025 \cdot P_F$	C _{FOTH} = 6.999 Mdol
+ Program Manager's Growth:	$C_{FPMG} := .05 \cdot P_F$	
	number o	of helo's: N _{HELO} = 2
+ Ordnance and Electrical GFE: (Military Payload GFE)	$C_{FMPG} := \left(.3 \cdot \frac{Mdol}{lton} \cdot W \right)$	$MP + 18.710 \cdot Mdol \cdot N_{HELO} \cdot F_{I}$
	$C_{FMPG} = 411.641 \text{ Mdol}$	
+ HM&E GFE (boats, IC):	$C_{FHMEG} := .02 \cdot P_F$	C _{FHMEG} = 5.599 Mdol
+ Outfittimg Cost:	$C_{FOUT} := .04 \cdot P_F$	$C_{FOUT} = 11.199 Mdol$
= Total Follow Ship Government Cost:		
$C_{FGOV} := C_{FOTH} + C_{FPMG} + C_{FMPG}$	+ C _{FHMEG} + C _{FOUT}	C _{FGOV} = 449.437 Mdol
c. Total Follow Ship End Cost: (Must alwa	ys be less than SCN app	ropriation)
* Total Follow Ship End Cost:		
$C_{FEND} := C_{FSB} + C_{FGOV}$	C _{FEND} = 760.351 M	Mdol
d. Total Follow Ship Acquisition Cost:		
+ Post-Delivery Cost (PSA): C _{FPD}	$e_{EL} := .05 \cdot P_F$ C_{FPD}	_{EL} = 13.998 Mdol
= <u>Total Follow Ship Acquisition Cost:</u> C _I	$F_A := C_{FEND} + C_{FPDEL}$	C _{FA} = 774.349 Mdol
AVERAGE SHIP ACQUISITION COST:	$C_{AV} \coloneqq \frac{\frac{C_{FA} - C_{FMPG}}{F}}{F}$	$\frac{\left(N_{S}-1\right)^{\frac{\ln\left(2\cdot R_{L}\right)}{\ln\left(2\right)}}+\left(N_{S}-1\right)\cdot C_{FMPG}+C_{LA}}{N_{S}}$
		C _{AV} = 760.951 Mdol

6. Life Cycle Cost:

a. Research and development

Ship design and development:

$$C_{SDD} := 1.1 \cdot \left(.571 \cdot \frac{C_{FSB}}{F} + .072 \cdot C_{LMPG} \right) \qquad C_{SDD} = 241.975 \text{ Mdo1}$$

+ Ship test and evaluation

$$C_{\text{STE}} := 1.2 \cdot \left(.499 \cdot \frac{C_{\text{FSB}}}{F} + .647 \cdot C_{\text{LMPG}} \right) \qquad C_{\text{STE}} = 533.562 \text{ Mdo1}$$

= Total Ship R&D Cost:

 $C_{RD} := C_{SDD} + C_{STE}$ $C_{RD} = 775.537 \text{ Mdol}$

b) Investment (less base facilities, unrep, etc)

Ship Expected Total Shipbuilding Program Cost:

$$C_{SPE} := C_{AV} \cdot N_S$$
 $C_{SPE} = 15.219 Bdol$

+ Support Equipment (shore-based)

ship: C_{SSE} := .15·C_{SPE} C_{SSE} = 2.283 Bdol

+ Spares and repair parts (shore supply)

ship: C_{ISS} := .1·C_{SPE} C_{ISS} = 1.522 Bdol

= Total Investment Cost: CINV := CSPE + CSSE + CISS

 $C_{INV} = 19.024 \text{ Bdol}$

c) Operations and Support (total service life, base year dollars) Personnel (Pay and Allowances)

$$C_{PAY} := F_{I} \left[.026184 \cdot N_{C_1} + .01151 \cdot \left(N_{C_2} + N_{C_3} \right) \right] \cdot N_S \cdot L_S \cdot Mdol \qquad C_{PAY} = 5.974 \text{ Bdol}$$

$$C_{TAD} := F_{I} (N_{C_1} + N_{C_2} + N_{C_3}) \cdot N_S \cdot L_S \cdot 2.6 \cdot 10^{-6} \cdot Mdol$$
 $C_{TAD} = 1.206 Mdol$

+ Operations:

Operating hours/year: H := 2500-hr

$$C_{OPS} := N_{S} \cdot L_{S} \cdot \left[F_{I} \cdot K dol \cdot \left[188. + 2.232 \cdot \left(N_{C_{1}} + N_{C_{2}} + N_{C_{3}} \right) - \frac{H}{26.9 \cdot hr} \right] + \frac{C_{AV}}{769.2} + \frac{C_{FMPG}}{196} \right]$$

COPS = 3.686 Bdol

+ Maintenance

$$C_{\text{MTC}} := N_{\text{S}} \cdot L_{\text{S}} \cdot \left[F_{\text{I}} \cdot \text{Kdol} \cdot \left[2967 + 4.814 \cdot \left(N_{\text{C}_{1}} + N_{\text{C}_{2}} + N_{\text{C}_{3}} \right) - \frac{\text{H}}{3.05 \cdot \text{hr}} \right] + \frac{C_{\text{AV}}}{156.25} \right]$$
$$C_{\text{MTC}} = 10.177 \text{ Bdol}$$

+ Energy

+ Major

+ Energy
Fuel Rate:
$$W := 3.0 \frac{Iton}{Itr}$$
 $C_{FUEL} := .9 \frac{dol}{gal}$
 $C_{EGY} := N_S \cdot L_S \cdot C_{FUEL} := \frac{H}{6.8 \frac{D}{gal}} \cdot W$ $C_{EGY} = 1.779 \text{ Bdol}$
+ Replenishment Spares
 $C_{REP} := C_{ISS} \frac{L_S - 4}{4}$ $C_{REP} = 13.697 \text{ Bdol}$
+ Major Support (COH, ROH):
 $C_{MSP} := N_S \cdot L_S \left[698. + 5.988 \cdot (NC_1 + NC_2 + NC_3) - \frac{H}{10.364tr} \right] \cdot Kdol \cdot F_1 + .0022 \cdot C_{AV}$
 $C_{MSP} = 3.64 \text{ Bdol}$
= Total Operation and Support Cost: $C_{OAS} := C_{PERS} + C_{OPS} + C_{MTC} + C_{EGY} + C_{REP} + C_{MSP}$
 $C_{OAS} = 38.954 \text{ Bdol}$
d. Residual Value:
 $RES := .5 \cdot C_{SPE} \cdot \left(1 - \frac{2}{L_S}\right)^{L_S} RES = 0.978 \text{ Bdol}$
e. Total Program
* Total Life Cycle Cost (Undiscounted): $C_{LIFE} := C_{RD} + C_{INV} + C_{OAS} - RES$
 $C_{LIFE} = 57.775 \text{ Bdol}$
Jiscount Rate: $R_D := .1$
a. Discounted R&D:
Length of R&D Phase: $L_{RD} := 13$
end: $E_{RD} := Y_{1OC} + 2 - Y_B$ $E_{RD} = 7$ (normalized to
base year)
start: $B_{RD} := E_{RD} - L_{RD} + 1$ $B_{RD} = -5$
 $F_{DRD} := \frac{\sum_{Y = B_{RD}} \frac{1}{(1 + R_D)^Y}}{L_{RD}}$ $F_{DRD} = 0.968$
 $C_{DRD} := F_{DRD} \cdot C_{RD}$ $C_{DRD} = 750.721 \text{ Mdol}$
b. Discounted Investment:
start: $B_{INV} := E_{RD} + 1$

end: $E_{INV} \coloneqq B_{INV} + \frac{N_S - 1}{R_P} \qquad \qquad E_{INV} \equiv 14.333$ $L_{\rm INV} := E_{\rm INV} - B_{\rm INV} + 1 \qquad L_{\rm INV} = 7.333$

$$E_{DNV} := \frac{\sum_{y=B_{DNV}} \frac{1}{(1+R_D)^y}}{L_{INV}} F_{DINV} = 0.341$$

$$C_{DINV} := F_{DINV} \cdot C_{INV} C_{DINV} = 6.481 \text{ Bdol}$$
c. Discounted O&S:
start: B_{OAS} := E_{INV} + 1 B_{OAS} = 15.333
end: E_{OAS} := B_{OAS} + L_S - 1 E_{OAS} = 54.333
$$L_{OAS} := E_{OAS} - B_{OAS} + 1 L_{OAS} = 40$$

$$F_{DOAS} := \frac{\sum_{y=B_{OAS}} \frac{1}{(1+R_D)^y}}{L_{OAS}} F_{DOAS} = 0.062$$

 $C_{DOAS} := F_{DOAS} \cdot C_{OAS}$ $C_{DOAS} = 2.429 \text{ Bdol}$

d. Discounted Residual Value:

$$RES_{D} := RES \cdot \left(\frac{1}{1 + R_{D}}\right)^{E_{OAS}+1} RES_{D} = 5.011 \text{ Mdol}$$

e. Total Discounted Life Cycle Cost:

 $C_{DLIFE} := C_{DRD} + C_{DINV} + C_{DOAS} - RES_D \qquad \qquad C_{DLIFE} = 9.656 \text{ Bdol}$

LEARNING CURVE:

 $N_S := 1 ... 30$

