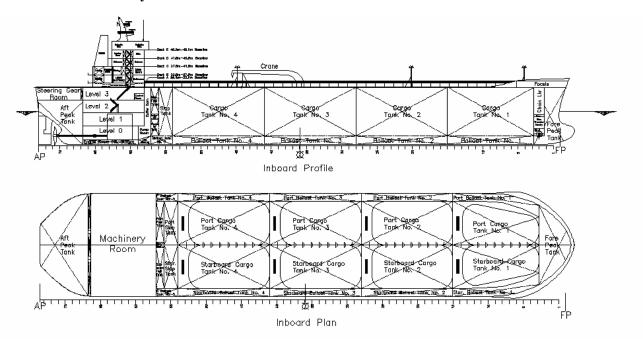


Optimum Risk Tanker Design Report

An Analytical Process for a TAPS Tanker Design


ORT LO
Ocean Engineering Design Project
AOE 4065/4066

Contract Deliverables Requirement List (CDRL)

Design Report Requirements	Section	Subsection	Figure	Table	Page
Demonstrate Understanding of	Chapter 1	1.1			8
the Owner's Requirements	Chapter 2	2.1, 2.2	2.1.1		10, 10
	Chapter 5	5.1		5.1.1	82
	Appendix A.1	A.1.1		A.1.1.1, A.1.1.2	88
Technical Approach, Trade-Off	Chapter 1	1.2	1.2.1, 1.2.2, 1.2.3		8
Studies and Alternative	Chapter 2	2.3, 2.4			11, 11
Solutions	Chapter 3	3.1, 3.2, 3.3		3.1.2.1, 3.2.2.1	12, 20, 22
	Chapter 4	4.3.1		4.3.1.3	33
	Chapter 5	5.2			82
	Appendix A.2	"Machinery"			91
Identification of Technical	Chapter 4	4.2, 4.3, 4.4, 4.5, 4.7			27, 33, 38,
Risks					42, 46
	Chapter 5	5.1			82
Table of Principle	Executive Summary				4
Characteristics	Chapter 3	3.2.2, 3.3		3.2.2.1, 3.3.1	21, 22
	Chapter 5	5.1		5.1.1	82
LightShip Weight Estimate	Chapter 4	4.8, 4.9.2		4.8.1.1, 4.8.2.1,	61, 62
				4.9.2.1	
	Chapter 5	5.2.4, 5.2.8			83, 84
	Appendix A.2	"Weight"			91
	Appendix A.6				124
Full Load Departure Weight	Chapter 4	4.8.2, 4.9.2		4.8.2.1, 4.9.2.7	61, 62
Estimate	Chapter 5	5.2.4, 5.2.8			83, 84
	Appendix A.6				124
Arrival Ballast Weight Estimate	Chapter 4	4.8.2, 4.9.2		4.8.2.1, 4.9.2.3	61, 62
	Chapter 5	5.2.4, 5.2.8			83, 84
	Appendix A.6				124
Curves of Form	Drawings	D.2			Attached
Floodable Length Curve	Drawings	D.2			Attached
Trim and Intact Stability	Chapter 4	4.9.2	4.9.2.1~5	4.9.2.1~10	62
Calculations	Chapter 5	5.3			85
Damage Stability Analyses	Chapter 4	4.9.3	4.9.3.1~15	4.9.3.2~5	70
	Chapter 5	5.3			85
Lines Drawing	Drawings	D.600-01			Attached
Deck and Inboard Profile	Executive Summary				4
	Drawings	D.600-02			Attached
General Arrangements	Chapter 4	4.7.2, 4.7.3	4.7.2.1~6, 4.7.3.1.1	4.7.3.1.1	47, 49
			4.7.3.2.1~6		
	Chapter 5	5.2.7, 5.3			83, 85
	Drawings	D.600-02 D.600-03			Attached
		D.600-04 D.700-01			
		D.700-02			
Capacity Plan	Chapter 3	3.1.3.5			17
	Chapter 4	4.7.3.1	4.7.3.1.1	4.7.3.1.1,	49
				4.7.3.1.2	
	Appendix A.2	"Space", "Cargo			91
		Volume"			
Machinery Arrangements	Chapter 4	4.7.4	4.7.4.1~11	4.7.4.1~2	54
	Chapter 5	5.2.7, 5.3			83, 85
	Appendix A.6	D (00 00			124
	Drawings	D.600-03			Attached

Design Report Requirements	Section	Subsection	Figure	Table	Page
Structural Midship Section and	Chapter 4	4.2	4.2.2.1~3,	4.2.1.1,	27
Calculations			4.2.2.1.1~8,	4.2.2.1.1	
			4.2.2.2.1~8,		
			4.2.3.1~3		
	Appendix A.4				94
	Drawings	D.100-01			Attached
Speed/Power Analysis	Chapter 4	4.3.1	4.3.1.5		33
•	Chapter 5	5.2.3, 5.3			83, 85
	Appendix A.2	"Resistance and			91
		Power"			
	Appendix A.5	A.5.1			109
Electrical Load Analysis	Chapter 3	3.1.2.2, 3.1.3.4			13, 17
•	Chapter 4	4.3.2, 4.4.2	4.4.2.1	4.3.2.1, 4.4.2.1	37, 40
	Appendix A.2	"Electrical Load"			91
	Appendix A.5	A.5.2			122
Seakeeping Analysis	Chapter 4	4.10.1	4.10.1.1~14	4.10.1.1~2	75
	Chapter 5	5.3			85
Area/Volume Summary	Chapter 3	3.1.3.1	3.1.3.1.1		15
•	Chapter 4	4.7.1, 4.7.3.1	4.7.3.1.1	4.7.1.1~3,	47, 49
	1			4.7.3.1.1~2	
	Appendix A.2	"Space", "Cargo			91
		Volume"			
Manning Estimate	Chapter 3	3.1.2.3			15
	Chapter 4	4.6		4.6.1	45
	Chapter 5	5.2.6, 5.3			83, 85
	Appendix A.2	"Manning and			91
		Deckhouse Volume"			
Major HM&E Systems and	Chapter 4	4.3.1, 4.4, 4.5, 4.7.4	4.3.1.1, 4.4.1.1,	4.4.1.1, 4.4.2.1,	33, 38, 42,
Equipment			4.5.6.1	4.5.1.1, 4.7.4.1	54
	Chapter 5	5.2.4, 5.2.5, 5.3			83, 83, 85
	Drawings	D.200-01 D.300-02			Attached
		D.700-01 D.700-02			
Propulsion Plant Trade-Off	Chapter 3	3.1.2.2, 3.1.3.3		3.1.2.2.1,	13, 16
Study				3.1.3.3.1	
•	Chapter 5	5.2.3			83
	Appendix A.2	"Machinery"			91
Endurance Fuel Calculation	Chapter 4	4.3.3		4.3.3.1	38
	Appendix A.2	"Space"			91
	Appendix A.5	A.5.2			122
Cost Analysis	Chapter 3	3.1.5		3.1.5.1	18
	Chapter 4	4.11.1		4.11.1.1	80
	Chapter 5	5.2.9, 5.3			84, 85
	Appendix A.2	"Cost Model"			91
Technical Risk Summary	Chapter 5	5.1			82

Executive Summary

The goal of the Optimum Risk Tanker (ORT) LO is to transport oil from the Trans Alaskan Pipeline System to the Northern Pacific utilizing a design which is low in cost and low in risk. This design is achieved by analyzing the owners' requirements, defining the mission, optimizing cost and risk, and exploring various ship concepts. A Pareto Genetic Algorithm is used to identify feasible ships on a non-dominated frontier.

The LO ORT assigned to our team is one of four designs selected from the non-dominated frontier for feasibility study. It represents the low cost option. The ORT LO tanker meets all necessary requirements and regulations. The hull form is optimized for good seakeeping and fuel efficiency. The structural configuration is designed to ABS 2000 standards and is highly producible and maintainable. The propulsion system produces ample power to propel the ship efficiently and effectively. Mechanical and electrical components satisfy the requirements necessary for the vessel to perform its mission. Cargo systems ensure safe and proficient cargo storage and transfer. The ballast system allows the vessel to meet stability requirements when needed. The Manning Plan for the ORT LO tanker contains sufficient crew to operate the vessel according to Federal Regulations. The deckhouse satisfies owners' requirements for crew habitability and the navigation deck exceeds

regulations for visibility. Tank arrangements are designed to optimize environmental protection and provide easy maintenance. The machinery space optimizes space arrangements of various components of cargo, propulsion, and electrical equipment. Weights for all of the vessel's components are balanced and optimized for trim and stability. Intact stability is satisfactory in all loading conditions and meets the IMO A.167 Righting Energy Criteria with a margin of safety in all cases. Damage stability criteria is satisfied for all damage cases and loading conditions. The maneuvering characteristics are exceptional for its trade and route characteristics.

Principal Characteristics	
Length Overall	258 m
Length Between Perpendiculars	251 m
Beam, Molded	49.78 n
Depth, Molded Upper Deck at side	27.5 n
Draft, Full Load	16 m
Cb	0.83
Ср	0.834
Cx	0.998
DWT	140,00
Displacement	167,983 M
Lightship Weight	27,983 M
Draft Design	15.8 n
Sustained Speed at Design Draft and 90%	
rated horsepower (Approx.)	16 Knot
Endurance Speed	15 Knot
Endurance Range	10,000 nr
100% Cargo Capacity	167,105 n
Fuel Oil Tankage	2,935 M
Diesel Oil Tankage	113 M
Lube Oil Tankage	23 M
Fresh Water tankage	236 M
Machinery	Diese
Rated Horsepower	30,560 h
Number of Passengers	3
Number of Crew	20
Propeller (1) Blades	4
BCC	\$112.7 m
TOC	\$198.2 m
Risk	0.098 m

Table of Contents

CONTRACT DELIVERABLES REQUIREMENT LIST (CDRL)	2
EXECUTIVE SUMMARY	4
ACKNOWLEDGEMENTS	8
ABOUT THE AUTHORS	8
1.0 REQUIREMENTS AND PLAN	9
1.1 Owner's Requirements	
1.2 DESIGN PHILOSOPHY, PROCESS, AND REPORT ORGANIZATION	
1.3 Work Breakdown	
1.4 RESOURCES.	10
2.0 MISSION DEFINITION AND RISK OPTIMIZATION	
2.1 CONCEPT OF OPERATIONS	11
2.2 REQUIRED OPERATIONAL CAPABILITIES AND PROJECTED OPERATIONAL ENVIRONMENT	
2.3 OBJECTIVE ATTRIBUTES: RISK AND COST	12
2.4 Constraints and Standards	12
3.0 CONCEPT EXPLORATION	13
3.1 SHIP SYNTHESIS MODEL AND OPTIMIZATION	13
3.1.1 Ship Synthesis Model	13
3.1.2 Trade-Off Technologies, Concepts and Design Parameters	
3.1.2.1 Hull Form and Structural Concepts and Parameters	14
3.1.2.2 Propulsion and Electrical Concepts, Alternatives and Redundancy 3.1.2.3 Automation and Manning	
3.1.2.4 Cargo System (Mission) Parameters	
3.1.3 CONCEPT DESIGN BALANCE SUB-MODELS.	
3.1.3.1 Hull Geometry, Available Volume and Area, and Hydrostatics	16
3.1.3.2 Resistance	
3.1.3.3 Propulsion and Power	
3.1.3.4 Electric Power 3.1.3.5 Arrangements, Required Volume and Area	
3.1.3.6 Weight	
3.1.3.7 Stability	
3.1.4 Concept Design Feasibility	
3.1.5 Cost Model	
3.1.6 Risk Model	
3.2 MULTI-OBJECTIVE OPTIMIZATION	
3.2.1 Pareto Genetic Algorithm (PGA) Overview and Function	
3.2.2 Optimization Results	
3.3 BASELINE CONCEPT DESIGN	
4.0 FEASIBILITY STUDY	
4.1 HULL FORM, APPENDAGES AND DECK HOUSE	
4.2 STRUCTURAL DESIGN AND ANALYSIS	
4.2.1 Objectives	
4.2.2 Procedures	
4.2.2.1 Longitudinal Scantlings	
4.2.3 Scantling Adjustment.	
4.3 POWER AND PROPULSION	
4.3.1 NavCad Analysis	
4.3.2 Endurance Electrical Power Analysis	38
4.3.3 Endurance Fuel Calculation	39
4.4 MECHANICAL AND ELECTRICAL SYSTEMS.	
4.4.1 Mechanical Systems	40

4.4.2 Electrical Systems	
4.5 CARGO SYSTEMS	
4.5.1 Cargo-Oil System	
4.5.2 Crude Oil Washing (COW) System	
4.5.3 Cargo Stripping System	
4.5.4 Ballast System	
4.5.5 Oil-Content Monitoring System	
4.5.6 Inert Gas System (IGS)	
4.6 Manning	
4.7 Space and Arrangements	
4.7.1 Space	
4.7.2 External	
4.7.3 Internal	
4.7.3.1 Tank Space/Arrangements	
4.7.3.2 Deckhouse Space/Arrangements	
4.7.4 Machinery	
4.8 WEIGHTS AND LOADING	
4.8.1 Weights	
4.8.2 Loading	62
4.9 Hydrostatics and Stability	
4.9.1 General	
4.9.2 Intact Stability and Loading	
Vessel Displacement and Center's of Gravity	
Vessel Displacement and Centers of Gravity	
4.9.3 Damage Stability	
4.10 Seakeeping and Maneuvering	
4.10.1 Seakeeping	
4.10.2 Maneuvering	
Vessel Characteristics	
Steering Characteristics	
Operating Conditions	8
Water Properties	
4.11 COST AND RISK ANALYSIS	
4.11.1 Cost Analysis	
4.11.2 Risk Analysis	82
5.0 CONCLUSIONS AND FUTURE WORK	8
5.1 Assessment	82
5.2 FUTURE PLANS	
5.2.1 Hull Form, Appendages and Deckhouse	
5.2.2 Structural Design and Analysis	
5.2.3 Power and Propulsion	
5.2.4 Mechanical and Electrical Systems	
5.2.5 Cargo Systems	
5.2.6 Manning	
5.2.7 Space and Arrangements	
5.2.8 Weights	
5.2.9 Cost and Risk	
5.3 CONCLUSION	
REFERENCES	
APPENDIX A.1 TANKER REQUIREMENTS AND RESTRICTIONS	
A.1.1 CIRCULAR OF REQUIREMENTS	
A.1.2 ANNUAL SEA STATE OCCURRENCES FOR THE NORTH PACIFIC	9
APPENDIX A.2 CONCEPT DESIGN MATHCAD MODEL	g
TI I ENDIA A.2 CONCELL DESIGN MATHCAD MODEL	

APPENDIX A.4 SAFEHULL STRUCTURAL ANALYSIS	100
APPENDIX A.5 POWER AND PROPULSION ANALYSIS	110
A.5.1 NAVCAD ANALYSIS	110
A.5.1.1 Design Case	110
A.5.1.2 Wave Case	115
A.5.1.3 Arrival Ballast Case	
A.5.1.4 TAPS Load Case	
A.5.1.5 Full Load Case	
A.5.2 ELECTRICAL LOAD AND ENDURANCE FUEL ANALYSES	123
APPENDIX A.6 WEIGHT REPORT	125

Acknowledgements

The members of Team 3 would like to thank everyone who has aided in the completion of this design report. Without their tremendous contributions, this report would not have been possible. We would specifically like to thank:

Dr. Alan Brown for his patience and in depth clarification of foreign material which would have otherwise been overlooked

Mr. Bob Scott for his detailed revisions and suggestions regarding technical information which made for a more accurate and feasible design

ARCO Marine, Inc., especially Mr. Bob Levine and Mr. James Read, for sharing their tremendous knowledge and understanding of the design and operation of TAPS trade tankers

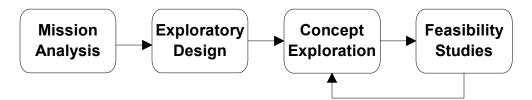
Mrs. Linda Mish and Family for their patience, support, and understanding in dealing with a very time consuming and stressful period

All Ocean Design Team members whose collective research and support facilitated various areas of the design process

About the Authors

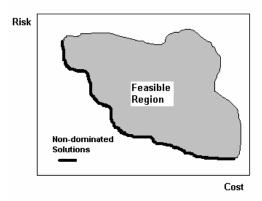
The authors of the Optimum Risk Tanker Design Report will utilize the knowledge that they have gained from this report in a variety of ways. William Mish will be moving on to Band Lavis and Associates in Severna Park, MD where he will work in concept design. Ryszard Kaczmarek will join the US Navy's Civil Engineering Corps after attending OCS in Pensacola, FL this summer. Sarah Staggers has accepted a job in the structures department of Newport News Shipbuilding in Newport News, VA. Elbert Adamos will be joining the Combatant Craft Department, Ship Systems, Carderock Division in Suffolk, VA. C.J. Van Vooren will work for the Sealift department at CSC Advanced Marine in Arlington, VA.

1.0 Requirements and Plan


1.1 Owner's Requirements

This report describes the design process for an Optimum Risk Tanker (ORT). The primary mission for this vessel is to transport crude oil from the Trans Alaskan Pipeline System (TAPS) in the Northern Pacific to the West Coast of the United States. Therefore this ship is a Jones Act Ship. Expert opinion was solicited from ARCO Marine, Inc. to define customer requirements. Specific owner's requirements are located in Appendix A.1.

The vessel must have the capabilities to travel to China where repairs and dry-docking will occur. The Projected Operational Environment (POE) factors that must be considered include sea state conditions, sea and air temperatures, and ice hazards. System operational requirements include cargo and ballast pumping capabilities, speed, crude oil washing (COW) system, inert gas system (IGS), emissions, and possibly ballast water exchange in the future. All of these systems must work together in a safe, timely manner, while accommodating the schedule constraints of a round trip of 10.5 days. The vessel must comply with U.S. COFR, port regulations, and ABS Class rules. The POE factors and applicable regulations are detailed in Section 2.2.


1.2 Design Philosophy, Process, and Report Organization

The traditional approach to ship design is largely an 'ad hoc' process. Primarily, experience, design lanes, rules of thumb, preference, and imagination guide selection of design concepts for assessment. Often, objective attributes are not adequately synthesized or presented to support efficient and effective decisions. This project uses a total system approach for the design process, including a structured search of design space based on the multi-objective consideration of cost and risk. Figure 1.2.1 provides a flow chart of the design process used in this project.

Figure 1.2.1 Design Process

The designer and customer work together during the Mission Analysis to define the ship mission and general requirements. The results of this phase are summarized in the COR. Exploratory Design consists of acquiring and understanding information on current and future ship technologies and their potentials. In Concept Exploration, a closed form analytical method is used for calculating risk. A pareto-genetic algorithm (PGA) is used to search the design parameter space and identify non-dominated design concepts in terms of risk and cost. All important system and design trade-off studies are made simultaneously as part of this ship system optimization. Once the non-dominated concept frontier is identified (see Figure 1.2.2), the baseline concept design is selected based on the customer's preference for cost and risk. The shape of the frontier may have a 'knee' in the curve, a region where there is a sharp discontinuity. The bottom of this knee is a "best buy region." The Concept Exploration process and the baseline concept design are described in detail in Chapter 3. The Feasibility Studies include more detailed analyses for mission, hydrostatics, stability, structure, sea keeping, station keeping, weights, arrangements, cost and manning. The Feasibility Studies follow the more traditional design spiral (Figure 1.2.3). All of these are described in Chapter 4.

Requirements

Concept & Requirements
Exploration

Cost, Risk
and Effectiveness

Manning &
Maneuvering

Manual Manu

Figure 1.2.2 Risk Non-dominated Frontier

Figure 1.2.3 Design Spiral

1.3 Work Breakdown

A five-person team was established with each member specializing in a particular area of expertise. This approach allows each person to draw on their past experience with the chosen area of expertise providing a solid foundation of knowledge while maintaining an efficient investigation into the design problem. In addition, a team leader was selected to facilitate an efficient and organized project. Individual areas of expertise are listed in Table 1.3.1. In addition to having separate specialties, the entire team worked on several mini projects to bring forth the risk function and the parametric tanker model.

Table 1.3.1 Work Breakdown

Tuble 1.5.1 WOLK Bleakdown						
Name	Specialization					
Bill Mish (Team Leader)	Hull / Hydrostatics / Hydrodynamics					
Sarah Staggers	Power / Propulsion / Resistance					
CJ Van Vooren	Weights / Synthesis / Editor					
Ryszard Kaczmarek	Structures / Producibility					
Elbert Adamos	Subdivision / Arrangements					

1.4 Resources

Throughout the design process, various software packages were used to facilitate design analysis. In the concept exploration phase, MathCad software was used to develop the ship synthesis model. This code is then input into a Fortran optimization program. As the design process continues, other software is used to facilitate analysis needed in each team member's area of expertise. Table 1.4.1 provides a list of each software package and the analysis in which it has been utilized.

Table 1.4.1 Software

Analysis	Software Package
Arrangement Drawings	AutoCAD
Hullform Development	FastShip
Hydrostatics	HecSalv
Resistance/Power	NavCad
Ship Motions	SMP
Ship Synthesis Model	MathCad/Fortran
Structure Model	SafeHull

2.0 Mission Definition and Risk Optimization

The primary mission of the ORT is to transport crude oil between the Trans-Alaskan Pipeline System (TAPS) in Port Valdez, AK and the West Coast of the United States.

2.1 Concept of Operations

Over 600 voyages will be performed during the lifetime of the ship. Thus, reliable operation in the severe environments in the Northern Pacific and sensitive marine port environments are required. The average round trip is roughly 15 days with two days in port and 13 days at sea (Figure 2.1.1).

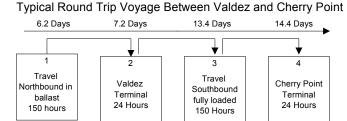


Figure 2.1.1 Typical Voyage Round Trip Between Valdez and Cherry Point

The entrance to Port Valdez begins in the Gulf of Alaska through Prince William Sound. The tanker travels through the Hinchinbrook entrance following dedicated traffic lanes to Valdez Arm and Valdez Narrows. Once entering Hinchinbrook, tug escort to Port Valdez is required. If the winds are 31-40 knots upon entrance, extra tug escorts are required. If the winds are more than 40 knots, Valdez Narrows is closed completely. A number of channel specifications exist:

- Average width of channel 3180 ft
- Minimum width of channel 800 ft
- Average depth of channel 800 ft
- Minimum depth of channel 350 ft
- Six turns total (three left, three right)

The length of the route from the Valdez Arm to Port Valdez is approximately 22 miles. Throughout Prince William Sound, USCG-supplied VTS is required to navigate the waters surrounded by a diverse wildlife population.

The entrance to Cherry Point begins unescorted from the Pacific Ocean to Port Angeles. Once in Puget Sound, a Washington State licensed pilot must be on board until arrival at the port. Like Prince William Sound, Puget Sound is home to a very diverse wildlife population. Port characteristics such as the ones just described are used in the oil outflow risk model.

2.2 Required Operational Capabilities and Projected Operational Environment

The minimum necessary capabilities for the vessel to perform its mission are its required operational capabilities (ROC). They include:

- <u>Transport</u> crude oil in incident free, year-round operation limited by U.S. Code of Federal Regulations (33 CFR 165.1303b), OPA 90, and U.S. cabotage laws regarding crude oil trade. Systems must load and offload cargo alongside harbor piers, offshore facilities, and lightering within the bounds of port regulations.
- Provide cargo and ballast capabilities to load/offload/deballast/ballast in 24 hours.
- <u>Provide COW</u> capabilities. These systems use electric driven pumps to clean the residual crude oil inside the cargo tanks. The tanks are cleaned while cargo unloading.
- <u>Provide</u> an IGS to prevent explosions in the cargo tanks. These systems utilize the exhaust of the diesel engines to fill the cargo tanks during transport and loading/offloading procedures. These systems ensure a explosive cargo fumes and air in the tanks do not form a volatile mixture.
- <u>Provide</u> precise navigation using an electronic chart display and information system (ECDIS) and the vessel traffic service (VTS). These navigation systems ensure the tanker uses the most current nautical information during transit.

- <u>Provide</u> ballast water exchange to prevent the transportation of dangerous microorganisms from one region to another. This precaution should be installed pending expected future regulatory constraints.
- <u>Provide</u> war-time compliance. Tankers must be able to join in the national emergency effort performing military sealift command standards for underway replenishment.

The projected operational environment for the vessel is the Trans Alaskan Pipeline System (TAPS) trade in the Northern Pacific. The primary route for the tanker is the trade route between Valdez, AK and Cherry Point, WA. Other possible ports for the off-loading of oil in this trade are Long Beach, CA and San Francisco, CA. The most probable sea state in the Northern Pacific corresponds to Sea State 4, which has a mean significant wave height of 1.88 meters and a mean sustained wind speed of 19.0 knots. A complete table of the annual sea state occurrences in the Northern Pacific is shown in Appendix A.1.2. Ice is a significant factor for a TAPS trade tanker. Within the approach route to Valdez, Alaska, there are approximately 10-15 large icebergs.

2.3 Objective Attributes: Risk and Cost

For the exploration of this tanker concept, oil outflow, risk and cost are the objective attributes. Risk is quantified in terms of probability of damage and mean oil outflow. Probabilities of damage are based on grounding and collision while oil outflow is based on the mean oil outflow due to grounding (bottom damage) and collision (side damage). The combination of results from probability of damage and oil outflow produces a quantitative risk value. Cost is comprised of components such as manning, fuel, lead ship construction cost (BCC), and maintenance.

2.4 Constraints and Standards

An oil tanker operating in U.S. waters is required to meet standards specified by the U.S. Coast Guard (USCG) as well as international regulations set by International Maritime Organization (IMO) and MARPOL, the International Convention for the Prevention of Pollution from Ships. The USCG enforces the Oil Pollution Act of 1990 (OPA 90), which requires tankers to have double hull construction. MARPOL 73/78 requires tankers to have segregated ballast tanks, COW abilities, IGS, and slop tanks. US COFR and MARPOL also has subdivision and stability requirements, and necessitates a hypothetical oil outflow calculation. The concept design must consider several physical constraints necessary for feasibility. Constraints include:

- Propulsion power
- Machinery box volume
- Deckhouse volume
- Cargo block volume
- Deadweight tonnage
- Stores capacity

The optimization program uses these constraints to eliminate unfeasible ships from the concept exploration design space. After this process, the owners would select a feasible ship with their preferred combination of physical constraints.

3.0 Concept Exploration

3.1 Ship Synthesis Model and Optimization

3.1.1 Ship Synthesis Model

In the concept exploration phase of the design process, it is necessary to balance each investigated ship. Therefore, with the aid of MathCad software, a ship synthesis model was developed which balances a ship in terms of weight, displacement, volume, area and power based on a given set of design parameters. This method allows variation of design parameters, while maintaining a feasible ship. Risk is calculated using an oil-outflow risk model. A simplified total ownership cost (TOC) is calculated using a weight and producibility-based cost model. TOC is comprised of various components such as lead ship construction costs, crew, fuel, and maintenance. Figure 3.1.1.1 provides a flowchart of this process.

The MathCad ship synthesis model is the tool used to balance each ship in the optimizer. The model is described in the remaining sections of this chapter and in Appendix A.2. Design parameters and system alternatives considered in this optimization are provided in Section 3.1.2.

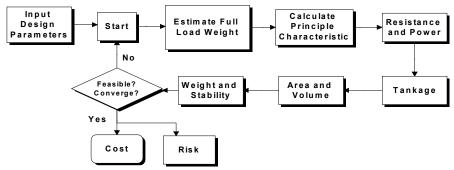


Figure 3.1.1.1 Ship Synthesis Model

3.1.2 Trade-Off Technologies, Concepts and Design Parameters

Each ship design is described using 13 design parameters (Table 3.1.2.1). These design parameters are input into the ship synthesis model described above. The ship is then balanced, checked for feasibility, and ranked based on cost and risk. The design parameters can be broken down into four categories: Hull Form and Structural Concepts, Propulsion and Electrical Concepts, Automation and Manning and Cargo Systems. The hull form and structural concept parameters are: Beam to Draft Ratio, Length to Beam Ratio, Block Coefficient, Depth to Draft Ratio, Deck Height, Stern Type and Structural Margin Factor. The propulsion and electrical parameters are: propulsion system type and electrical redundancy. The manning factor reflects the automation and manning concept. The cargo system parameters are: the double bottom height, double side width, and the number of cargo holds. Each design parameter is limited to a feasible range (Table 3.1.2.1). For example, the structural margin factor has a range of 1.0 to 1.5. This number determines how thick the hull plating is beyond the necessary structural thickness required by ABS standards. When multiplied by the number of increments (Table 3.1.2.1) and added to the minimum plate thickness (based on plate loading), the result is the total thickness of the plating. The trade off is corrosion and strength risk verses cost. With thicker plating, the ship's total cost increases, but has less structural risk. Thinner plating has less total cost, but more structural risk.

DP	Description	Metric	Range	Increments*
1	Beam to Draft Ratio	ND	2-4	40
2	Length to Beam Ratio	ND	5-7	40
3	Block Coefficient	ND	0.7-0.9	40
4	Depth to Draft Ratio	ND	1.2-2.0	40
5	Double Bottom Height	m	2-4	20
6	Double Side Width	m	2-4	20
7	Manning Factor	N/A	0.5-1.0****	10
8	Structural Margin Factor	N/A	1.0-1.5	5
9	Deck Height	m	3-4	10
10	Number of Cargo Holds	N/A	4-8	4
11	Propulsion System Type	N/A	1-6**	6
12	Electrical Redundancy	N/A	1-2***	2
13	Stern Type	N/A	1-2*****	2

Table 3.1.2.1 Design Parameters

3.1.2.1 Hull Form and Structural Concepts and Parameters

There are seven parameters that control the hull form and structural concepts. The first four describe the actual hull form with standard ship design coefficients: Beam to Draft Ratio, Length to Beam Ratio, Block Coefficient, and Depth to Draft ratio. These allow the optimizer to choose a variety of ship shapes and sizes while allowing the math model to vary the actual dimensions (to balance the ship) without affecting the general shape of the ship. This also allows the designers to quickly create a hull in FastShip. The stern shape parameter allows the optimizer to explore fuel efficiency versus producibility cost. The deck height parameter is the height of the individual decks in the deckhouse. This allows the optimizer to explore a variety of deck heights for producibility while allowing the math model to balance the deckhouse with its restrictions (number of crew, visibility, and storage). The structural margin factor allows the optimizer to search the design space for the optimum combination of plate thickness versus corrosion failure risk.

3.1.2.2 Propulsion and Electrical Concepts, Alternatives and Redundancy

The two alternative systems of propulsion considered in the exploratory design are the integrated power system (IPS) and the inline mechanical system. IPS can be used with a traditional fixed pitch propeller, and a podded propulsion system. The advantages of IPS are flexibility of arrangements, lower noise/vibration, increased maneuverability with pods, cleaner electrical power, and ease of maintenance. Disadvantages of the system are higher installation cost, weight and grounding risk if a podded propulsor is used.

For the inline mechanical system, a slow speed diesel engine system can be used with a Controllable Reversible Pitch Propeller (CRP), Controllable Pitch (CPP), or a Fixed Pitch Propeller (FPP). In addition, the contra-rotating propeller system may be used in both cases. The benefits of a slow speed diesel include its proven technology, cost efficiency, maintainability, and lower installation cost. Medium speed diesel engines are not considered in this concept exploration due to time and information constraints.

In analyzing the propeller systems, the contra-rotating propeller system is determined to be a high efficiency system. However, the increased risk and underdeveloped technology make this concept too risky. The CPP has positive characteristics such as reduced emissions, increased engine life, increased maneuverability, and elimination of heavy clutches. The disadvantages of this system are its cost, maintenance, and complexity. From the analysis of the FPP system, low weight, low cost, and proven technology are its benefits. The negative characteristics of this system are limited maneuverability and required engine/propeller matching.

Due to its low cost and risk, the chosen system was the fixed pitch propeller powered by a slow speed diesel engine. Preliminary ship displacement and other requirements indicated that propulsion engines should be in the 25,000-35,000 bhp range for non-redundant systems (1 shaft) and 12,500-17,500 bhp for the redundant systems (2 shafts). The summary of the main propulsion engines considered in the concept design is presented in Table

^{*} The increments represent the number of steps analyzed between the range values.

^{**} The propulsion system type ranges from 1-6. 1-3 represent different engine types for a singal engine and 4-6 represent different engines for a dual engine system.

^{***} Electrical redundancy is either 1 or 2 representing no redundancy or redundancy.

^{****} The manning factor ranges from 0.5-1.0 representing the number of crew on the ship.

^{*****} The stern type is either 1 or 2 where 1 is a producible stern and 2 is an efficient stern.

3.1.2.2.1. All of the engines and their characteristics are included in the optimization process for final trade-off analysis.

Table 3.1.2.2.1 Engines Options Considered in the Concept Design

Opt.	Engine	Engine	No. Of	Powe	r Gen.	Optim.	Optim.	Prop	Weig	ght Lmin	W	Н	Volume	SFOC		Cost
No.	Select.	Maker	Cyl.	BHP	kW	rpm	Prop.	wieght	ton	mm	mm	mm	m^3	g/BHP		\$170/BHP
						r/min	size ~	Ton						h	Wh	
							mm									
1	S50MC-C	Man	6	12870	9480	127	5450	32.1	207	6439	5000	8950	288.1	126	171	\$2,187,900
	SSUIVIC-C	B&W							-							
2			7	15015	11060	127	5650	35.5	238	7289	5000	8950	326.2	126	171	\$2,552,550
3			8	17160	12640	127	5850	39.9	273	8139	5000	8950	364.2	126	171	\$2,917,200
4	L50MC	Man B&W	8	14480	10640	148	5200	50.6	276	9175	4500	7825	323.1	127	173	\$2,461,600
5	S42MC	Man B&W	10	14700	10800	136	4700	26.2	232	9476	4400	8050	335.6	130	177	\$2,499,000
6			11	16170	11880	136	4800	29.9	249	10224	4400	8050	362.1	130	177	\$2,748,900
7	L58/64	Man B&W	8	15120	11120	420	5500~1 30 rpm	35.9	198	11600	3550	5140	211.7	130	177	\$2,570,400
8	S70MC-C	Man B&W	6	25320	18630				555	8971	7500	12500	841.0	124	169	\$4,304,400
9			7	29540	21135	85	N/A	N/A	624	10161	7500	12575	958.3	124	169	\$5,021,800
10	S70MC	Man B&W	7	26740	19670				648	10915	7300	12225	974.1	124	169	\$4,545,800
11			8	30560	22480	85	N/A	N/A	722	12161	7300	12225	1085.3	124	169	\$5,195,200
12	L70MC	Man B&W	8	30760	22640	95	N/A	N/A	667	11992	6800	10850	884.8	128	174	\$5,229,200
13	K80 MC-C	Man B&W	7	34300	25270	104			875	12528	6500	11125	905.9	126	177	\$5,831,000
14	L 80 MC	Man B&W	7	34580	25480				864	12658	6800	11775	1013.5	128	174	\$5,878,600
15	RTA 48T-B	New Sulzer	7	13860	10185	127	N/A	N/A	225	6950	6300	9030	395.4	126	171	\$2,356,200
16			8	15840	11640	127	N/A	N/A	250	7800	6300	9030	443.7	126	171	\$2,692,800
17	RTA 52U-B	New Sulzer	7	15225	11200	137	N/A	N/A	270	7925	6570	8745	455.3	128	174	\$2,588,250
18	RTA 58T-B	New Sulzer	5	14450	10625	105	N/A	N/A	281	6381	7200	10880	499.9	125	170	\$2,456,500
19			6	17340	12750	105	N/A	N/A	322	7400	7200	10880	579.7	125	170	\$2,947,800
20	RTA 72 U-B	New Sulzer	6	25140	18480				565	9300	7000	11875	773.1			\$4,273,800
21			8	33520	24640				715	12000	7000	11875	997.5			\$5,698,400
22	RTA 84 C	New Sulzer	5	27550	20250				740	10400	8800	13130	1201.7			\$4,683,500
23	Nata	New Sulzer	6	33060	24300				850	11500	8800	13130	1328.8			\$5,620,200

Note:

- Lmin is the length of the block itself and not the length of the pulleys, turn wheels, and auxiliary systems
- H is the clearance height needed for the vertical lift of the engine
- Two digits numbers indicate the diameter of the piston in cm, MC is the engine program, and the C stands for the compact design. The letters L and S in front indicate super long and long stroke (stroke/bore ratio.)

Based on fuel consumption, size, weight, redundancy, and available information, the following Man B&W engines are chosen for further consideration and trade-off in the optimization:

- 1. S70MC-C (6 cylinders)
- 2. S70MC (8 cylinders)
- 3. L80MC (7 cylinders)
- 4. S50MC-C (6 cylinders)
- 5. S50MC-C (7 cylinders)
- 6. S50MC-C (8 cylinders)

The first three selected engines were considered in the non-redundant systems (1 shaft) and the remaining three in the redundant systems (2 shafts/2 propellers). The redundant systems decrease grounding risk, but increase the costs, space required and weight of the ship. The tradeoffs of single versus twin screw systems are analyzed in the math model. Characteristics such as brake horsepower, specific fuel oil consumption, weight and size are

incorporated in the math model. These characteristics determine the speed, size of the machinery box, and the price of the propulsion plant. The analyses are performed in the Machinery section of the math model (Appendix A2).

The electrical system concept is also considered for redundancy by being a DP in the PGA. The maximum required power is based on the maximum functional load for a winter cruise condition. The electric loads considered are the propulsion plant, cargo pumps, steering machinery, lighting, control systems, firemain, auxiliaries, hotel services, and HVAC system. Summation of all these loads and electric power margins results in a Maximum Functional Load (MFL). The elements of trade-off are the cost, weight, reliability and space. A second electric plant increases the reliability of the ship's electric services but increases weight, cost, and space.

The Power Take-Off (PTO) system along with the diesel generators are analyzed and accepted in the concept design. The PTO system required Power Conversion Units (PCU). The redundant options include redundant PTO and PCU. The ship service and emergency generators are examined later in the design process.

3.1.2.3 Automation and Manning

The crew size is based on three different factors: the number of engines, the volumetric size of the tanker, and the manning factor. The manning factor describes the automation level of the vessel with a low manning factor representing high automation, and vice versa. As the ship gains more propellers, the need for more workers to maintain more engines increases. As the ship gains size, the same need for a larger crew is reflected in the aforementioned crew size function. The manning factor is the only one that can be altered in terms of levels of ship automation. A manning factor of 0.5 describes a minimum crew of specialists to monitor the highly automated ship. A manning factor of 1.0 describes the standard number of personnel for a less automated tanker. Efficiency and initial cost increase with more automation. Accident risk decreases with increased manning.

All three factors are used in a function to output a total crew size, N_T . This output is used in the MathCad file (Appendix A.2) to determine the deckhouse volume and crew arrangements. The manning factor of 0.7 and the crew size (N_T) of 20 have been optimized for this vessel. The exact calculations showing the procedure for determining total crew size are located in Appendix A.2, Section "Manning and Deckhouse Volume".

3.1.2.4 Cargo System (Mission) Parameters

The width of the double hull, height of the double bottom, and the number of cargo blocks are the major areas analyzed for the mission concepts. An increased height in the double bottom and an increased width in the double sides make for a safer vessel in collision and grounding. An increased number of subdivisions in the cargo block also reduces oil outflow in an accident. These parameters are adjusted automatically in the optimizer until the optimum risk and oil outflow are achieved.

3.1.3 Concept Design Balance Sub-Models

3.1.3.1 Hull Geometry, Available Volume and Area, and Hydrostatics

The hull geometry is divided into 4 sections (Figure 3.1.3.1.1): the aft section, machinery room, cargo block, and the forepeak. Each of these sections has various parameters that affect their volume and general dimensions. The forepeak and aft section were scaled from a 125,000 Dead Weight Tonnage (DWT) tanker and are scaled up based on the volume of the vessel. These sections are unchanged and only affect the total length and the ballast condition of the ship. The cargo block is defined by calculating the total volume needed to store the cargo, and adding this to the volume of the j-tanks which is calculated based on the double bottom height and side width. Then the cargo block length is adjusted to contain the necessary cargo volume. The machinery room length is set into the remaining length of the ship after subtracting the forepeak, aft section, and the cargo block length from the Length of the Waterline (LWL). This length is checked against the length of the engine, shaft, PTO, and clutch for feasibility. The total LWL is calculated from the ship's displacement and the hull coefficients.

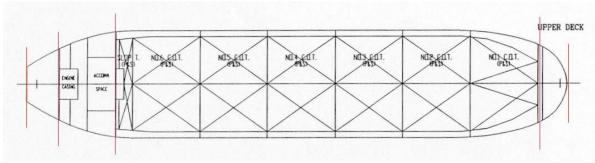


Figure 3.1.3.1.1 Ship Sections

3.1.3.2 Resistance

Total bare hull resistance is a combination of viscous drag and wave making drag effects. The calculations, coded in MathCad, use the HOLTROP method. Frictional resistance (C_f) is calculated based on Reynolds number, using the 1957 ITTC curve:

$$C_f = 0.075/(\log_{10} \text{Re} - 2.0)^2$$

where Reynolds number is dependent on LWL. The wave making, or residuary, drag calculations account for a bulbous bow. The HOLTROP method also uses a residual drag coefficient module, which finds the residuary drag coefficient ($C_{\rm r}$) for different beam-to-draft ratios. This method allows for the exploration of various hull forms, while producing reasonable results. The calculations are illustrated in Appendix A.2 under the Resistance and Power section of the model.

3.1.3.3 Propulsion and Power

Six propulsion plants are considered in the MathCad model shown in Appendix A.2. The selection process of the six plants is described above in Section 3.1.2.2. From these six options, the propulsion plant is determined by the design parameters input to the model. The engine characteristics considered in the model are displayed in Table 3.1.3.3.1 below. These characteristics are used in calculations in the subsequent sections of the MathCad model.

Table 3.1.3.3.1 Engine Characteristics

Characteristics	MathCad Variable
Number of Propulsion Plants	N_{P}
Brake Horsepower	P_{BPENG}
Specific Fuel Consumption	SFC_{PE}
Length of Engine	L_{ENG}
Width of Engine	W _{ENG}
Height of Engine	H_{ENG}
Weight of Engine	$W_{ m PENG}$
Volume of Machinery Box Required	$ m V_{MBreq}$

Total effective horsepower includes the ship effective horsepower and the horsepower required to overcome air resistance. Ship effective horsepower is found using the following equation:

$$P_E = R_T V$$

where R_T is the bare hull resistance and V is the velocity of the ship. The air frontal area of the ship incorporates the total height above the water, including the height of the deckhouse, and the beam of the ship. The calculation involves a 5% increase in area to account for masts and equipment. This quantity and the ship effective horsepower are combined and multiplied by a power margin factor, as shown in the following equation.

$$EHP = PMF (P_{EBH} + P_{EAA})$$

The power margin factor accounts for 10% fouling and sea state margin. When the total effective horsepower is known, this value is checked against the available horsepower from the propulsion plant selected. Appendix A.2 illustrates the calculations described above.

3.1.3.4 Electric Power

For this design process, the electrical load under winter conditions was found to be the most demanding condition. Therefore, this condition is used to estimate the required electrical power. This configuration is modeled in the Electrical Load section of the math model (Appendix A.2). The electric power redundancy factor, entered into the model as a design parameter, determines the total output of the electric plant. This factor is considered in the calculation of the electric power of the PTO (Power Take Off) units, and the power required from the diesel generators.

The electrical system is divided into the cargo and non-cargo sections. The non-cargo section considers electrical power necessary to operate the propulsion machinery, steering machinery, lighting, firemain, hotel services, auxiliary machinery, and other miscellaneous requirements. These requirement estimates are based on manning, deckhouse and total volumes, rated power of the engine, and the number of propulsion plants. The non-cargo loads are combined with margins to give the ship service maximum functional load (SSMFLM), which provides the required ship service generator power. The cargo section considers the power required to operate ballast pumps, COW pump, cargo pumps, and CSP. The required PTO generator power is calculated by combining the required cargo-related power with ship service power. The required emergency electric power is also provided and used to size the emergency generator. The model also calculates the average 24-hour power required for continuous operation.

3.1.3.5 Arrangements, Required Volume and Area

As mentioned in 3.1.2.3, the arrangements for the crew are based on the number of crewmembers on the ship. In Appendix A.2, Section "Manning and Deckhouse Volume", the living and working areas of the crew are calculated. The volume of the deckhouse and the inlet and exhaust areas contained within the deckhouse are also calculated in that section. Additionally in the "Manning and Deckhouse Volume" section, the ship tankage volume required is calculated using the various tanks which include fuel, lubrication oil, water, sewage, and waste oil.

The "Cargo Volume, Weights, and VCGs" section of Appendix A.2 shows the calculation of the cargo portion of the tanker. The total tank volume of the forepeak and aftpeak ballast tanks are calculated, as well as the space required for the cargo of the vessel. In the same section, the volume required for the machinery box of the tanker is calculated.

For each calculation above, it is necessary to note that the required area and volume must always be less than the available area and volume.

3.1.3.6 Weight

Weight estimates for the concept design optimization are generally adapted from weight parametrics in USN ASSET. ASSET provides classifications for the different weight groups onboard the tanker. The estimates for these groups are developed using coefficients of the weight calculations from the *Millenium* Tanker. The SWBS weight groups for the conceptual design are tabulated below.

Table 3.1.3.6.1 Weight Groups

SWBS Group	Description	Total Weight (MT)
100	Hull and Structure	1.697×10^4
200	Propulsion	1671.75
300	Electric Plant	157.49
400	Navigation, Controls, and Communication	8.012
500	Auxiliary Systems	2347.23
600	Outfit Furnishings	1234.13
	Cargo	1.376×10^4

Full and light ship weight summary calculations, along with each SWBS group weight calculation are located in the MathCad model (Appendix A.2, Section "Weight"). Also included in the weight summary is the calculation for a margin for design and construction.

3.1.3.7 Stability

Stability is handled in the MathCad model by computing the Vertical Centers of Gravity (VCG) for each weight group (SWBS Group). All of the VCG's are combined together to find the KG, then BM, KB and GM are calculated. The GM is divided by the beam to non-dimensionalize it and compared to a range of GM coefficients. This is calculated and compared for both the full load and ballast conditions. (Appendix A.2).

3.1.4 Concept Design Feasibility

In order to determine the feasibility of the design, a series of balance checks are accomplished. Available dimensions from the ship are compared with required values. The available dimensions must be greater than or equal to the required dimensions in for a feasible design. Table 3.1.4.1 compares the required and available values. The areas that are analyzed for the balance checks are:

- Weight
- Load Line
- Propulsion Power
- Machinery Box Dimensions
- Deckhouse Volume
- Cargo Block
- Stability (In Ballast, Full Load)

Table 3.1.4.1 Design Balance

Balance Check	Required	Available
Weight	$1.683 \times 10^5 MT$	$1.684 \times 10^5 MT$
Load Line	21.45 m	15.80 m
Propulsion Power	$2.606 \times 10^4 \text{ hp}$	$3.056 \times 10^4 \text{ hp}$
Sustained Speed	15.74 knots	15.81 knots
Machinery Box Volume	$2 \times 10^4 \text{ m}^3$	$5.02 \times 10^4 \mathrm{m}^3$
Deckhouse Length	19.85 m	36.87 m
Cargo Block Length	183.37 m	198.12 m
Ballast Stability (C _{GMB})*	0.08 - 0.25	0.266
Full Load Stability (C _{GMBFull})*	0.08 - 0.25	0.0833

^{*} $C_{GMB} = GM / B$, $C_{GMBFull} = GM_{Full} / B$

3.1.5 Cost Model

Only cost components that are dependent on the model's design parameters are included in the TOC (As described in 3.1.1). Other life cycle costs, not included in the TOC, are assumed to be second order or approximately constant for all designs. Annual life cycle costs are discounted to the base year, using an annual discount rate of 7%. Lead ship costs are estimated for each SWBS group using weight-based equations adapted from an early ASSET cost model (Simplified Tanker Cost Model in Appendix A.2). The base year is assumed to be 2000. Equation costs are inflated to the base year from their 1981 values using a 5% average annual inflation rate. The following are included in the basic cost of construction:

- Hull structure
- Propulsion
- Electrical Systems
- Command and Control
- Auxiliary Systems
- Outfit & Furnishings
- Margin Costs
- Integration/Engineering
- Ship Assembly and Support Services

Life cycle costs associated with the vessel include:

- Fuel
- Maintenance

- Penalties
- Manning

Producibility is also considered in TOC. Six producibility factors are calculated and used in conjunction with costs listed above. The factors are based on hull form characteristics, machinery room volume, and deck height. K_N , or complexity factors, which are used to calculate the lead ship cost, are listed in Table 3.9.1. Low K_N factors are selected to reflect commercial versus military construction standards. These factors aide in determining cost by calculating the difficulty of construction. They were adjusted by calibration of results to recent tanker cost data

Table 3.1.5.1 K_N Values

Ship Component	K _N Value	Choices
K _{N1} , Hull Structures	0.285	Mild/HT steel displacement hull with
		aluminum deck house
K _{N2} , Propulsion	0.8	Diesel
_	1.4	Gas turbine
	1.3	Diesel integrated power system
	1.6	Gas turbine integrated power system
K _{N3} , Electric	0.55	Conventional 60 HZ power, steam or diesel
		generator drive
K _{N4} , Command, Control &	2.0	Modest control systems, sophisticated
Surveillance		electronics
K _{N5} , Auxiliary Systems	0.15	Diesel propelled displacement ship
K _{N6} , Outfit & Furnishings	0.36	Conventional displacement ship
K _{N7} , Integration/Engineering	2.0	Lead ship
K _{N8} , Ship Assembly & Support	2.0	Moderate tooling, moderate trials
Services		

3.1.6 Risk Model

The tanker risk model was developed based on the probability and consequence of an oil outflow event or accident. Grounding and collision result in bottom oil outflow and side oil outflow, respectively. Accident events can be broken down into the following:

- Collision
- Grounding
 - Powered Grounding
 - Drift Grounding

The factors, taken in consideration in the math model, that determine the probability of grounding or collision are:

- Port Characteristics (Per Round Trip)
 - Width of channel
 - Number of turns
 - Length of channel
 - Speed
 - Number of Ships Passed
 - Redundancy
 - Steering
 - Propulsion

These are shown in the flowchart, Figure 3.1.6.2. Accident probability is calculated using probabilistic methods such as: Probability Distribution Functions (PDFs) and Poisson processes. Human error, mechanical failure, weather, and assistance failure are probabilistic factors that effect accident probability. In order to estimate risk, the probability of an accident must be combined with the consequence, oil outflow. In collision, side oil outflow is the consequence and in grounding, bottom oil outflow is the consequence. The MARPOL Annex I Regulation [19] method is used to estimate outflow in both side and bottom damage cases. Calculations consider the size of the cargo and slop tanks, the boundaries of the cargo tanks, the pressure in the tanks, the tide, and the oil captured in the ballast tanks. Oil outflow calculations are also probabilistic methods. The total risk is obtained by multiplying the probabilities of collision and grounding by side and bottom oil mean outflow, respectively, and summing the resulting products.

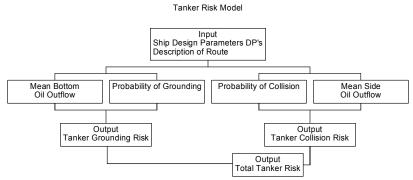
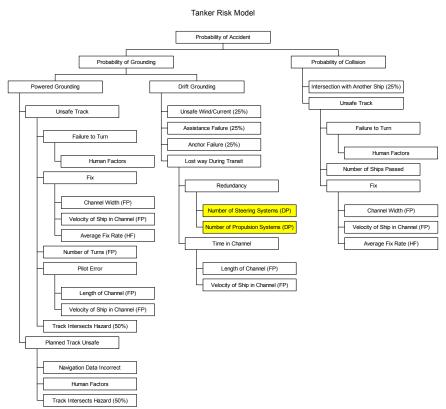
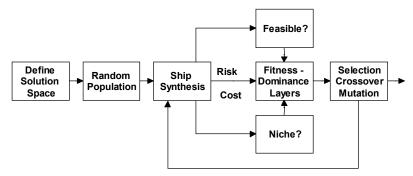


Figure 3.1.6.1 Tanker Risk Model




Figure 3.1.6.2 Tanker Risk Model

3.2 Multi-Objective Optimization

3.2.1 Pareto Genetic Algorithm (PGA) Overview and Function

Optimization is accomplished by using a Pareto Genetic Algorithm (PGA). A flow chart for the PGA is shown in Figure 3.1.2.1. In the first design generation, the optimizer randomly creates 200 balanced ships using the MathCad model to balance each ship. Each of these designs is ranked based on their fitness or dominance in risk and cost relative to the other designs in the population. Penalties are applied for infeasibility and niching, in other words, bunching-up in the design space. The second generation of the optimization is randomly selected from the first generation with higher probabilities of selection for designs with higher fitness. Twenty-five percent of these are selected for crossover or swapping of some of their design parameter values. A very small percentage of randomly selected design parameter values are mutated or replaced with a new random value. As each generation of ships is created, the ships spread across the cost-risk design space and frontier. After 200 generations of evolution, a non-dominated frontier of designs is clearly defined on a cost versus risk plot (Shown in Figure 3.12.1). Each ship

located on the non-dominated frontier provides the lowest risk for a given cost compared to other designs in the design space.

Figure 3.1.2.1 Optimization Process

3.2.2 Optimization Results

Figure 3.2.2.1 shows the final cost-risk frontier with generations 1,30 80, 100, and 200 plotted. The first generation shows an exploration of the design space. As successive generations are formed, the trend is to move toward a lower risk and cost while still exploring the design space. Finally the generations converge on a non-dominated frontier. The frontier shows four distinctive "knees" in the curve, illustrated in the figure as LO, BBL, BBH, and HI (Characteristics shown in Table 3.2.2.1). These "Knees" are distinct irregularities in the curve where substantial risk reduction can occur for a slight increase in cost. LO represents a knee at the lowest cost. These knees each represent a ship design. These designs were assigned for feasibility study by the four teams participating in this project. Our team is assigned the LO design variant.

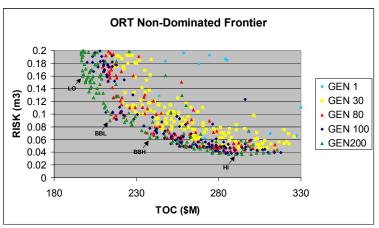


Figure 3.2.2.1 Optimization Results

TEAM	2	1	4	3	
	HI	BBH	BBL	LO	MIL*
DP1 - Cbt	2.35	2.55	2.8	3.15	2.65
DP2 - Clb	6.95	6.45	5.05	5.05	5.6
DP3 - Cb	0.825	0.75	0.83	0.83	0.81
DP4 - CD10	1.245	1.425	1.515	1.74	1.47
DP5 - hdb	4	3.7	2.7	3.9	3
DP6 - wds	4	4	4	4	3
DP7 - manfac	1	1	1	0.7	0.8
DP8 - smf	1.5	1	1	1	1.1
DP9 - HDK	4	4	4	4	3.2
DP10 - Ncargo	8	8	8	4	6
DP11 - Psystype	3	2	2	2	5 2
DP13 - Nstern	1	1	2	2	2
DP12 - Nkw	2	1	1	1	2
Length on waterline	308.61	294.96	241.71	251.39	258.69
Beam	44.4	45.73	47.86	49.78	46.19
Draft	18.9	17.93	17.09	15.8	17.43
D10	23.52	25.55	25.9	27.5	25.62
Ср	0.829	0.754	0.834	0.834	0.814
Cx	0.995	0.995	0.995	0.995	0.995
Np	1	1	1	1	2
Lightweight	78801.45	45788.79	26747.52	27982.1	32761.74
Full load displacement (LWL)	219122.45	186109.8	167068.52	168303.09	173082.73
Vertical CG at full load	13.076	14.211	14.125	15.415	14.028
W1	68837.05	37840.52	20040.61	21363.13	25979.01
W2	1164.61	1161.76	1161.76	1161.76	1178
W3	215.02	160.15	157.48	157.48	242.07
W4	5.61	5.61	5.61	8.01	7.01
W5	2747.22	2691.79	2548.09	2473.74	2445.24
W6	1371.5	1337.14	1319.97	1234.08	1055.97
W7	137049.72	137485.59	137633.5	137664.72	137610.91
W7	137049.72	137485.59	137633.5	137664.72	137610.91
Sustained speed	15.5	15.53	15.77	15.76	15.8
Lead Ship BCC**	182	139.6	120.1	111.9	153.6
TOC	290.2	238.1	213.8	197.2	252.6
Manning	28	26	25	20	25

Table 3.2.2.1 Optimization Ship Results

0.0063

0.0042

Several ships have unique characteristics which would be addressed in their feasibility studies. The low Cp in the BBH ORT created problems for cargo volume and machinery space. The fine hull caused the ship to be unable to accommodate the required cargo capacity of 140K DWT and made it difficult to fit the engine into the

^{*} Represents data based on the ARCO Marine, Inc. Millenium Class Tanker

^{**} BCC represents the Total Lead Ship Construction Cost

machinery space. The HI ORT had a very large W1 cost which exceeds the valid range of the weight parametric. The LO ORT has a low number of cargo divisions which increases the risk associated with mean oil outflow.

3.3 Baseline Concept Design

Our concept design is the lowest cost non-dominated ship. The characteristics of the ship are shown in Table 3.2.2.1 under LO. Its principal characteristics are shown in Table 3.3.1. This design has several unique characteristics. First the manning factor is significantly less then the other ships. The LO ship has 20 crewmembers as opposed 25 to 28 crewmembers on the other ships. This results in a minimum number crew of specialists to monitor the highly automated ship. The next distinctive characteristic is the number of cargo holds. The LO ship has four subdivisions versus eight on the other ships. This causes an increase in risk as compared to the other ships, but a large reduction in weight and cost. Chapter 4 describes the feasibility study performed for this design.

Table 3.3.1 Principal Characteristics

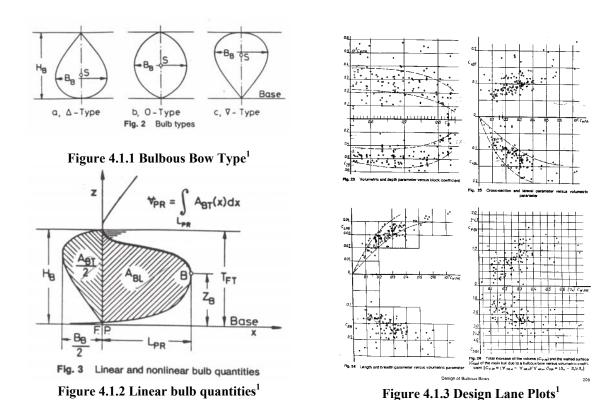
Characteristic	Baseline Value
Length on Waterline	251.39 m
Beam	49.78 m
Draft	15.8 m
Depth	27.5 m
Ср	0.834
Cx	0.995
Number of Engines	1
Light ship weight	27982.1 DWT
Full Load Displacement	168303.09 DWT
Vertical CG	15.415 m
Sustained Speed	15.76 Knots
Number of Men	20
Number of Cargo Divisions	4
Stern Type	Efficient
Height Double Bottom	3.9 m
Thickness of Double Side	4 m
Total Cost	\$197.2 M
Risk	0.1597 m^3

4.0 Feasibility Study

4.1 Hull Form, Appendages and Deck House

The hull form was created using FastShip software and the FastShip parametric tanker hull form "FastGen Tanker." The FastGen Tanker begins with the characteristics shown in Table 4.1.1. Working through the FastGen option and selecting "modify gross dimensions" modifies the tanker. FastGen modifies the hull form with parameters to the correct dimensions.

The "FastGen Tanker" hull form was designed to satisfy a ship owner interested in having a full ship with sufficient fineness of the ends to minimize bow slamming and propeller induced vibration. A prismatic coefficient of 0.86 was selected as a target based on expert opinion with tankers in heavy weather. A relatively fine cylindrical bow is chosen having a stem radius of 37% of the half beam, a fine stern with waterline endings less than 20 degrees and generous propeller clearance. This leads to an excellent parent form for the ORT LO.


In FastShip the first change is made by selecting the FastGen option "Modify Cx." Our midship coefficient was 0.995. To reach this number it was necessary to do several iterations. This was accomplished by running the parametric model to a midship coefficient of 0.996 and then coming back down to 0.995. The second change is made by selecting the FastGen option "Modify Sectional Area Curve." This option also requires several iterations. The Cp must be varied in proportion to the percentage of Parallel Mid Body (PMB). By calculating ratios of Cp to PMB, and entering these into FastShip the Cp was lowered to 0.834. At the end of this process FastShip gives a report to compare to desired values.

Parameter	Value
Ср	0.86
Cx	0.994
Cwp	0.920
FF	0.495
FB	0.462
PMB	0.444
StAx	8.686 Station
Сра	0.449
LOA	236.887 m
LWL	235.043 m
BWL	32.2 m
Tx	13.1 m
Dx	18.7 m

Table 4.1.1 "FastGen Tanker" Characteristics

The "FastGen Tanker" does not have a bulbous bow so the next procedure was to design one. The primary purpose of the bulb at this stage is for speed, fuel economy, displacement and LCB calculations. The overall dimensions and shape are determined using the paper, "Design of Bulbous Bows" by Alfred M. Kracht. In the paper, 3 bulbous bows are described: Δ -type, O-type and ∇ -type. (Figure 4.1.1). The ∇ -type is chosen for the tanker because of its favorable seakeeping characteristics. The bulbous bow size is determined by calculating A_{BT} , A_{BL} , B_{B} , and L_{PR} (Figure 4.1.2). The following formulas are used (where C is a coefficient determined from design lane plots based on the C_B (Figure 4.1.3)):

- $A_{BT}=C_{ABT}*A_{MS}$
- $A_{BL}=C_{ABL}*A_{MS}$
- \bullet B_B=C_{BB}*B_{MS}
- $L_{PR}=C_{LPR}*L_{PP}$

The paper is not specially designed for ships with low Froude numbers. When the actual parameters (Figure 4.1.2) are calculated, the bulb would have to be cubic to achieve the required volume. It is decided that 3 parameters are more important than the rest: the Profile Area (A_{BL}) , the Body Area (A_{BT}) , and the height of the center of the bulb (Z_B) . The actual dimensions are shown in Figure 4.1.4¹. The forming of the bow is accomplished in FastShip by pulling the net out and measuring the areas. This is a visual iterative process until the desired shape and required area are accomplished.

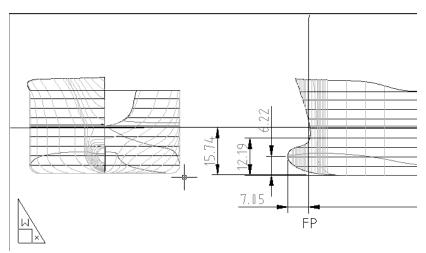


Figure 4.1.4 Bulb Dimensions

The bulwark is formed in the same way as the bulbous bow. Extra net was added to the shear line, and the forecastle was pulled up to the desired shape and height (4m) in the profile view. In the body view the forecastle was pulled out to give some flare (Figure 4.1.5).

¹ Kracht, Alfred M. "Design of Bulbous Bows." <u>SNAME Transactions.</u> 86 (1979): 197-217.

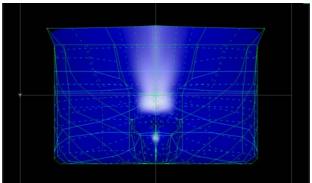


Figure 4.1.5 Bulwark

The deck is formed in FastShip by creating a plate at the deck edge. Net points are then added at the bow and stern to allow for the curvature. The net is then pulled to match the hull form (Figure 4.1.6).

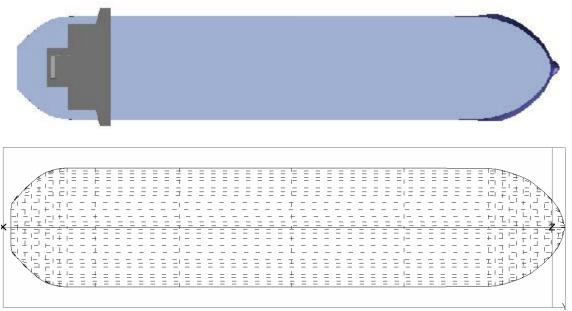


Figure 4.1.6 Deck and Deck Net

The deckhouse is created in AutoCAD R14 by extruding the general features. The dimensions (Figure 4.1.7) were based on the MathCad Model (Appendix 2). These are checked against existing models and it was found that the inert gas room's width needed to be decreased and its length increased to allow for the smokestack. The initial design of the deckhouse is shown in Figure 4.1.8.

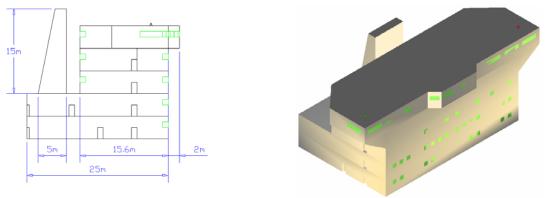


Figure 4.1.7 Dimensions of the Deckhouse

Figure 4.1.8 Deckhouse

The final hull, deck and deckhouse designs are rendered in Figure 4.1.9 and in Drawings D.600-01. The molded offsets are in Appendix A.3.

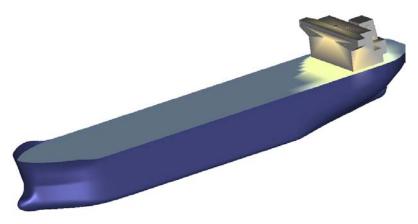


Figure 4.1.9 Final design

Figure 4.1.10 shows the "FastGen Tanker" from which the ORT LO is derived. A comparison of the final details of the tanker with the FastGen Tanker and the MathCad Model specifications is shown in Table 4.1.2. FastShip was used to export the ORT LO hull form into HecSalv and AutoCAD where arrangements, intact and damage stability are done.

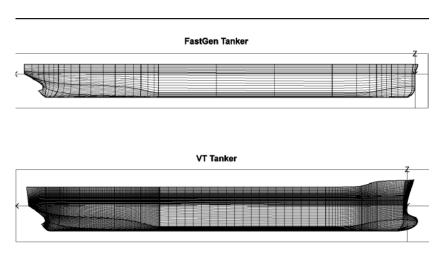


Figure 4.1.10 Comparison of "FastGen Tanker" with ORTLO Tanker

Specification FastGen Tanker Math Model Tanker **ORTLO Tanker** 0.834 0.841 0.834 Cp Cx0.994 0.995 0.995 236.887 m 251.39 m 251.39 m LBP **BWL** 32.2 m 49.78 m 49.78 m 13.1 m 15.8 m 15.8 m Tx Dx 18.7 m 27.5 m 27.5 m 7.36 5.05 L/B 5.05 B/Dx 1.72 1.81 1.81 12.6 9.15 9.15 L/D

Table 4.1.2 Specification Comparisons

4.2 Structural Design and Analysis

Tasks

This structural analysis uses a parent, IMO, CFR and ABA 2000 compliant Double Hull (DH) tanker as a reference. Phase A, one of the two phases of ABS SafeHull, is used for the structural analysis of this design. This phase applies a rule-based assessment to evaluate a proposed structural design. Phase B is a more intensive analysis not necessary for this concept. The result of the assessment undergoes a modification until the weight, producibility, maintenance and the cost requirements are satisfied. The following sections describe the analysis in more detail.

4.2.1 Objectives

The goals of the structural analysis process are to develop a geometric model of the midship cross-section, develop a geometric model of the crude oil bulk cargo tank, develop a geometric model of the J-ballast tank, adjust the materials and scantlings of the structural members, and to document the structural analysis process.

To attain the above stated objectives throughout the structural analysis process, various software packages are used in an iterative manner to facilitate the design analysis. Table 4.2.1.1 provides a list of each software package and the analysis in which it is utilized.

Table 1.2.1.1 Steps and Tools esea				
Tools	Input	Output		
FastShip	Requirements	Basic Geometry		
HecSalv	Requirements	Basic Divisions		

Table 4.2.1.1 Steps and Tools Used

Hull Form	FastShip	Requirements	Basic Geometry
Cargo Block	HecSalv	Requirements	Basic Divisions
Structure	SafeHull	Scantlings	Threshold Values
Adjustment	Eng. Judgement	Limits	Scantlings/Materials
Drawings/Document	AutoCAD/Word	Scantling/Material	Structural Design

4.2.2 Procedures

The longitudinal model of the structure at amidships is analyzed using ABS SafeHull. A sample of the required SafeHull input parameters are presented in Figure 4.2.2.1. Parameters such as beam, draft, depth, speed, length, cargo density, volumes, and block coefficient are obtained from the Baseline Design model (Appendix A.1.1.)

The value of the bilge radius at amidships (2.9 m) is obtained by transferring the lines drawings from the tank form analysis and dimensioning them using AutoCAD.

The length of the cargo block is acquired from the HecSalv analysis (44.2 m).

Phase A of ABS SafeHull is used to modify the longitudinal and transverse geometry of the amidships cross-section, and the material properties of its members.

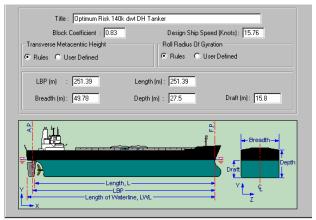
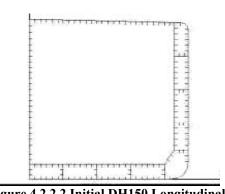
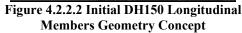




Figure 4.2.2.1 Samples of ABS SafeHull Required Input

The IMO reference DH150 (150K DWT) is used as a parent model. Figure 4.2.2.2 represents the initial geometric concept of that model. It is modified to suit the specifications of the Baseline Design model (Appendix A.1.1). The changes include scantlings, camber (0.5 m level), bilge radius (2.9 m), gunwale radius (1 m), spacing of the transverse bulkheads (44.2 m), web and transverse floor spacing (3.4 m), double bottom height, and the materials of the structural members. The HT32 (3200 kgf/cm² yield) and HT36 (3600 kgf/cm² yield) steels are used within 10% of the hull depth from the bottom and the upper deck. The MILD (2400 kgf/cm² yield) steel is used in the remaining structure. Figure 4.2.2.3 represents the material zones.

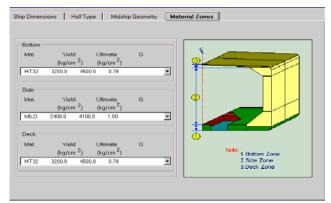


Figure 4.2.2.3 Material zones.

4.2.2.1 Longitudinal Scantlings

Plate properties and the longitudinal stiffener spacing are also modified from the DH150 model. The thickness of the bottom watertight girder is 23 mm. Excessive thickness is avoided by using HT36, higher strength steel. All girders and stringers have three stiffeners, as seen in the Midship Drawing D.2. Center stiffener is discontinuous to allow openings to be over 1 m, with the adjoining stiffeners within 0.15 m from the edges. The proper size of these openings is considered an important factor for easier access and ventilation. The first three non-watertight girders are evenly spaced and numbered from centerline outboard, with Girder I positioned at 4.5 m. The space between two most outboard non-watertight girders is increased to 5.25 m to accommodate an even stiffener spacing and hopper arrangement. The thickness of the girders varies from 12 to 15 mm, depending on the location. Exact characteristics of each girder can be found in Appendix A.4 and Drawing D.2.

The remaining sections are modified to compromise between the acceptable plate thickness and the material. Five segments are provided for the side shells and the centerline bulkhead to allow for the variation in the material and the thickness. The upper deck is divided into three flat segments to allow for the cap plate and the producibility of the deck camber. A detailed report of plate characteristics is provided in the longitudinal section of Appendix A.4.

The spacing of the deck stiffeners is 0.850 m; the remaining stiffener spacing is 0.750 m except as noted on the attached Drawing D.2. There are no longitudinal stiffeners in the gunwale and the bilge, but the transverse stiffeners in the form of brackets are provided. The stiffeners are chosen from the DH150 Stiffener Library, which is

comprised of Large Inverted Angle (LIA), standard stiffeners and various other, user defined Level Bars and Built Stiffeners. The largest longitudinal stiffeners with a web depth of 0.400 m are used in the bottom part of the midship section. The detailed stiffener descriptions are provided in the longitudinal report section in Appendix A.4. The distance between adjacent stiffeners of the perpendicular segments, such as the intersection of the centerline bulkhead and the deck, is larger than 0.7 m (flange to flange). This not considered to be an obstacle for a producibility.

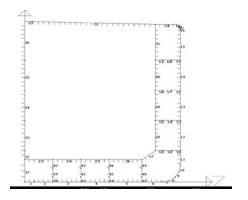


Figure 4.2.2.1.1 Modified ORT Longitudinal Members Geometry Concept

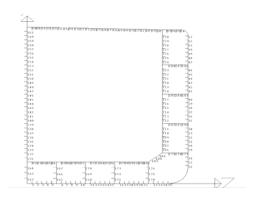


Figure 4.2.2.1.2 Adjusted ORT Longitudinal Members Geometry Concept

The maximum still water bending moments are acquired from the HecSalv intact stability analysis. The ballast hogging (320,000 tf-m) and full load (140K DWT) sagging (-470,000 tf-m) conditions are the extreme still water bending moments applied to the SafeHull analysis. Figures 4.2.2.1.3 through 4.2.2.1.6 show the bending moment plots for the Full Load, Ballast Arrival, Lightship, and TAPS Full Load (125K DWT) conditions. In addition the Lightship weight curve is provided in Figure 4.2.2.1.7. The total bending moment is given in the Longitudinal Section of the Appendix A. 4.

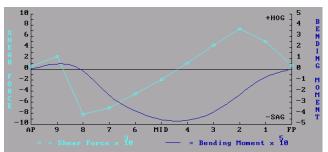


Figure 4.2.2.1.3 HECSALV Full Load (140K DWT) Bending Moment Curve

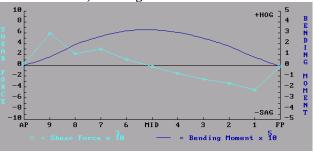


Figure 4.2.2.1.4 HECSALV Ballast Bending Moment Curve

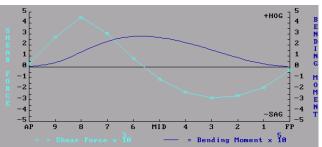


Figure 4.2.2.1.5 HECSALV Lightship Bending Moment Curve

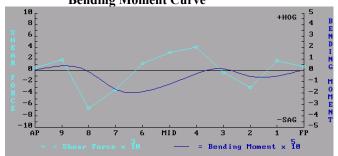


Figure 4.2.2.1.6 HECSALV TAPS (125K DWT) Bending Moment Curve

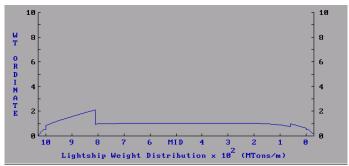


Figure 4.2.2.1.7 HECSALV Lightship Weight Curve

SafeHull estimates the longitudinal members' weights. The transverse members' structural weights and the locations of the centers of gravity are estimated based on the number and location of the transverse bulkheads. The structural weight of the superstructure and foundations is determined in the Baseline Design (Appendix A.1.1.) and the Math Model (Appendix A.2.) The final structural weight estimate exceeds slightly the Baseline Design specification, approximately 400 tonnes. Table 4.2.2.1.1 presents the structural weight breakdown.

Table 4.2.2.1.1 Structural Weight Summary

Structural Elements	Weight [tonnes]	VCG [m]	LCG [m]
Longitudinal Members	14,229	13.2	126
Transverse Members	1,254	12.65	114.65
Deck House, Stacks	474	37.5	215
Foundations	353	12.375	215
Total Group 100	21,842	13.61	129

The cargo tanks and ballast J-tanks are of same length, defined to be 42.2 m. The cargo tanks are 20.89 m wide. The ballast tanks are comprised of the space between the hulls, which is segregated by the watertight bottom girder. Figure 4.2.2.1.8 presents the cargo and ballast tank arrangements. The pressure-vacuum relief valve holds a pressure in the cargo tanks of 2 kgf/cm². A cargo density of 0.867 kg/m³, and a saltwater density of 1.025 tf/m³ are used in calculating the pressure in the cargo tanks and J-tanks. The exceptions are the J-tanks side transverses, where a density of 0.9 tf/m³ is used.

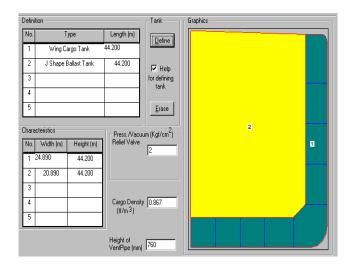


Figure 4.2.2.1.8 Transverse Tanks Arrangement

4.2.2.2 Transverse Scantlings

The cargo block length is divided into an even floor spacing of 3.4 m. This results in a total of 12 inner bottom floors per tank. The same spacing is applied to the transverse webs, deck transverse and vertical bulkhead webs. This arrangement divides each tank into 13 sections. Figure 4.2.2.2.1 shows the selected transverse web configuration with the centerline bulkhead, and without the deck girders.

The main supporting members in the DH150 stiffener library are modified. The resulting dimensions are listed in the Transverse Section of Appendix A.4 and Drawing D.2. The girders are arranged as discussed in the Longitudinal Scantlings section. The floors are 12mm HT32 with a 17mm exception between the most outboard non-watertight girders. They are also provided with a manhole for access and ventilation. Figure 4.2.2.2.4 shows the sample openings used on the DH tanker. The floors are identified by their location with respect to the aft bulkhead of the midship cargo tank. Each floor is also divided into transverse sections between longitudinal girders. The section of the floor closest to the aft bulkhead centerline is labeled (1,1). The first number represents floor number and is followed by the longitudinal non-tight girder number. Girders and floors are numbered starting from the centerline and aft bulkhead respectively.

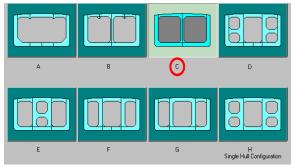


Figure 4.2.2.2.1 Side Transverse Web Configuration

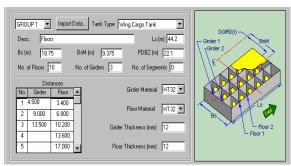


Figure 4.2.2.3 Bottom Floor/Girder Configuration

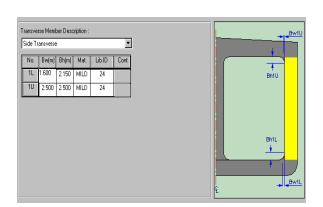


Figure 4.2.2.2.2 Transverse Main Supporting Members

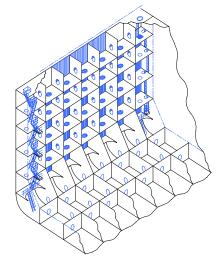


Figure 4.2.2.2.4 Sample Openings Used on the DH Tanker

Due to the length of the cargo tanks and SafeHull limitations, the optimal floor arrangement cannot be input to the model. Only ten floors are allowed to be input into the SafeHull transverse analysis. To overcome that obstacle, the following tactic is used for the purpose of this analysis. It is assumed that the highest stresses occur at the transverse bulkheads. The spacing of the floors applied in the vicinity of the transverse bulkheads are 3.4 m, while the two center floors are spaced 6.8 m from adjacent floors. The stress analysis results are satisfactory in the vicinity of the transverse bulkheads, as indicated in the Transverse Section of the Appendix A.4. The length of the tank dictates investigation of the second scenario where spacing of 3.4 m in the center and 6.8 m in the vicinity of

the transverse bulkheads are applied. Following analysis results are satisfactory. Thus, all floor spacing of 3.4 m is accepted. Expert opinion is acquired to resolve this obstacle. The sample of the bottom floor and girder configuration is presented in Figure 4.2.2.2.3.

There are four horizontal girders on the transverse bulkhead at the same height as the side stringers. The modified scantlings of these girders are shown in the stiffener table of the attached Drawing D.2 and the Transverse Section of the Appendix A.4. The scantlings of the deck transverses, vertical webs on the longitudinal bulkheads, and the side transverses are also modified. Figures 4.2.2.2.5 through 4.2.2.2.7 present samples configurations of the main transverse supporting members.

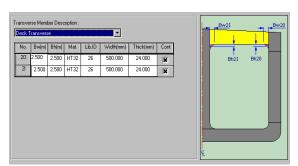


Figure 4.2.2.5 Deck Transverse Configuration

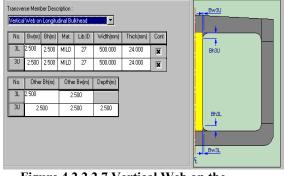


Figure 4.2.2.2.7 Vertical Web on the Longitudinal Bulkhead

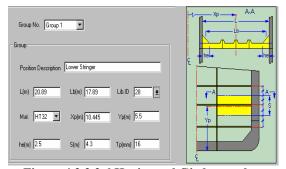


Figure 4.2.2.2.6 Horizontal Girder on the Transverse Bulkhead

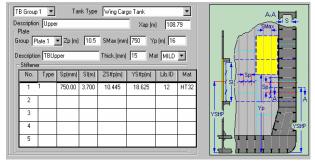


Figure 4.2.2.2.8 Transverse Bulkhead Plate/Stiffener Configuration

The transverse bulkheads are divided into ten segments to allow for thickness and material variations. Those segments include five vertical divisions of the cargo tank bulkheads and five vertical divisions of the J-tank bulkheads. The stiffener spacing on those bulkheads varies from 0.700 m to 0.850 m. A sample of the stiffener and plating configuration is provided in Figure 4.2.2.2.8. The transverse members and their parameters are listed in the transverse member summary report of the Appendix A.4.

4.2.3 Scantling Adjustment

The minimum thickness values and stiffener sizes are achieved through the process of iteration. Each structural member of the SafeHull model is chosen based on a required ABS value, which is considered to be the lowest permissible. Goal values are set equal to those considered to be permissible. Higher values are chosen when influenced by the geometry and producibility requirements. This is estimated based on the combination of expert opinion and engineering principles. Effectively, the stiffeners are spaced accordingly for producibility and easier maintenance. Appendix A.4 lists the corresponding goal and threshold values. These values incorporate structural margin factors required by ABS standards. Figures 4.2.3.1 through 4.2.3.3 illustrate the use of the SafeHull post-processing function for the adjustment of plate and stiffener scantlings.

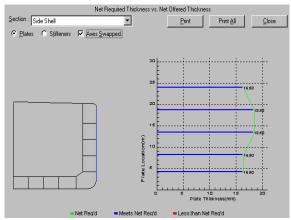


Figure 4.2.3.1 Adjustment of Plates Using SafeHull Post-Processing Function

SafeHull weight estimates of the longitudinal elements are used for the design optimization and the total weight group 100 (structure) calculation. The detailed structural weight report can be found in the Appendix A.4.

The repetitive nature of the structure allows for a more producible module. Low tensile material is utilized wherever possible. The only exception is the watertight bottom girder, where HT36 was used to prevent excessive plate thickness. The scantlings are adjusted according to the final HecSalv analysis, which included the optimized cargo tank length and still water bending moments.

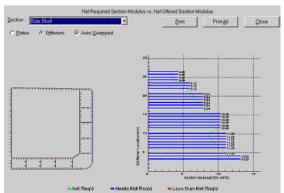


Figure 4.2.3.2 Optimization of Stiffeners Using SafeHull Post-Processing Function

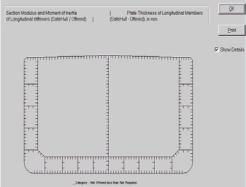


Figure 4.2.3.3 Global SafeHull Post-Processing Function

4.3 Power and Propulsion

4.3.1 NavCad Analysis

To assess the feasibility of the ORT LO, NavCad is used to select the optimum propeller design by analyzing resistance data and engine characteristics. The baseline design specifications for the hull form and engine are given by the math model during the optimization process. The design objective is to find the propeller type with the minimum fuel consumption rate at endurance speed (15 knots). The optimum propeller is then selected to perform a complete system analysis for the single-screw vessel. The system analysis outputs resistance, power, and propeller data for a range of speeds from 8 to 16 knots. Additional ship loading scenarios are entered into NavCad to examine the resistance, power, and fuel consumption rates of the vessel.

Within NavCad, the hull form is defined by a series of ship parameters listed in Table 4.3.1.1. Options for specifying stern and bow shape include U-shape, Normal, or V-shape. The ship stern shape is considered to be normal, and the bow has a U-shape. Saltwater properties and the speed range are detailed in the vessel condition section of NavCad. Metric units are specified for the analysis. The rudder has a total area of 200 m², corresponding to 5.03 percent (% of LWL*T). This rudder size is included in the appendage section of NavCad. The oversized rudder allows for increased maneuverability. Environmental data contributing to ship resistance and power are not included in the design case. To develop predictions for the ship resistance, the friction coefficient (Cf) is found using the ITTC equation, and Holtrop method specifies a correlation allowance of 0.00014 and a 3-D form factor of

1.4381. The Holtrop 1984 method is used to calculate the bare-hull resistance of the vessel. The resistance due to the rudder and a design margin, correlating to ten-percent feasibility, are added into the total resistance calculations. Table 4.3.1.2 shows a summary of the resistance calculations for the design case. For comprehensive resistance data, see Appendix A.5.1.1.

Table 4.3.1.1 NavCad Hull Form Parameters

Parameters	Design	Wave	Ballast	TAPS	Full
Length between PP (m)	251.54	251.54	251.54	251.54	251.54
WL bow pt aft FP (m)	0	0	0	0	0
Length on WL (m)	251.54	251.54	251.54	251.54	251.54
Max beam on WL (m)	49.78	49.78	49.78	49.78	49.78
Draft at mid WL (m)	15.80	15.80	10.46	14.45	16.02
Displacement bare (tons)	169055	169055	108260	153912	172227
Max area coefficient	0.995	0.995	0.995	0.995	0.995
Waterplane coefficient	0.913	0.913	0.872	0.905	0.915
Wetted surface area (m ²)	17937.4	17937.4	14717.0	16967.0	17842.0
Trim by stern (m)	0	0	0	0	0
LCB aft of FP (m)	133.57	133.57	114.85	117.23	118.11
Bulb ext fwd FP (m)	7.05	7.05	7.05	7.05	7.05
Bulb area at FP (m ²)	88	88	88	88	88
Bulb ctr above BL (m)	6.22	6.22	6.22	6.22	6.22
Transom area (m ²)	0	0	0	0	0
Half entrance angle (deg)	40	40	40	40	40

Table 4.3.1.2 Resistance Summary for the Design Case

Velocity (kts)	Rbare (kN)	Rapp (kN)	Rother (kN)	Rtotal (kN)	PEtotal (kW)
8.00	371.45	3.54	37.50	412.49	1697.6
10.00	565.58	5.39	57.08	628.07	3231.1
12.00	799.94	7.61	80.75	888.30	5483.8
14.00	1085.58	10.18	109.58	1205.33	8681.1
15.00	1256.85	11.60	126.84	1395.28	10766.9
15.78	1409.31	12.76	142.21	1564.27	12698.7
16.00	1455.95	13.10	146.91	1615.95	13301.1

Rbare = bare hull resistance Rapp = appendage resistance Rother = design margin Rtotal = Total resistance PEtotal = Total effective power

A Man B&W low-speed diesel engine, selected in the concept exploration, powers the ship. The low-speed diesel is a two-stroke, crosshead engine with eight inline cylinders. The stroke-to-bore ratio is 3.82:1. The engine is well suited for operation on low-quality fuels and intended to drive the ship propeller directly without any speed-changing device. Due to the direct drive system, the engine is restricted to an rpm range for which efficient propellers can be designed. The rated power of the engine is 22,480 kW at a rated speed of 91 rpm. The PTO is used to supply electrical power for ship services while the vessel is underway. Therefore, the available rated power of the engine is decreased by 1,000 kW to 21,480 kW to account for this power takeoff from the engine. The modified rated power and the rated rpm are incorporated into the NavCad engine description. Speed-power and speed-fuel consumption curves are generated from the speed-power-efficiency surface for the engine. The curves shown in Figure 4.3.1.1 are maximum efficiency curves. These curves are the simplified input required by NavCad to determine the engine characteristics.

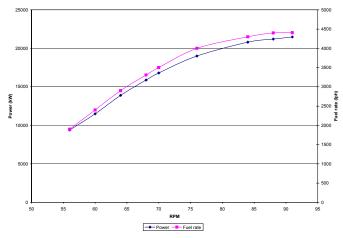


Figure 4.3.1.1 Performance Envelope

Three propeller types are analyzed and compared to find the minimum fuel consumption rate of the engine at endurance speed. The propeller options include a 4-blade fixed pitch propeller (FPP), a 5-blade FPP, and a 4-blade controllable pitch propeller (CPP). In NavCad, the options are defined as separate propeller files varying only in the number of blades and pitch type (FPP or CPP). Table 4.3.1.3 lists the data entered for each propeller type. The expanded area ratio (EAR) is a generic value initially but is optimized with pitch in the analysis. The Kt and Kq multipliers are estimations for commercial vessels. A cavitation breakdown is not applied to any of the propeller options. The maximum propeller diameter is determined by examining the stern section of the ship. The propeller hub is placed where the shafting from the engine protrudes the stern. Ten percent of the distance between the hub and the hull is allotted for clearance between the propeller tip and hull, in the plane of the propeller. The distance between the hub and the hull minus the ten percent clearance is compared to the distance from the hub to the baseline of the ship. The values are 4.74 m and 4.36 m, respectively. The minimum value, 4.36 m, is chosen as the propeller radius, making the propeller diameter 8.72 m. With this propeller diameter, a clearance of 0.91 m, or 17.3 percent, is achieved between the propeller tip and the hull. In Table 4.3.1.3, the maximum propeller diameter is 8.72 m and the minimum is 0.25 m less than the maximum.

Table 4.3.1.3 Propeller Type Options

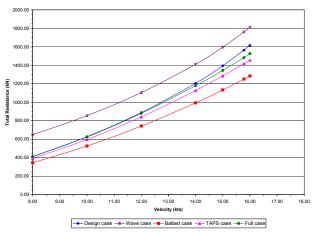
Parameters	4-blade FPP	5-blade FPP	4-blade CPP
Series	B-series	B-series	B-series
Blades	4	5	4
Exp area ratio	0.65	0.65	0.65
Min diameter	8.47 m	8.47 m	8.47 m
Max diameter	8.72 m	8.72 m	8.72 m
Pitch type	FPP	FPP	CPP
Scale correlation	B-series	B-series	B-series
Kt multiplier	0.97	0.97	0.97
Kq multiplier	1.03	1.03	1.03
Blade t/c	0.0	0.0	0.0
Roughness	0.0 mm	0.0 mm	0.0 mm
Propeller cup	0.0 mm	0.0 mm	0.0 mm

NavCad can analyze the two FPP options together, while a separate analysis is made for the CPP option. The Man B&W engine is selected, and the gear efficiency and gear ratio are specified as one. The design speed of 15 knots is entered. The Keller equation is specified to determine cavitation. Since a reduction gear is not needed and the shaft is relatively short, the shaft efficiency is 0.995. The propeller immersion from waterline to propeller tip is 7.08 m for the design case. During the optimum propeller selection, the options are analyzed for only three speeds, a low speed (8 knots), the endurance speed (15 knots), and a high speed (16 knots). The optimization process is iterative with the first run optimizing EAR and pitch and consecutive runs optimizing only pitch. The EAR value from the first run is gradually increased for subsequent runs to reduce the pressure on the propeller to acceptable limits. Unacceptable output values appear in red in NavCad.

The complete results of each propeller option are shown in Appendix A.5.1.1. Table 4.3.1.4 displays the fuel consumption rates for three ship speeds for each propeller option. The results for each option are very similar, especially between the 4-blade FPP and 4-blade CPP. At the endurance speed, the fuel consumption rates of the 4-blade CPP and 4-blade FPP differ by 0.99 liters per hour (lph). The 4-blade FPP is chosen as the optimal propeller design due to its efficiency, cost, and simplicity advantages over the other options. The optimal EAR and pitch are 0.65 and 8.04 m, respectively.

Table 4.3.1.4 Optimum Propeller Selection

Speed (knts)	Fuel Consumption Rate (lph)			
	4-blade FPP	5-blade FPP	4-blade CPP	
8.00	132.99	145.64	71.74	
15.00	3414.47	3450.03	3415.47	
16.00	4172.42	4213.47	4169.66	


Once the optimal propeller is chosen, the complete system analysis is preformed. In NavCad, the 4-blade FPP option is chosen and the optimal EAR and pitch are entered. The engine file is selected, gear efficiency and gear ratio are each one, shaft efficiency is 0.995, and the propeller immersion for the design case is entered (7.08 m). Complete resistance, power and propeller data are generated for the range of speeds shown in Table 4.3.1.2. At the endurance speed, the brake power is 16,182 kW and the fuel rate is 3,414 lph. Total ship resistance, fuel consumption, and brake power are each plotted against ship velocity in Figures 4.3.1.3-5. The system analysis for the design case is included in Appendix A.5.1.1.

Four additional ship loading cases are analyzed. All the loading cases use the optimal propeller selected in the design case, 4-blade FPP. A wave case is analyzed where Sea State 4 wave characteristics are incorporated. This seastate is the most probable in the Northern Pacific with a significant wave height of 1.88 m, sustained wind speed of 19 knots, and most probable modal wave period of 8.8 sec (Appendix A.1.2). These wave characteristics are entered into the environmental section of NavCad. All other parameters are identical to the design case. An arrival ballast case is analyzed to assess the performance of the ship during its typical voyage from Cherry Point, WA to Valdez, AK. Several hull form parameters are altered to represent the in-ballast vessel. These values are obtained from HecSalv during the intact stability analysis (Section 4.9.2). The hull parameters entered into NavCad are shown in Table 4.3.1.1. The propeller immersion changes to 1.74 m due to the change in draft. Engine and propeller characteristics remain the same. A TAPS trade case is analyzed where the tanker is loaded to 125,000 DWT, typical for its voyage from Valdez to Cherry Point (Section 4.9.2). Hull parameters changed in NavCad are presented in Table 4.3.1.1. These hull parameters are also gathered from HecSalv. The propeller immersion for this case is 5.73 m, but all other NavCad inputs are identical to the design case. The final case analyzed is a Full load case, where the ship is loaded to its full capacity, 140,000 DWT. The hull form parameters from HecSalv, inputted into NavCad, are shown in Table 4.3.1.1. Propeller immersion is 7.30 m. Other inputs remain the same.

The available brake power for sustained speed, BHP_{max}, is 90% of the maximum continuous rating (MCR). The MCR of the engine corresponds to the available rated power, 21,480 kW. Therefore, BHP_{max} equals 19,332 kW. For all load cases, the maximum sustained speed corresponding to BHP_{max} must be greater than the endurance speed, 15 knots. All cases satisfy this criterion. Table 4.3.1.5 shows the sustained speeds at BHP_{max} for all load cases as well as fuel rates at these sustained speeds and at the endurance speed. The math model estimated a sustained speed of 15.78 knots for the design case, but the NavCad analysis showed an actual sustained speed of 15.81 knots. Figures 4.3.1.3-5 show the total ship resistance, fuel consumption, and brake power versus ship speed for all cases. Figure 4.3.1.5, the brake power curve, shows the value of BHP_{max}. The wave case has the largest total resistance, fuel consumption, and brake power values compared to the other cases. The resistance and system analyses for the wave case are incorporated into Appendix A.5.1.2. The ballast, TAPS trade, and Full load cases produce acceptable results in all areas of resistance, power, and propeller loads. The results do not exceed the design case, as illustrated in the figures. The system analyses for these cases are shown in Appendices A.5.1.3-5.

Table 4.3.1.5 Summary of Results for Load Cases

Case	Sustained speed at BHP _{max} (knots)	Fuel rate at sustained speed (lph)	Fuel rate at endurance speed (lph)
Design	15.81	4018.34	3414.47
Design Wave	15.08	4024.54	3964.21
Full Load	16.15	4030.74	3279.43
TAPS load	16.44	4046.2	3117.95
Ballast	17.25	4112.8	2697.71

4500.00

4500.00

4500.00

4500.00

4500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

1500.00

150

Figure 4.3.1.3 Total Resistance vs. Ship Speed

Figure 4.3.1.4 Fuel Consumption vs. Ship Speed

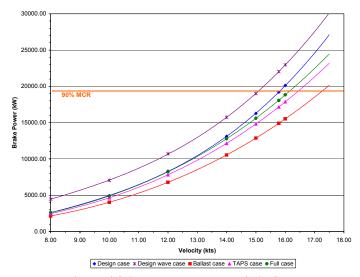


Figure 4.3.1.5 Brake Power vs. Ship Speed

4.3.2 Endurance Electrical Power Analysis

The electrical load required to service the ship over a 24-hour period is needed to determine the electrical endurance fuel weight and volume. The ship service maximum functional load (SSMFL) includes electrical loads for propulsion, steering, lighting, interior communications, firemain, fresh water/fluid systems, general outfit/furnishing, deckhouse heating, and deckhouse ventilation. For the average 24-hour load calculation, 100% of the propulsion and steering loads are incorporated, while 75% of the remaining loads are included. Propulsion and steering are constantly functioning during a 24-hour period, whereas the other loads vary depending on the crew usage. A 24-hour margin factor of 1.2 is included in the calculations. Table 4.3.2.1 shows a summary of the loads that are incorporated into the calculation. The average 24-hour electrical load is 878 kW.

Appendix A.5.2 shows the average 24-hour electrical load calculations performed in MathCad. Section 4.4 contains a complete power analysis summary and a list of electrical equipment.

Table 4.3.2.1 Endurance Electrical Load

Quantity	Input	Output
100% Propulsion Electrical Load (kW)	97.37	
100% Steering Electrical Load (kW)	132.57	
75% Remaining Ship Service Loads (kW)	501.49	
24-hour Margin Factor	1.20	
Average 24-hour Electrical Load (kW)		877.72

4.3.3 Endurance Fuel Calculation

An endurance fuel calculation is performed to find the quantity of fuel oil required completing a 10,000-mile route at endurance speed. The endurance range, 10,000 miles, is specified as the mileage to Hong Kong, China where repairs and dry-docking occur every five years. Assuming no interruptions during the trip, a 10,000 mile voyage at 15 knots takes 27.78 days to complete. The tanker, therefore, is required to travel a maximum of 27.78 days without refueling. Thus, this trip length is used to size the fuel oil tanks. Once the volume of fuel oil for this trip is known, the minimum required volume of the fuel oil tanks is determined. The fuel weight density used in these calculations is 42.3 ft³/lton.

The endurance fuel calculation is designed to output the required engine fuel weight and volume. The NavCad system analysis for the design case provides the inputs for the calculations such as brake horsepower, shaft horsepower, and the ballast case fuel consumption rate at the endurance speed of the tanker. The total fuel weight and volume are acquired by combining propulsion and electrical fuel requirements. Propulsion endurance specific fuel consumption (SFC) is a measure of fuel rate per brake horsepower per fuel weight density. The propulsion endurance fuel weight is a product of the length of the trip, 27.78 days, the propulsion power at endurance speed, and an average fuel rate allowing for plant deterioration. Electric power SFC is assumed equivalent to the propulsion endurance SFC, since the PTO generator supplies the electric power. The electrical endurance fuel weight is a product of the trip length, average 24-hour electrical load, and average fuel rate allowing for plant deterioration. The average 24-hour electrical load is acquired from the Electrical Load calculations in Section 4.3.2. To find the required volumes of propulsion and electrical fuel weights, allowances for liquid expansion and tank internal structure are included, 1.02 and 1.05, respectively. Table 4.3.3.1 shows a summary of the endurance fuel calculation. The details of the calculations are displayed in Appendix A.5.2.

Table 4.3.3.1 Endurance Fuel Calculation*

Quantity	Input	Output
Rated Power (kW)	22480	
Brake Horsepower (kW)	16182	
Shaft Horsepower** (kW)	16263	
Fuel Rate (lph)	3414.5	
Average 24-hour Electrical Load (kW)	877.72	
Propulsion Fuel Weight (Iton)		1709.00
Propulsion Fuel Volume (m ³)		2193.00
Electrical Fuel Weight (Iton)		93.61
Electrical Fuel Volume (m ³)		120.09
Total Fuel Weight (Iton)		1803.00
Total Fuel Volume (m ³)		2313.00

4.4 Mechanical and Electrical Systems

The mechanical and electrical systems within the vessel are determined according to specifications set forth by the optimizer during concept exploration, the MathCad model (Appendix A.2), and expert opinion. A list of the pertinent mechanical and electrical systems for this tanker, containing capacities, dimensions, and weights, is shown in Appendix A.6. The main mechanical and electrical components of the ship and the methods used to size these components are described in the following sections. The arrangement of these systems within the ship is detailed in Section 4.7.4.

4.4.1 Mechanical Systems

Several mechanical systems are categorized under propulsion or auxiliary. Auxiliary contains all the cargo-related systems as well as deck machinery, and other miscellaneous equipment. Under propulsion, the main engine is an eight cylinder Man B&W low-speed diesel as described in Section 4.3.1. The capacity of the engine is 22480 kW at rated rpm of 91. The propulsion system schematic is shown in Figure 4.4.1.1 and in Drawing D.200-01. The ship has a bow thruster, a lateral or tunnel type thruster designed to improve the ship's maneuverability at low or zero ship speed. A bow thruster typically produces 25 lb of thrust per horsepower. The capacity of the bow thruster is 2,237 kW, calculated in the MathCad model. Therefore, the bow thruster is capable of producing approximately 75,000 lbs of thrust. The thrust produced is both variable and reversible, accomplished by using a constant-speed electric motor to drive a controllable pitch propeller. The tunnel is located as far forward as possible to obtain the maximum turning moment from the thrust developed. The tunnel is positioned vertically on the bow section to allow at least one-half the tunnel diameter between the top of the tunnel and waterline and at least one-quarter the tunnel diameter between the bottom of the tunnel and keel.

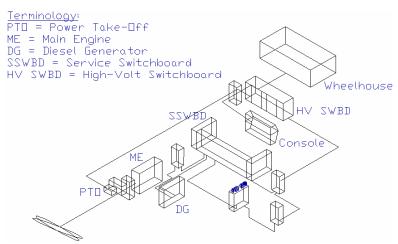


Figure 4.4.1.1 Propulsion System Schematic

Fuel oil, diesel oil, and lubrication oil purifiers are sized based on fuel consumption. The fuel oil and lube oil purifiers service the main engine. Two of each purifier are provided for continuous operation and are connected in parallel. There are two diesel oil purifiers that filter fuel required by the diesel generators. Once started, the purifiers are fully automatic in their operation and are programmed to shut down and alarm when malfunctions occur. Two fuel oil heaters are required to heat the fuel before combustion. The fuel oil heaters contain duplex strainers to filter out contaminants before the fuel is heated. The final outlet temperature of the fuel oil is controlled by a viscometer.

Two auxiliary boilers and two heat-recovery boilers are included in the ship to supply steam for services such as hotel services, cargo or bunker oil heating, and evaporators. The second heat-recovery boiler is installed for redundancy. The exhaust gases from the main engine contain significant available latent heat. The heat-recovery boilers are designed to collect heat from the exhaust gases escaping through the stack. The auxiliary boilers provide the remainder of steam needed on the ship. These auxiliary boilers can provide steam when the main engine is shut down. The ship has three fire pumps that take suction from the sea chests and deliver seawater to the fire mains and hoses. The pumps have capacity and pressure ratings based on the number of hoses and the pressure required at the farthest hose. Two pumps are located on Flat 4 in the machinery room and one pump is installed on Flat 1 to ensure that sufficient backup capacity is available during an emergency.

Desalination plants, known as distillers, are used to produce high-purity fresh water from seawater. The fresh water is needed to supply high-purity makeup water for boilers and potable water for drinking, cooking, dishwashing, hospital, and laundering purposes. A thermal process is used to physically separate fresh water from the dissolved solids in seawater. The fresh water is transformed into a vapor and extracted from the seawater. The vapor is subsequently condensed. The SW/FW heat exchanger is used to cool the main engine. Two distillers and one SW/FW heat exchanger are contained onboard. Port and starboard potable water pumps transfer fresh water to the potable water tank.

Two air conditioning units and two refrigeration units are placed on Flat 1 in the machinery room. The A/C units provide a way to control the environment in the deckhouse and the control room on Flat 1 in the

machinery room. The refrigeration units control the environment in specific storage areas in the deckhouse. Low pressure (L/P) air compressors supply compressed air to locations throughout the ship for various uses, such as operating pneumatic tools, cleaning equipment, and starting the engine. Compressors of this type usually have capacities from 100 to 1250 cubic feet/min (cfm) at discharge pressures from 100 to 150 psi. The two compressors operate at a constant speed and need to be cycled on and off to keep the pressure in the air receivers within limits.

Among the auxiliary category, the characteristics of the steering gear are outlined. A rotary-vane steering gear is used to control the position of the ship rudder. The steering gear consists of a housing or stator, containing three vane cavities, and a rotor with vanes attached, which acts as a tiller. The rudder torque is produced by differential pressure that acts across the vanes. At any feasible angle of the rudder, the torque rating remains constant. The rotary-vane steering gear is more advantageous than other designs due to its simplicity, low space requirements, low weight and higher attainable rudder angles. The steering gear is capable of operating from 35 deg to 35 deg at vessel speed above 12 knots and 45 deg to 45 deg at speeds under 12 knots. The steering gear meets or exceeds all IMO standards for tankers.

The two anchor windlasses perform the crudest task on shipboard, hoisting the anchor at average speeds of 30 to 36 ft/min from various depths over 180 feet. The anchor windlasses require rugged construction due to inefficiencies of the system and awkwardness of the chain. The anchor chain is heaved in through the hawsepipe with a roller at the end. The roller reduces friction losses during the process to approximately 20%. The chain is engaged by a wildcat made of five whelps, which is comparable to a 5-tooth sprocket. This arrangement causes the moving chain to jerk which is compounded by its propensity to turn over or "slap" in the hawsepipe. The anchor windlass dimensions and scantlings are dependent upon the anchor weight and chain size. The standard mode of equipment selection for the anchor windlass is governed by ABS rules specific to the ship's classification society. These rules contain tables of required equipment such as anchors, chain cable, towlines, and hawsers. Certain ship dimensional and displacement measurements are substituted into empirical formulas. The results from these formulas correspond to entries in the tables. Mooring winches are used to secure the ship alongside a pier. A mooring winch has a high-capacity brake that can hold a load near the breaking strength of the mooring line. The brake can also be set to slip at a lower tension to avoid line breakage. Automatic mooring winches use an electric drive to automatically render and recover mooring line when the line tension is not within preset limits. There are six mooring winches positioned on the deck. They are sized according to expert opinion.

Cargo systems outlined under auxiliary in Appendix A.6 include cargo pumps, ballast pumps, crude oil washing pump, and cargo stripping pump. The pumps and their related systems are detailed in Section 4.5. Lifeboats, a hose crane, and a store crane are located on the deck of the ship. A sewage treatment plant and incinerator are included on the ship. The sizes of these systems are approximated using expert opinion.

4.4.2 Electrical Systems

To analyze the electrical loads and size the electrical systems on the vessel, the Electrical Load section of the math model in Appendix A.2 is used. The load analysis is designed to determine the power requirements of all electric power-consuming equipment under any given ship operating condition. Within the analysis, the electrical loads are divided into two groups, ship service and cargo (Section 3.1.3.4). The ship service electrical load comprises the electrical requirements of all non-cargo systems. This ship service electrical load is combined with two electrical margin factors producing the ship service maximum functional load (SSMFL). The cargo system electrical requirements are summed with 120% of the ship service electrical load, resulting in the power takeoff maximum functional load (PTOMFL). Figure 4.4.2.1 shows a flowchart of load analysis.

The PTO generator extracts power from the main engine to support ship services while the ship is underway and alongside the pier. The PTO generator also powers the cargo systems during loading and offloading. The PTO generator is placed aft of the main engine to extract its required power before the power is delivered to the shaft. The capacity of the generator is determined in the electrical load analysis. Table 4.4.2.1 shows the required PTO power calculated in the MathCad model and the available PTO power provided by the generator. The PTO generator selected is an eight MW, 1200 rpm machine operating off the PTO gearbox. The PTO is designed to produce power between 50 and 60 Hz at 6600 V. It may be clutched in at main engine speeds up to 80 rpm or declutched at any speed.

One of the diesel generators contained onboard is capable of providing the SSMFL and referred to as the ship service diesel generator. It is intended for use while the vessel is in port, while underway when the PTO generator is not available, and during some transitional periods. This generator is coupled directly to the engine that powers it. The ship service generator is capable of producing 1000 kW of power between 50 and 60 Hz at 480 V (Table 4.4.2.1). The other diesel generator is the emergency generator, a 700 kW, 1800 rpm device operating between 50 and 60 Hz at 480 V with a separate diesel engine. The capacity of this generator comprises the essential

electrical loads required in an emergency such as propulsion, steering, lighting, interior communications, firemain, fresh water systems, general furnishing, and ventilation. The emergency generator required and available electrical loads are shown in Table 4.4.2.1. Appendix A.6 contains the dimensions and weights of all three generators.

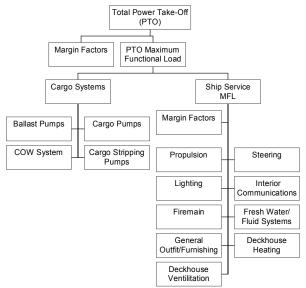


Figure 4.4.2.1 Electrical Load Analysis

The power converter unit (PCU) is required to convert DC power to AC output needed for ship services. The PCU consists of an AC/DC inverter, which receives 690 V input from the step down transformer at frequency between 50 and 60 Hz and provides a 660 V DC output. The 660 V DC from the inverter powers the DC motor, which subsequently drives a 1000 kW, 480 V AC generator. The AC generator is very similar to the diesel generators on the ship. The PCU delivers constant 60 Hz ship service power.

One high voltage (HV) switchboard is fitted in the machinery control room. The HV switchboard is designed to operate at 6.6 kV from 50 to 60 Hz. This switchboard supplies power to two segregated ballast pumps, four cargo pumps, the crude oil washing pump, a cargo stripping pump, and the bow thruster. The HV switchboard also powers the AC/DC inverter within the PCU. A low voltage (LV) switchboard is also contained in the machinery control room. It is designed to operate at 480 V, 60 Hz constant frequency. The LV switchboard can be powered from a 6.6 kV/480 V transformer, the 1000 kW PCU, or the 1000 kW ship service diesel generator. The LV switchboard provides power to a 120 V, 60 Hz service switchboard. A shore power connection of 1000 kW is provided from the LV switchboard. An emergency switchboard is connected to the LV switchboard and operates at 480 V, 60 Hz constant frequency. The emergency switchboard services a fire pump, steering gear, and the emergency generator. This switchboard also powers a 120 V 60 Hz switchboard for ship services via an emergency transformer. All switchboards are sized by expert opinion. Their dimensions are listed in Appendix A.6. A schematic of the electrical system is shown in Drawing D.300-02.

Electrical Load (kW) **Ship Service** Other PTO **Emergency** Propulsion 97.37 98.71 121.71 Steering 132.57 165.71 132.57 84.87 Lighting 84.87 106.09 **Interior Communications** 25.00 31.25 25.00 210.23 262.79 210.23 Firemain Fresh Water and Fluid Systems 13.00 16.25 13.00 General Outfit/Furnishing 7.90 7.90 9.88 Deckhouse Heating 297.06 371.33 Deckhouse Ventilation 30.60 38.25 30.60 Ballast Pumps 600.00 Cargo Pumps 5224.00 COW Pumps 520.00 Cargo Stripping Pumps 411.00 Bow Thruster 2237.00 Deckhouse Air Conditioning 191.84 898.60 7878.26 **Totals:** Electrical Margin Factor 1.00 1.00

Table 4.4.2.1 Electrical Loads

4.5 Cargo Systems

4.5.1 Cargo-Oil System

Electrical Margin Factor

Required Generator Power:

Available Generator Power:

At the loading terminal, the cargo-oil system receives the cargo and distributes it to the cargo tanks. When unloading cargo, this system discharges oil from the tanks to the terminal. Our concept design specifies that the vessel contains four cargo subdivisions. Therefore, the cargo system consists of a total of eight cargo tanks and two slop tanks, arranged symmetrically about the centerline bulkhead.

1.01

907.58

1000.00

1.01

7957.00

8000.00

602.88

700.00

The vessel is capable of transporting two different grades of cargo simultaneously. The system piping is designed to keep different grades of cargo segregated as they flow through the system. A schematic for the cargo-oil system within the tanks and the pump room is shown in Drawing D.700-01. The cargo is loaded through a four-header deck manifold, which merge into two risers and drop into two cargo mains, one port and one starboard. The cargo mains connect to the tanks through stop valves to facilitate in filling specific tanks at a time. Each main is sized according to the maximum loading rate delivered by the pier, 110,000 bbls/hr.

During the offloading procedure, two segregated bottom suction mains, port and starboard, remove the cargo from the tanks. Each suction main is sized for the full capacity of the pumps to which it is normally connected. These bottom mains are connected to tailpipes and serve alternate pairs of cargo tanks. Every tailpipe has a stop valve to allow for the selection of the tanks to be unloaded. These valves also guard against the discharge of cargo into the sea if the shell or piping is damaged. Drawing D.700-01 illustrates the suction mains serving each tank

The cargo pumps receive the cargo from the two bottom suction mains. Cross-connections with shut valves are provided between the mains in the pump room to permit any pump to take suction from any tank in case of a pump failure. Cargo pumps discharge into two discharge headers. To decrease the risk of deck spills, the discharge headers run through the cargo tanks with risers at the cargo manifold. The discharge piping size is based on the total pump head and required minimum pressure at the deck manifold for this vessel is 150 psi. A schematic of the cargo system is shown in Drawing D.700-01.

Four electric motor-driven cargo pumps deliver an average pumping rate of 50,000 bbls/hr with a delivery pressure at the ship rail of 150 psi. The unloading time of 14 hours is required to achieve a round trip voyage of 10.5 days from Cherry Point, WA to Valdez, AK and back. This unloading time is used to determine the required pump capacity. The cargo pump specifications are shown in Appendix A.6.

4.5.2 Crude Oil Washing (COW) System

The vessel is required to have a COW system by US COFR, USCG and IMO regulations (Appendix A.1). These regulations set forth the standards for the design and installation of the systems.

Cargo tanks must be washed periodically when the cargo is discharged from the tank and during inspection. This is done in an effort to keep the tank capacity to its full potential and to keep the cargo unloading process efficient. The tanks are also washed to ensure that newly loaded cargo grades are not contaminated by previously carried cargo. The washing process uses high pressure nozzles to spray cargo oil onto the inner surfaces in the tank to dislodge any accumulated residue. Steam is also periodically used to reduce wax build-up in the tanks. If this washing did not take place regularly, the residue would be very difficult to remove and dispose of. Regular washing ensures a higher percentage of cargo is delivered.

A fixed COW system is used on this vessel. It consists of rotating nozzles, which are located throughout the cargo tanks, piping, and a dedicated COW pump (Appendix A.6). There must be enough nozzles so that 90 percent of the tank inner structure can be reached by their programmed spray pattern. The COW pump allows cleaning to be independent of the cargo and ballast systems. The bottom of the cargo tank is cleaned after the cargo is pumped out of the tank and during the discharge of the remaining cargo tanks. For an effective wash of the cargo tank bottoms, the oil must be removed simultaneously as it enters the COW system using eductors. They are supplied with actuating oil by the COW pump and apply suction on the cargo tanks by way of the stripping tailpipes. The eductors discharge into the slop tanks, where the oil is then removed by a cargo pump.

The COW system suction main begins at the COW pump and branches out through the cargo block to service each tank. At the cargo tanks, the piping further divides to connect to each nozzle. This system is shown in Drawing D.700-01.

4.5.3 Cargo Stripping System

The stripping system is engaged to remove the remaining cargo from the tanks when the main cargo piping begins to intake air. Vortices form near the tailpipes which permits air to enter the suction piping. The reduced pressure in the piping can cause lighter components of the crude oil to vaporize. Air and vapor bubbles entering the cargo pumps can produce a loss of suction and speed surges, which may damage the pumps. The stripping system has a separate, relatively small, suction main and tailpipes connecting to each cargo tank. To facilitate unloading, the stripping piping is arranged to remove the residual oil and guide it to a dedicated cargo stripping pump (CSP). The CSP discharges to the cargo pump discharge headers and subsequently to the deck manifold. In addition, the stripping system is designed to pump wash water from cargo tanks to the slop tanks and discharge oily waste from the slop tanks to the deck manifolds. This system can also transport clean water from the slop tanks overboard via an oil-content monitoring system and dewater the pump room in an emergency. The CSP and system are shown in Drawing D.700-01.

Stripping of the cargo tanks involves a dedicated motor-driven positive displacement stripping pump due to its high suction-lift capabilities. The discharge of liquids from the bottom of the cargo tanks to the deck discharge manifold determines the pump head rating. The CSP specifications are shown in Appendix A.6. If the stripping pump fails, the stripping eductors are used. They are powered by the COW pump, which is specified in Appendix A.6.

4.5.4 Ballast System

Ballast tanks and piping are independent of the cargo-oil tanks and piping to eliminate any possibility of discharging oil overboard when deballasting. In addition, this segregated ballast system prevents seawater contamination of the cargo. The ballast system is shown in Drawing D.700-02. The ballast system serves five pairs of port and starboard "J" tanks in the cargo block, a forepeak ballast/trim tank, and an aftpeak ballast/trim tank. There are two ballast pumps located in the pump room, connecting to port and starboard bottom suction mains. The pump specifications are shown in Appendix A.6. The pumps are arranged to apply suction to the two sea chests near the pump room and discharge to the ballast tanks. At each tank, a tailpipe is fitted to its respective ballast main.

The introduction of harmful marine organisms to foreign environments through ballast water exchange is an increasingly important topic in coastal areas. Ballast water exchange in the open ocean is preferred to minimize the environmental risk. This vessel is fitted with a ballast water exchange system that utilizes pressure differences to guide clean water from the ship's bow to the ballast tanks. While the ship is traveling, the pressure differences are produced by the flow along the hull surface. A water inlet is provided at bow and leads the clean water into the

ballast tanks via the existing ballast mains. Each ballast tank is fitted with a sea chest at the forward end of the tank. This position of the sea chest achieves the most effective water exchange.

To achieve ballast water exchange, the tank's existing ballast water is discharged by gravity through the sea chest until the pressure differences stabilize at the ship's draft level. Clean water is lead from the bow into the tank and displaces the dirty water through the sea chest. The tank is then filled to its 98 percent intact level with clean water by the ballast pump. This ballast water exchange system eliminates the additional operation and monitoring of auxiliary machinery required by other methods.

4.5.5 Oil-Content Monitoring System

In the process of washing the cargo tanks, the accumulated oil-water mixture is transferred to the slop tanks. The mixture eventually separates due to gravity, and the water with a sufficiently low oil content is discharged overboard. The discharge is monitored to ensure that the oil content limit set by regulatory bodies is not exceeded.

The oil-content monitoring system continually analyzes fluid samples and checks the levels of oil in the fluid. The sampling piping, shown in Drawing D.700-02, connects to the monitor from the overboard discharge above the waterline. The system determines the total quantity of oil discharged overboard per nautical mile from the ship speed and the discharge flow rate. The system automatically shuts the overboard discharge valve if any set limit is exceeded.

4.5.6 Inert Gas System (IGS)

An inert gas system (IGS) is required by regulatory bodies to replace potentially explosive fumes in the cargo tanks with a much safer inert gas. This process prevents any explosions that may occur when there exists a specific concentration of air and fuel. Since static electricity is generated from the washing nozzles, an inert environment is particularly desirable during COW operations. Exhaust fumes from the propulsion system boilers, heat recovery boilers, and inert gas generator supply the inert gas. The gases must pass through a scrubber to cool and remove contaminants from them. The gas is then inert and ready to be supplied to the cargo tanks at this point. The setup of the IGS is shown in Figure 4.5.6.1.

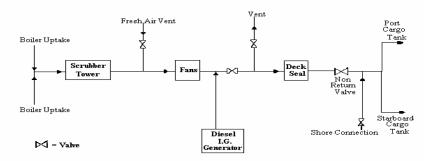


Figure 4.5.6.1 Inert Gas System Schematic

To distribute the gas, a piping and fan system is utilized to deliver the gas to the cargo tanks. Two fans are provided for a combined capacity sufficient to supply a volume of gas equivalent to 125% of the combined capacity of all cargo pumps operating simultaneously. A static pressure of 4 in. of water during the unloading of tanks must be maintained. A valve is located upstream from the fans, capable of closing automatically in case of a fan failure. A branch from the fan suction is capable of discharging into the atmosphere to free the tanks of inert gas during inspection. The distribution system main extends across the top of the cargo tanks with an independently valved branch going to each tank as shown in Drawing D.700-01.

When the IGS is not in operation, both a water seal and a check valve in the inert-gas main downstream from the fans are required to prevent cargo vapors from entering the machinery space. Each tank is vented such that dilution of the inert gas is prevented, and a pressure-vacuum relief is present, isolating the tank from the atmosphere.

4.6 Manning

The Coast Guard Officer-in-Charge, Marine Inspection (OCMI) determines the manning levels for ships by defining the minimum combination of unlicensed and licensed crew for both deck and engineering departments. There is no well-defined method for determining the appropriate manning level of a ship. However, OCMI examines a wide range of factors that can contribute to the safe operation of the ship. OCMI considers factors such as the ship owner's Manning Plan, current regulations, level of shipboard automation, route and trade characteristics, and maintenance facilities. The manning level is listed on the Certificate of Inspection (COI) for the ship. Statues concerning vessel manning are contained in US Code, Part F of subtitle II of title 46 (46 USC Sec. 8101-9308). The Coast Guard has regulations that interpret and implement these vessel manning statutes. These rules for tank vessels are codified in 46 CFR Part 15. The rules define and restrict issues such as watchkeeping, working hours, and licensed officers and crew. OPA 90 also regulates the number of hours worked by tanker officers. Specifically, a licensed individual or seaman is not permitted to work more than 15 hours in any 24-hour period, or more than 36 hours in any 72-hour period, except in an emergency or drill.

The ORT LO has a manning factor of 0.7. The manning factor reflects the level of shipboard automation on the vessel. Within the math model, the value can vary between 0.5 and 1.0, where the former corresponds to a highly automated ship and the latter reflects a less automated ship. A highly automated ship requires a minimal crew, and a less automated ship needs a standard number of personnel. Shipboard automation have taken over many routine monitoring tasks, eliminating the duties of two or three unlicensed individuals on modern diesel engine ships. Some examples of engine room automation include:

- Bridge control of propulsion machinery
- Propulsion machinery safeguard system
- Automatic temperature control of fuel oil, lube oil and cooling water
- Generator safeguard system
- Automatic start of fire pumps to maintain firemain pressure set point

The bridge incorporates controls and monitors for all essential vessel functions. Many navigation, engine control, and communications functions are automated aboard the ORT LO. These functions involve updating charts, plotting position, steering, and creating logs, reports, certificates, and letters. Examples of navigation automation include a Global Positioning System (GPS), MARISAT communications capability, and autopilot systems.

In accordance with regulations and factors considered by OCMI, the Manning Plan for the ORT LO includes 20 crew members. The optimizer selects this crew size. The manning level for this tanker is above the minimum manning level of 17 set forth by current law. Table 4.6.1 shows the distribution and classification of licensed and unlicensed crew allotted for this tanker under the ORT LO column. The table also includes the manning levels of a select few tankers as a means of comparison.

Table 4.6.1 Manning Levels

Dept	Rank	Common Today	ORT LO 140K DWT	USA Chevron 40K DWT	Idemitsu Maru 258K DWT	Danish Moller 300K DWT	Japan Pioneer Plan	Danish Reefer 17K DWT
Deck	Master	1	1	1	1	1	1	1
	Deck Officers	3	3	3	3	3		2
	Crew						7	
	Radio Officer	1	1	1	1		1	1
	Seamen	9	6	6				
	Mechanics				6	4		
Engine	Engineer Officers	4	4	3	3	3	1	2
	Technicians		2					2
	Unlicensed	6	1	1				
Steward	Cooks/Assistants	5	2	2	2	2	1	1
	Total	29	20	17	16	13	11	9

The master is considered the ship's commander, chief pilot/navigator, and manager of the ship personnel. The master plans all voyage operations, ensures safe cargo loading and discharge, monitors ballasting operations, and supervises emergency cargo operations. Additional duties include: conducting ship maneuvering while entering

and leaving port to ensure safety, monitoring the safety and health of the crew, administering personnel and training policies, and ensuring the maintenance and safe operation of deck equipment and machinery.

Three deck officers are required on the vessel, i.e. chief mate, second mate and third mate. The Chief Mate is primarily the cargo officer for the ship, responsible for safe handling, containment, and transportation of the cargo. This deck officer prepares the cargo transfer plan and plans cargo stowage, including calculation of stability and trim. In the absence of the Master, the Chief Mate is responsible for command of the vessel. Also this officer directs deck crew operations during mooring, maneuvering, and anchoring and supervises Deck Department maintenance.

The Second Mate is the primary watchstander and ship navigation officer. This officer is in charge of voyage management, maintaining and updating the chart inventory. Other duties include: ensuring the readiness and maintenance of all navigational aids and bridge equipment, assisting the Master in the wheelhouse, and assisting the Chief Mate with his duties, particularly cargo handling. The Third Mate is responsible for watchstanding and is the primary safety officer of the ship. This deck officer maintains all the lifesaving and safety equipment aboard the ship and supervises safe docking and anchoring operations. Additional duties include: preparing and conducting safety meetings, assisting the Master in the wheelhouse, assisting the Chief Mate with his duties, and supervising unlicensed deck personnel during wheelhouse and cargo watch.

There are four engineering officers on the vessel, whose titles are Chief Engineer, First Assistant Engineer, Second Assistant Engineer, and Third Assistant Engineer. The Chief Engineer is responsible for the overall management, supervision, operation, and maintenance of the Engine Department. This officer establishes voyage maintenance schedules and is responsible to the Master for the condition of engine spaces and power supplies. Additional duties include: coordinating with the Chief Mate on maintenance for cargo and deck equipment, ensuring compliance with all safety requirements, providing direction for engineering assistance during emergency operations, developing and implementing repair and maintenance of all machinery, and recording all repairs, expenditures, and fuel usage in the Engine Department. The primary role of the First Assistant Engineer is the safe and efficient implementation of Engine Department maintenance. This officer coordinates the waste oil and bilge discharge into environmentally controlled holding tanks, assists the Chief Engineer with fuel consumption and fuel calculations, supervises engine start-ups, and supervises unlicensed personnel.

The Second Assistant Engineer is responsible for the operation of boiler systems and diesel fuel/fuel oil systems. This officer assists the Chief Engineer in taking on bunker fuel while in port and transferring fuel oil while at sea. The officer also administers and supervises watchstanding. The Third Assistant Engineer is specifically responsible for the operation and maintenance of the electrical, lube oil, sanitary, and distillation systems on the vessel. This officer also stands watch in the Engine Department. Two technicians and one unlicensed individual are employed in the Engine Department to assist with machinery operation, maintenance, and repair.

The Radio Officer is responsible for maintaining communications in port and at sea. This officer maintains and repairs the electronics and navigation equipment on the ship. Six seamen are employed on the vessel, where 65 percent must be classified as able seamen. Seamen are responsible for cargo and line handling on deck, operating deck machinery, and performing mooring and anchoring duties. These seamen are also required to stand watch and assist the officers with their duties. Two cooks are required for preparing meals for the crew and maintaining the mess area.

4.7 Space and Arrangements

HecSalv and AutoCAD are used to generate graphical data to assess the space and arrangements feasibility of the ORT LO. HecSalv creates a graphical interface to manipulate the hull form, subdivisions and characteristic sections of the tanker. AutoCAD constructs 2-D and 3-D models of the deckhouse, including inboard and outboard profiles.

4.7.1 Space

Baseline space requirements and availability in the tanker are determined from the MathCad model (Appendix A.2). Parameters output by the MathCad model are as follows: the cargo block length, the machinery box height, length, width, and volume, and the volumes of the waste oil, lube oil, water, sewage and cargo (Table 4.7.1.1). Given the volumes and the hull form, the various tanks are located with HecSalv. Lightship weight, cargo and ballast locations are coordinated with weight and stability analysis to get the proper placement.

Table 4.7.1.1 Hull Required, Available, Actual Parameters from MathCad

Parameter	Required	Available	Actual
Machinery Box Height	18.337 m	27.498 m	25.185 m
Machinery Box Length	24.161 m	36.870 m	30 m
Machinery Box Width	19.3 m	49.781 m	49.78
Machinery Box Volume	$2*10^4 \text{ m}^3$	$5.02*10^4 \text{ m}^3$	$3.1443*10^4 \text{ m}$
Cargo Block Length	183.367 m	198.116 m	180.9 m
Waste Oil	63.147 m ³	N/A	77 m^3
Lube Oil	20.816 m^3	N/A	24 m^3
Sewage	30 m^3	N/A	98 m ³
Cargo	$1.6193*10^5 \mathrm{m}^3$	N/A	$1.70519 * 10^5 \text{ m}^3$

The deckhouse space and arrangements are based on three factors: MathCad model, Millennium model, and expert opinion. The deckhouse is divided into three different sections: machinery area, living quarters, and a navigation deck. The deckhouse is comprised of five decks, accommodating 23 personnel: 20 crew members and 3 additional passengers. The decks are named from the lowest deck (A) to the highest deck (E). Decks A and B are referred to as the machinery of the deckhouse. Decks C and D are the living quarters for crew members. Deck E contains the navigation deck and accommodations for the Master and Engineer of the ship. Details of each deck are discussed in Section 4.7.3.

For the exterior parameters of the deckhouse, the MathCad model outputs requirements for the breadth, length, and height of each deck for all three sections. However, the dimensions of the entire deckhouse differ slightly than the dimensions from the MathCad model. Table 4.7.1.1 illustrates these exterior differences. Table 4.7.1.2 also shows differences between the MathCad model interior deckhouse area requirements and the actual area parameters of the deckhouse model. The differences in parameters in both tables result from a situation of unique equipment space requirements. The details of the exterior dimensions and interior dimensions are discussed in Section 4.7.2 and Section 4.7.3 respectively

Table 4.7.1.2 Deckhouse Required/Actual Parameter Differences

Tuble 1.7.11.2 Decknou	se required/rectual	I al allicted Diller	CHCCS
Deckhouse Parameter	MathCad Requirement	Actual Model	Difference
Number of Decks	5	5	0
Height of Each Deck	4m	4m	0
Breadth	41.78m	38.0m	-3.78
Length of Decks A-B	19.84m	25m	+5.86
Length of Decks C-E	14.38m	15.6m	+1.22

Table 4.7.1.3 Deckhouse Area Required/Actual Differences

Deckhouse Area	MathCad Requirement (m ²)	Actual Model (m ²)	Difference
CO ₂ Room	94.02	81.88	-12.14
Machinery Shop	274.34	76.00	-198.34
LAN Area	32.51	45.32	+12.61
Bridge	156.73	457.20	+300.47
Total Area	3004.20	3678.40	+674.20
Area of Each Deck	600.84	735.68	+135.84

4.7.2 External

The tanks are all limited by the exterior extents of the hull dimensions as discussed in Section 4.1. Above the machinery space constraints lies the deckhouse. It is situated 200.4 m from the FP and extends 25 m aft in length. Its breadth allows a space of 5.89 m on both the port and starboard sides of the ship. Figures 4.7.2.1 through 4.7.2.4 are the AutoCAD drawings of the deckhouse in four different views, showing various external dimensions. The portholes are modeled in green and the doors for each deck are modeled as black rectangular blocks.

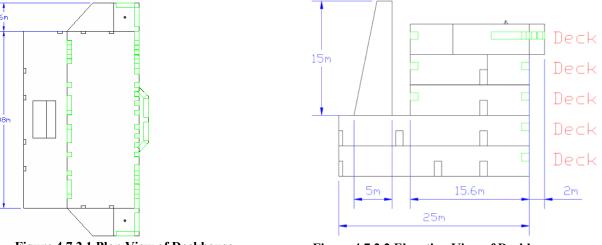


Figure 4.7.2.1 Plan View of Deckhouse

Figure 4.7.2.2 Elevation View of Deckhouse

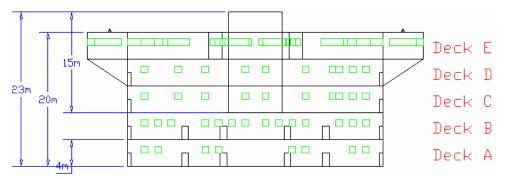


Figure 4.7.2.3 Section View of Deckhouse

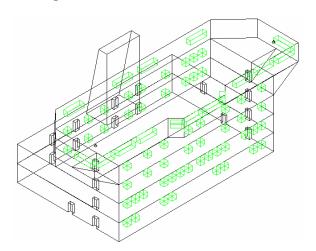


Figure 4.7.2.4 SE Isometric View of Deckhouse

The height of the deckhouse from the floor of Deck A to the top of Deck E is 20 m. This results in deck height separation of 4 m, which includes room for wiring and piping throughout each deck. Therefore, the actual height difference between each deck and overhead is 3 m. The height of the deckhouse results from the USCG visibility requirements for cargo carrying vessels. The mandatory navigation height must allow visibility of a length 500 m forward of the FP of the vessel. This requirement is included in the MathCad model to output the required height of the deckhouse. Due to the USCG requirement, the required height for visibility is 35.93 m. This is the total height of the navigation visibility above the waterline. The available navigation height of the LO ORT Tanker is 53.53 m. This height far exceeds the USCG requirements for navigation visibility 500 m forward of the FP of the ship.

Although, the total height of the decks is 20 m, the extension of the inlet/outlet casing for the machinery room is 3 m above Deck E. This results in an overall deckhouse height of 23 m. For increased outward visibility, the navigation deck is designed with two distinct features. First, it is extended 6 m in both the port and starboard direction from the breadth of the deckhouse. This allows crew members to view the sides of the ship during maneuvering. Additionally, Deck E has wider portholes to offer a panoramic outward view for the crew. On the bridge wings, the locations of the port and starboard portholes allow for viewing in these general directions.

There are exterior doors for all decks except Deck E. All exterior doors will be connected by a series of stairs and walkways. The locations of the portholes and doors correspond to their interior locations (Section 4.7.3). For the aft section of the superstructure, exterior doors allow efficient crew movement in the deckhouse machinery rooms

The general rectangular shape of the deckhouse is based largely on simplicity for producibility. This block orientation allows an easier modular production of the deckhouse. Figures 4.7.2.5 and 4.7.2.6 show rendered views of the deckhouse from AutoCAD.

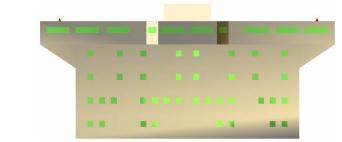


Figure 4.7.2.5 Rendered Section View of the Deckhouse

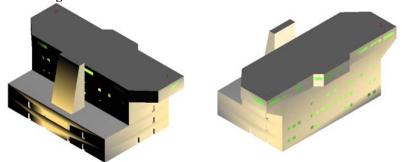


Figure 4.7.2.6 Rendered Isometric Views of the Deckhouse

4.7.3 Internal

4.7.3.1 Tank Space/Arrangements

Arrangements are done in HecSalv using the MathCad model and the parameters discussed in Table 4.7.1.1. For an initial framework, the forepeak tank is placed with its aft extent at the collision bulkhead (5% of LBP - 12.5 m). This allows for the placement of all the other tanks. Expert opinion and stability requirements are used to adjust the tank blocks fore or aft. All tanks locations and volumes are shown on Table 4.7.3.1.1 and in Figure 4.7.3.1.1.

Table 4.7.3.1.1 Tank/Room Locations and Volumes

Tank Space	Location from FP (m)	Volume (m ³)
Forepeak tank	0 - 12.5	7,024
Cargo Tank 1 P&S	12.5 - 54.2	18,211*
Ballast Tank 1 P&S	12.5 – 54.2	8,174*
Cargo Tank 2 P&S	54.2 - 98.4	21,608*
Ballast Tank 2 P&S	54.2 - 98.4	8,539*
Cargo Tank 3 P&S	98.4 - 142.6	21,608*
Ballast Tank 3 P&S	98.4 - 142.6	8,539*
Cargo Tank 4 P&S	142.6 - 186.8	21,537*
Ballast Tank 4 P&S	142.6 - 186.8	8,099*
Slop P&S	186.8 - 193.4	3,153*
Fuel P&S	193.4 - 197.4	1,752*
Waste Oil	193.4 - 197.4	77
Lube Oil	193.4 - 197.4	24
Generator Fuel	193.4 - 197.4	125
Ballast Tank 5 P&S	186.8 – 197.4	1,660*
Pump Room	197.4 - 200.4	3674
Machinery Room	200.4 – 230	31,443
Water P&S	230 – 231	120*
Sewage	230 – 231	98
Steering Gear	231 – 251	5,138
Aftpeak Tank	230 - 251	6,774

^{* -} Volumes represent one of two tanks (port and starboard)

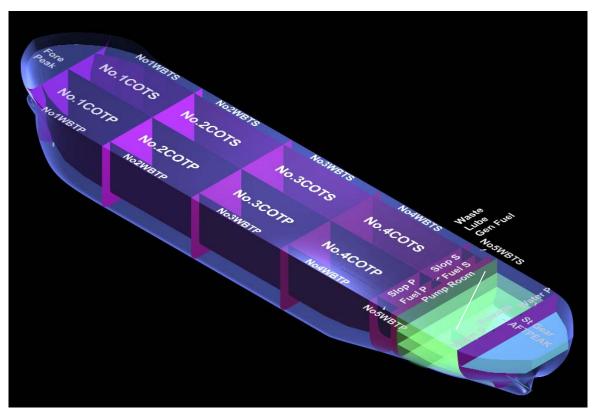


Figure 4.7.3.1.1 Tank Locations and Tank Capacity Plan (Table 4.7.3.1.2)

Table 4.7.3.1.2 Tank Capacity Plan

Tank	Capacity Volume (98%)	Tank	Capacity Volume (98%)
Forepeak	6,883 m ³	No.5WBTS	$1,627 \text{ m}^3$
No.1COTS	17,846 m ³	No.5WBTP	$1,627 \text{ m}^3$
No.1COTP	17,846 m ³	Slop P	$3,090 \text{ m}^3$
No.1WBTS	$8,010 \text{ m}^3$	Slop S	$3,090 \text{ m}^3$
No.1WBTP	$8,010 \text{ m}^3$	Fuel P	1,717 m ³
No.2COTS	21,176 m ³	Fuel S	$1,717 \text{ m}^3$
No.2COTP	21,176 m ³	Waste Oil	75.5 m^3
No.2WBTS	$8,368 \text{ m}^3$	Lube Oil	23.5 m^3
No.2WBTP	8,368 m ³	Gen. Fuel	122.5 m ³
No.3COTS	21,176 m ³	Water S	117.6 m ³
No.3COTP	21,176 m ³	Water P	117.6 m ³
No.3WBTS	8,368 m ³	Sewage	96 m ³
No.3WBTP	8,368 m ³	Aft Peak	$6,639 \text{ m}^3$
No.4COTS	21,106 m ³		
No.4COTP	21,106 m ³		
No.4WBTS	$7,939 \text{ m}^3$		
No.4WBTP	7,939 m ³		

The cargo block starts at the collision bulkhead and extends aft 180.9 m. By subtracting the slop tank length and dividing by four, the cargo block is divided into cargo sections. The cargo block is then divided down the center and the double side and double bottom width of 4 m is subtracted giving the volume of each tank. The slop tanks are added to the design to complete the cargo block. For environmental concerns, the fuel, waste oil, lube oil, and generator fuel tanks are all placed behind the slop tanks with the full double side and bottom width of 4 m. This allows the tanks to be protected from grounding and collision. This configuration also allows a convenient location near these tanks for piping, pumps, and filters. All of these tank auxiliaries can be placed on the second platform of the machinery space, close to the engine. Located behind these tanks is a 6 m pump room that extends vertically up to platform 2 (Figure 4.7.3.1.1).

Due to the fine shape of the aft end of the tanker, the placement of the engine allows extra tank space behind the machinery space. The extra tank size of 30 meters allows for placement of the aft peak tank and the steering gear. A double bottom of height 2.315 m is added to the engine room to allow for grounding protection and a location to mount the engine. The double bottom height is based on the necessary height of the engine foundation to align the shaft with the hull.

The aftpeak tank, potable water, sewage and the steering gear are placed behind the aft engine room bulkhead. Potable water and sewage are placed adjacent to the bulkhead and deck to allow for convenient access to the deckhouse. These are separated by 1.5 m on either side of the sewage tank. This allows access to the steering gear room and separates the tanks. The steering gear is located behind these tanks with the aftpeak tank under the steering gear.

4.7.3.2 Deckhouse Space/Arrangements

The deckhouse space is mainly based on scaling measurements from the Millennium deck plans. The interior dimensions are then detailed for feasibility by comparing dimensions from the requirements of the MathCad model and using expert opinion. This method of comparison is utilized for every aspect of each deck, from the size of the staterooms to the size of the doors.

AutoCAD is used to produce detail interior arrangements of the deckhouse. Each deck has exterior limits of the space from the external measurements described in Section 4.7.2. Each deck is uniquely arranged due to the role it serves for the crew. However, a number of aspects are constant. Elevator and stairs are centrally located in the deckhouse. The elevator services Decks A to D and the stairs connect Decks A-E. There are two exterior doors (port and starboard) on Decks A-D that are joined by a central walkway 1.25 m wide. The living quarters (Decks C-E) have walkways encircling all of the staterooms. In the following figures, all of the walkways are colored by a gray (grid) color. Throughout the deckhouse, various doors allow passage to all the rooms. These doors are all one meter wide. The portholes are located in the external drawings of the deckhouse (Section 4.7.2). Portholes are green and are placed in every stateroom and other various living areas. Additional details include stiffeners (blue) in

the walls for deck support. Figures 4.7.3.2.1 through 4.7.3.2.6 are the interior plans for each deck created in AutoCAD.

Deck A is the lowest deck and serves as the machinery deck. This deck is the gateway to the lower machinery space located directly beneath it. The CO_2 room, lower inert gas room, and upper machinery space are on Deck A. The casing houses the inlet/exhaust area from the engine. Fan rooms are also located in section to house the air inlet/exhaust fan equipment. A small hospital is designed on the starboard side of the deck. The change rooms allow crew members to change clothes efficiently before and after work.

Deck B is primarily the mess deck. The galleys and mess rooms dominate this deck. The incinerator and garbage rooms are located next to the galley for efficient removal of waste. On the starboard side, the conference and training rooms allow for crew meetings. Portholes are abundantly placed in the mess room and conference room for crew member hospitality. The inert gas room extends from the Deck B and more importantly, the emergency generator room houses the emergency generator for the ship. More detail of this room is contained in Section 4.7.4.

Deck C contains 14 staterooms and a lounge. In each of the staterooms are one head and one porthole. The crew stateroom is 23.1 m^2 and the area of the head is 4 m^2 . Figure 4.7.3.2.4 shows a typical crew berthing. The lounge is 64.71 m^2 . For the most part, the heads are designed next to each other for producibility. Pipes for the heads are more easily routed if they are together.

Deck D contains seven staterooms and an exercise room. A training and laundry room also reside on this deck. An office is located on this deck for one of the crew members. As in Deck C, portholes are abundant for crew hospitality.

Deck E is dominated by the navigation deck and staterooms for the Master and Chief Engineer of the ship. The Master and Chief Engineer both have a stateroom and an the Master has a personal office. The navigation deck is 457.20 m^2 and the staterooms are 56.25 m^2 . On the sides of the deck, a map room and a bridge wing are used by crew members for navigation. For increased outward visibility, most portholes are two meters in width and are in numerous locations on this deck.

Drawing D.600-03 shows all decks with the placement of various components. Table 4.7.3.2.1 shows the deck locations of equipment in the deckhouse. The numbers beside the equipment names correspond to the numbered equipment as shown in Drawing D.600-03 and Figures 4.7.3.2.1 through 4.7.3.2.6.

Table 4.7.3.2.1. Deck Equipment Locations

Deck Location	Equipment Name	Location Number
Deck B	Emergency Generator	12
Deck B	Emergency Switchboard	16
Deck B	Incinerator	55
Deck E	Bridge Control Console 1	17
Deck E	Bridge Control Console 2	18
Deck E	Bridge Control Console 3	19

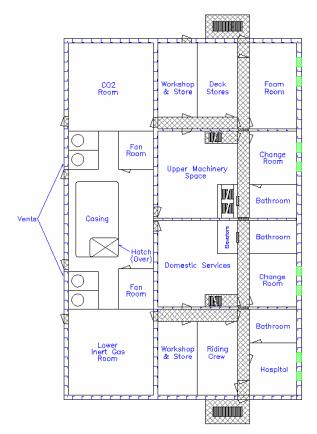


Figure 4.7.3.2.1 Deck A Interior Plan

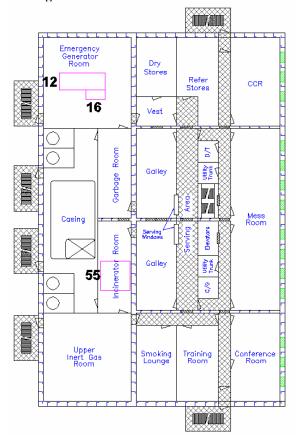


Figure 4.7.3.2.2 Deck B Interior Plan

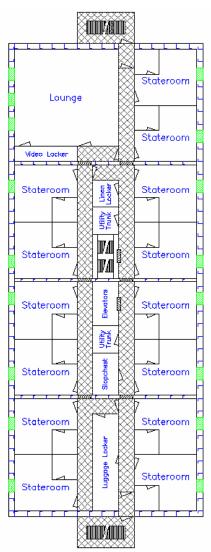


Figure 4.7.3.2.3 Deck C Interior Plan

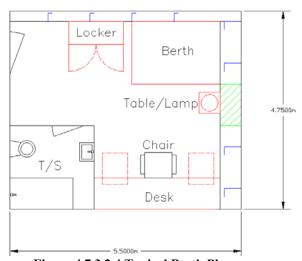
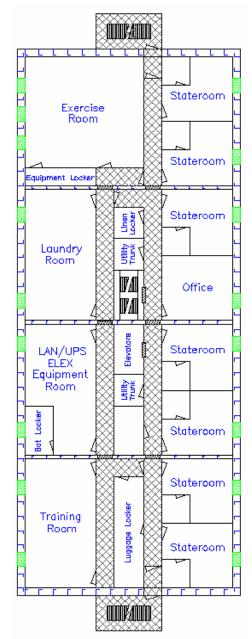



Figure 4.7.3.2.4 Typical Berth Plan

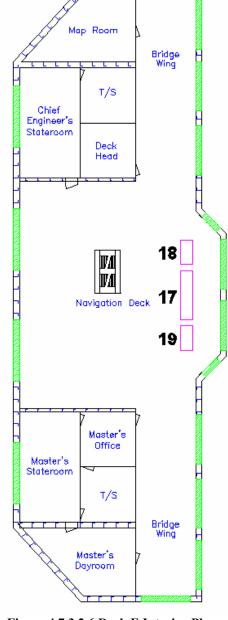


Figure 4.7.3.2.5 Deck D Interior Plan

Figure 4.7.3.2.6 Deck E Interior Plan

4.7.4 Machinery

The machinery space begins 200.4 m from the FP and ends 230 m from the FP. Table 4.7.1.1 shows the actual measurements of the machinery space. These constraints are used to arrange the equipment of the machinery space. The machinery space is divided into four Flats: Flat 4 (red), Flat 3 (green), Flat 2 (cyan), and Flat 1 (blue). Figure 4.7.4.1 shows an isometric view of the machinery space flats.

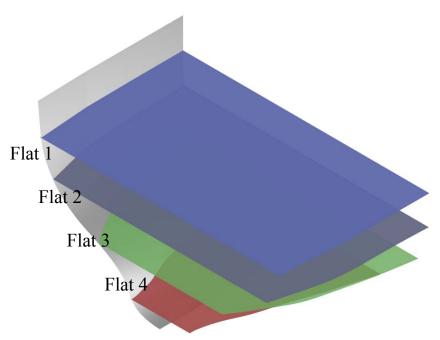


Figure 4.7.4.1 Rendered Isometric View of Machinery Space Flats

Table 4.7.4.1 is an equipment list of the machinery space and the deckhouse. This list includes the flat location, figure number, and dimensions of different components. The flat color in the location column of Table 4.7.4.1 corresponds to the colors of the flats described above. The figure numbers correspond to the equipment numbers of the plan drawings of each deck and flat from Drawing D.600-03.

There are a number of components that are not physically located in the machinery space. However, their function relates directly with equipment located in the machinery space. The bow thruster and steering gear are two such items. Other components are located directly above the machinery space in the deckhouse. Their specific locations for all components are detailed in Table 4.7.4.1.

The components, shown in the Table 4.7.4.1, are located on different flats and decks. The placements of the components are based on stability, functionality, producibility, survivability. Most equipment is arranged about the centerline, having one component situated on the port side of the ship and the second component on the starboard. Most components near bulkheads are located 0.8 m from the actual bulkhead for ease of maintenance. The main engine resides in the center of the machinery space on Flat 4. Therefore, other equipment such as pumps, boilers, distillers, etc. are located near the transverse bulkheads constraining the machinery space. Exact locations and weights of these components are located in Section 4.8. Stairs connect Flat 4 to Flat 1 on the port and starboard side of the engine. All of the flats and decks will be examined in detail to discuss placement of the components. Figures 4.7.4.2 through 4.7.4.8 show isometric views of the machinery space and the deckhouse plans above this space. Drawing D.600-03 shows plan views of each flat and the location of the equipment on the flat. Table 4.7.4.1 is also located on Drawing D.600-03 to identify the equipment with its corresponding number.

Table 4.7.4.1 Equipment Flat Location, Figure Number, and Dimensions

Location	Equipment Flat Locatio	Figure No.	
Flat 4	main engine	1	12.2x8.5x12.2
Flat 4	lube oil purifiers S	8	1.5x1x3
Flat 4	lube oil purifiers P	9	1.5x1x3
Flat 4	pto generator	10	3x1.5x1.5
Flat 4	fire pump 1	28	1x2x1
Flat 4		29	1x2x1
Flat 4	fire pump 2 distiller S	33	
Flat 4	distiller P	34	3x3x3 3x3x3
		35	
Flat 4	potable water pump S	36	1x1x1 1x1x1
Flat 4	potable water pump P		2x2x2
Flat 4	central SW/FW heat exchanger	37	
Flat 4	crude oil washing pump	42	1x1x1
Flat 4	cargo stripping pump	43	1.76x1.25x0.975
Flat 4,3	ballast pump S	31	4.87x1.69x1.00
Flat 4,3	ballast pump P	32	4.87x1.69x1.00
Flat 4,3	cargo pump S1	38	6.07x2.28x1.40
Flat 4,3	cargo pump P1	39	6.07x2.28x1.40
Flat 4,3	cargo pump S2	40	6.07x2.28x1.40
Flat 4,3	cargo pump P2	41	6.07x2.28x1.40
Flat 3	aux boiler S	24	3x3x3
Flat 3	aux boiler P	25	3x3x3
Flat 3	heat recovery boiler S	26	3x3x3
Flat 3	heat recovery boiler P	27	3x3x3
Flat 3	L/P air compressor S	46	2x2x2
Flat 3	L/P air compressor P	47	2x2x2
Flat 2	fuel oil purifiers S	4	1.5x1x1
Flat 2	fuel oil purifiers P	5	1.5x1x1
Flat 2	diesel oil purifiers S	6	1.5x1x2
Flat 2	diesel oil purifiers P	7	1.5x1x2
Flat 2	fuel oil heater S	44	1x1x1
Flat 2	fuel oil heater P	45	1x1x1
Flat 2	sewage treatment plant	54	2x2x2
Flat 1	propulsion control console	3	3x1x2
Flat 1	diesel generator(s)	11	4.67x1.7x2.06
Flat 1	pcu (s)	13	3x1x1
Flat 1	high voltage switchboard	14	3x1x2
Flat 1	low voltage switchboard	15	3x1x2
Flat 1	a/c unit 1	20	1x2x1
Flat 1	a/c unit 2	21	1x2x1
Flat 1	refer unit 1	22	1x2x1
Flat 1	refer unit 2	23	1x2x1
Flat 1	fire pump 3	30	1x2x1
Deck B	emergency generator	12	4.67x1.7x2.07
Deck B	emergency switchboard	16	2x1x2
Deck B	incinerator	55	3x3x3
Deck E	bridge control console 1	17	4x1x1
Deck E	bridge control console 2	18	2x1x1
Deck E	bridge control console 3	19	2x1x1
Aftpeak	steering gear	48	2x2x2
Forepeak	bow thruster	2	1x1x2
1 orepeak	DOW UNIDOLOI		17.174

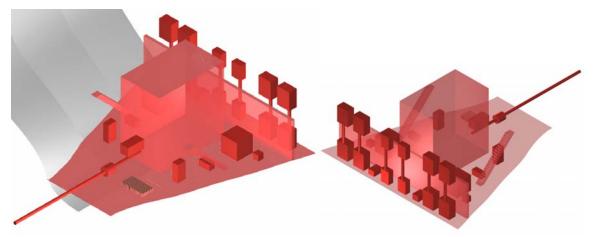


Figure 4.7.4.2 Isometric Views of Flat 4 of the Machinery Space

Flat 4 contains the engine and the pump room. The mounting of the engine is dependent on the shaft height for correct emergence from the hull. The engine resides in the middle of the flat and protrudes into Flat 3. The engine is surrounded by a 2 m maintenance space throughout the machinery space. Drawing D.600-03 shows this spacing for Flats 3 through 1.

The pump room is contained 3 m aft of the 200.4 m bulkhead. It contains the four cargo pumps, two ballast pumps, the COW pump and CSP. These pumps are located next to the 200.4 m transverse bulkhead for placement next to the cargo hold of the ship. This allows piping through the pump room rather than the machinery space. The pipes for the cargo and ballast pumps lead to their corresponding motors in Flat 3. These pipes are surrounded by a watertight seal for protection. Also, the location of these pumps in the pump room allow the isolation of cargo and piping away from all sources of ignition in Flat 4.

Various equipment are located away from pump room. The lube oil purifiers and sumps are located beside the main engine. The distillers and potable water pumps allow maximum suction efficiency from this flat. The SW/FW heat exchanger is located under a hatch in Flat 4. It works in tandem with these components to exchange seawater to freshwater to cool the main engine. Fire pumps 1 and 2 are also located in this flat. Drawing D.600-03 shows a plan view of this flat and the numbered location of the equipment as specified above and in Table 4.7.4.1.

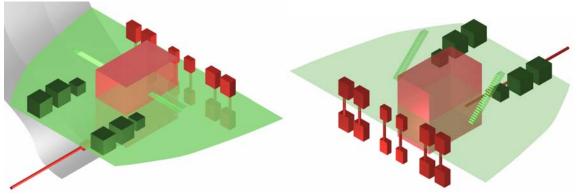


Figure 4.7.4.3 Isometric Views of Flat 3 of the Machinery Space

Flat 3 contains the auxiliary boiler, heat recovery boiler and air compressors. The boilers are located above the shaft to balance their weight with the pump motors located beside the 200.4 m transverse bulkhead. The boilers are near the water tanks, which are located aft of the 230.4 m transverse bulkhead. They are located in the exhaust uptakes of the engine. The additional heat recovery boiler is available for redundancy. The air compressors on this flat allow ease of use for engine starting and other diesel machinery needs. Drawing D.600-03 shows a plan view of this flat and the numbered location of the equipment as specified above and in Table 4.7.4.1.

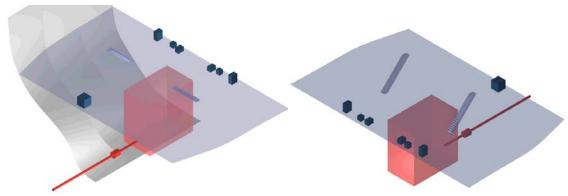


Figure 4.7.4.4 Isometric Views of Flat 2 of the Machinery Space

Flat 2 contains the fuel and diesel oil purifiers, and the fuel oil heaters beside the 200.4 m transverse bulkhead. These components are near the fuel and diesel tanks located opposite the 200.4 m bulkhead. Their placement allows minimum piping through the machinery space. The sewage treatment plant is located beside the 230 m transverse bulkhead. This allows for minimum piping to the sewage tanks beside the same bulkhead. Drawing D.600-03 shows a plan view of this flat and the numbered location of the equipment as specified above and in Table 4.7.4.1.

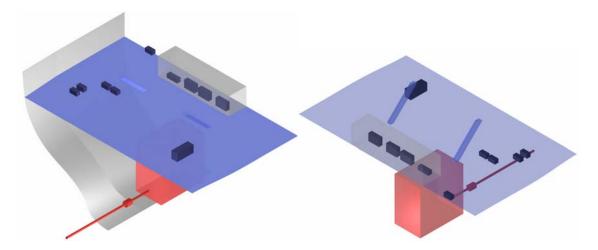


Figure 4.7.4.5 Isometric Views of Flat 1 of the Machinery Space

Flat 1 contains the diesel generator on the starboard side of the flat. The control room contains the LV and HV switchboards, the propulsion control console, and the power conversion unit (PCU). The location of the room allows viewing of the engine during operation of the consoles. The A/C units and refrigeration units are located in this level to provide cooling to the control room and the deckhouse. The refrigeration units circulate freon directly to the chill box and freezer and back. Another fire pump on Flat 1 is for fire fighting duties of the deckhouse and performs in case of failure to fire pumps on Flat 4. Drawing D.600-03 shows a plan view of this flat and the numbered location of the equipment as specified above and in Table 4.7.4.1.

Figures 4.7.4.7 and 4.7.4.8 show plan views of particular sections of Decks B and E. Each figure shows the placement of equipment as specified in Table 4.7.4.1.

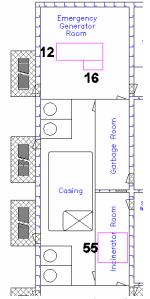


Figure 4.7.4.7 Plan View of Deck B (Emergency Generator and Incinerator Rooms)

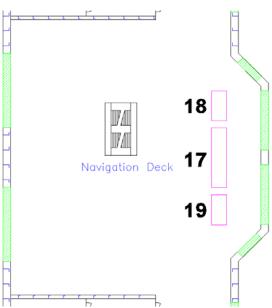


Figure 4.7.4.8 Plan View of Deck E

Deck B contains the emergency generator and the emergency switchboard. These are located in the emergency generator room of Deck B. The incinerator is located in the incinerator room of Deck B. Deck C and Deck D are not shown because they do not contain components from the equipment list of Table 4.7.4.1. Figure 4.7.4.8 is a plan view of Deck E showing three bridge control consoles in the Navigation Deck.

Table 4.7.4.2 shows the vertical locations of these four Flats and the deck heights of the deckhouse. The baseline of these locations is from the full load waterline.

Table 4.7.4.2 Flat/Deck Vertical Locations

Flat/Deck	Vertical Location (from WL)
Deck E	29.7 m
Deck D	25.7 m
Deck C	21.7 m
Deck B	17.7 m
Deck A	13.7 m
Flat 1	5.57 m
Flat 2	-0.43 m
Flat 3	-6.93 m
Flat 4	-13.5 m

Figure 4.7.4.9 shows an elevation view of the machinery space with all four Flats and with the plan layouts of the deck above the machinery space. Figure 4.7.4.10 is a section view of the machinery space and decks. These figures illustrate the vertical locations of the Flats and decks and the equipment therein.

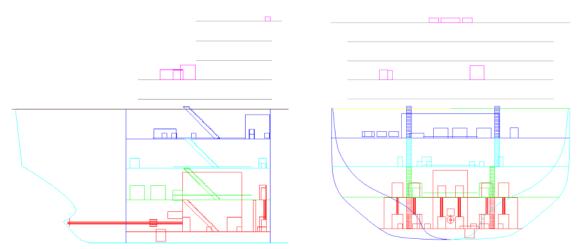


Figure 4.7.4.9 Elevation View of the Machinery Space Flats and Decks

Figure 4.7.4.10 Section View of the Machinery Space Flats and Deck

Figure 4.7.4.11 shows a rendered isometric view of the machinery space as produced in AutoCAD. The layout of the entire machinery space is shown with their corresponding rooms. The equipment in the deckhouse is included in these figures.

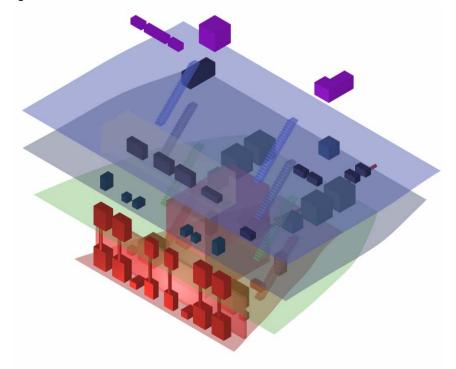


Figure 4.7.4.11 Rendered SW Isometric View of the Machinery Space Flats and Decks

The entire machinery space is controlled by a control system. A preliminary electrical schematic of the control system including the engine, pumps, and steering gear is shown is Figure 4.4.2.2. Also included in the figure are the switchboards shown in Table 4.7.4.1. The electrical schematic shows the interaction of the various components and the electrical loads that will be placed on the generators.

4.8 Weights and Loading

4.8.1 Weights

The weights and centers of gravity for the equipment on the vessel are tabulated and summed in an Excel spreadsheet found in Appendix A.6. This information remains constant and represents the Lightship weight. The sources of data for the weights and centers of this equipment include manufacturer catalogs, program outputs, and expert opinion.

Throughout the vessel, equipment locations are represented by rectangular areas. To find the centers of gravity for these areas (VCG, LCG, and TCG), measurements are taken from the various baselines on the ship to the centers of the rectangular areas. These baselines include the keel for the VCG, forward perpendicular for the LCG, and the centerline for the TCG. These centers are then multiplied by their individual weights to get their respective moments. This data is also summed and checked for stability in Appendix A.6. The weights of the SWBS groups can be seen in Table 4.8.1.1.

Table 4.8.1.1 Lightship Weight Summar	Table 4	4.8.1.1	Lightship	Weight	Summary
---------------------------------------	---------	---------	-----------	--------	---------

SWBS Group	Weight (MT)
100	21,028
200	792.9
300	150.6
400	7.8
500	709.3
Margin	5294.0
Total	27,983

4.8.2 Loading

Weights and centers of gravity are also tabulated for the tanks in four different loading conditions. These are added in with the Lightship weight described previously in 4.8.1. These loading conditions include Full Load (140K DWT), TAPS Full Load (125K DWT), Summer Load Line, and Ballast Arrival. These results are shown in Table 4.8.2.1, and are found in further detail in Appendix A.6. For the Full Load condition, all of the cargo tanks are filled to near capacity, and the ballast tanks are empty with the exception of the aft peak ballast tank for trim purposes. In addition, the slop, fuel oil, generator fuel, lube oil, waste oil, fresh water, and sewage tanks are filled to near capacity. This load condition is similar to the TAPS Full Load condition, however the cargo tanks are filled less in order to achieve the correct tonnage. In the Summer Load Line condition, the same tanks are loaded as in the Full Load condition, except the ship is loaded until its maximum draft limit is reached. This is a certification standard performed to ensure that a vessel is not overloaded. In the Ballast Arrival loading condition, all of the cargo tanks are empty, and the ballast tanks are filled enough to ensure propeller immersion and zero trim requirements. All of these load conditions are described in further detail in Section 4.9.2.

Table 4.8.2.1 Weight Summary

	Table 4.6.2.1 Weight Summary							
	Weight	VCG	LCG	TCG	VMOM	LMOM	TMOM	
	(MT)	(m ABL)	(m aft FP)	(m)	(MT*m)	(MT*m)	(MT*m)	
Lightship	27,983	13.46	131.64	-0.11	305,419	2,986,806	-2,523	
140K DWT + Lightship	172,227	15	117	-0.02	2,586,598	19,542,309	-2,523	
Ballast + Lightship	108,260	11	113	-0.02	1,112,312	11,633,099	-2,523	
Summer + Lightship	208,434	15	121	-0.01	3,541,956	27,980,356	-2,523	
125K DWT + Lightship	153,912	19	135	-0.02	2,753,922	20,029,511	-2,523	

4.9 Hydrostatics and Stability

4.9.1 General

In order to explore the hydrostatics, intact stability, and damage stability, the tanker is imported into HecSalv. HecSalv allows the user to create the various compartments and tanks described in Section 4.7. The hydrostatics and bonjean curves are calculated using a range of drafts from 1- 27.5 m. From this information, the curves of form, coefficients of form, cross curves, and bonjean curves are calculated and shown in Drawings D.2. With these hydrostatic calculations, HecSalv is able to examine the intact stability in any loading condition. The five conditions examined are the following: Lightship, Ballast Arrival, TAPS Full Load (125K DWT), Full Load (140K DWT) and Summer Load Line Draft (21.4 m). The tanks are filled in HecSalv to reach the correct trim, draft and dead weight tonnage. With the intact conditions created and balanced, damage stability is explored for all the conditions except lightship. Damage is based on the Code of Federal Regulations, Annex I - Regulations for the Prevention of Pollution by Oil (Regulation 25, Section 2, Subdivision and Stability), which is described in detail in Section 4.9.3.

4.9.2 Intact Stability and Loading

In each condition, trim, stability, righting arm information, and strength summaries are calculated. All conditions are compared to the satisfactory intact stability for an oil tanker greater then 5,000 DWT from MARPOL 73/78 Annex 1, Regulation 25A. For satisfactory intact stability, many conditions must be met. In port, GM corrected must be greater than 0.15 m without the use of operational methods in all loading conditions. At sea, the GZ curve area must be greater than 0.055 m-rad up to 30 deg; 0.09 m-rad up to 40 deg and 0.03 m-rad between 30 and 40 deg. The GZ must be at least 0.2 m at an angle greater then 30 deg, max GZ at angle greater then 25 deg, and GM corrected greater then 0.15 m for all loading conditions.

Lightship is the weight of the unloaded ship, which is 27,983 MT for this vessel. Tables 4.9.2.1-2 are the Stability and Trim Summary, and the Strength Summary, respectively. Figure 4.2.2.1.7 shows the lightship weight distribution curve. The stability of the Lightship condition is critical to the performance of the vessel. The bending moments for the structure calculations are also obtained through the analysis of this condition. Figure 4.9.2.1 shows the righting arm summary plot for lightship

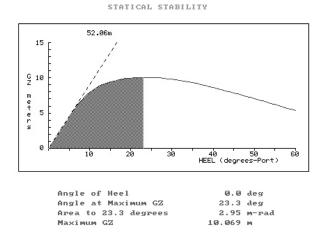


Figure 4.9.2.1 Lightship (GZ) Righting Arm Curve Summary

Table 4.9.2.1 Lightship Trim and Stability Summary

Vessel Displacement a		of Gravity		J	
	Weight				FSmom
Item			LCG - m-FP	TCG - m	m-MT
Light Ship	27,983	13.46	131.640A	0	
Constant	0	0	125.500A	0	0
Misc. Weight	0	0	125.500A	0	0
Cargo Oil	0	0	125.500A	0	0
Fuel Oil	0	0	125.500A	0	0
Lube Oil	0	0	125.500A	0	0
Fresh Water	0	0	125.500A	0	0
SW Ballast	0	0	125.500A	0	0
TOTALS	27,983	13.46	131.640A	0	0
Stability Calculation		Trim Calculation			
KMt			2.984	M	
VCG	13.46	LCB (even keel)	111.43	m-AFT	
GMt	52.063	LCF	112.52	m-AFT	
F.S. Correction	0	MT1cm	1,419	m-MT/cm	
GMt Corrected	52.063	Trim	3.987	m-AFT	
		Prop. Immersion	109	%	
		List	0	Deg	
Drafts					
A.P.	5.184 m			5.184 m	(17ft- 0.08in)
M.S.	3.19 m	(10ft- 5.60in)	M.S.Marks	3.182 m	(10ft- 5.29in)
F.P.	1.197 m	(3ft-11.12in)	Fwd Marks	1.197 m	(3ft-11.12in)
Strength Calculation					
Shear Force at 8					4,287 MT
Bending Moment at 6				258,977	m-MT [HOG]

Table 4.9.2.2 Lightship Shear Force and Bending Moment Summary

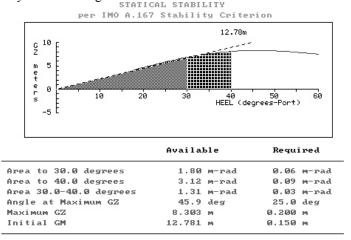
	Shear Force & Bending Moment Summary								
		Shear Forces			Bending Mo	ments	_		
	Location	Buoyancy	Weight	Shear	Buoy. Mom.	Wt.Mom.	Moment		
No.	m-FP	MT	MT	MT	m-MT	m-MT	m-MT		
10	251.000A	1	262	261	1	739	738H		
9	225.900A	658	3,119	2,462	4,071	39,314	35,243H		
8	200.800A	3,079	7,365	4,287	47,778	171,087	123,309H		
7	175.700A	6,914	9,743	2,828	168,562	385,470	216,908H		
6	150.600A	11,542	12,228	686	402,039	661,016	258,977H		
MID	125.500A	15,749	14,786	-963	745,636	999,921	254,285H		
4	100.400A	19,452	17,400	-2,053	1,188,568	1,403,763	215,195H		
3	75.300A	22,645	20,068	-2,577	1,717,965	1,873,833	155,868H		
2	50.200A	25,346	22,790	-2,556	2,320,836	2,411,686	90,851H		
1	25.100A	27,368	25,410	-1,957	2,985,210	3,017,101	31,891H		
0	0	27,982	27,697	-285	3,683,618	3,684,552	934H		
Maxin	Maximum Shear Force at 8: 4,287 MT								
Maxin	num Bending Mom	ent at 6: 258,977	7 m-MT [HOC	<u>[</u>]					

Ballast Arrival is the condition where the ship is arriving to port in a ballast condition. It consists of 0% cargo, 10% fuel, 50% fresh water and ballast as required for 100% prop immersion and zero trim. The ship is ballasted and trimmed to the draft line stated in the MathCad Model (10.4m) by filling the ballast tanks. This allows the tanker to be more stable in severe weather and gives a propeller immersion of 167%. The propeller immersion is at this level to allow for a better flow field into the propeller, making the ship more efficient. The GZ meets the

ORT LO Design

MARPOL regulations. The maximum shear and bending moment are 7,357 MT at station 9 and 374,225 m-MT in hog at amidships. Figure 4.9.2.2 shows the righting arm summary for the ballast condition. Tables 4.9.2.3-4 show the stability and trim summary and the strength summaries.

STATICAL STABILITY



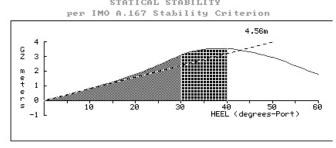

Figure 4.9.2.2 (GZ) Righting Arm Curve for Ballast Arrival Condition

Table 4.9.2.3 Ballast Arrival Trim and Stability Summary

	Tubic		VCG	·		FSmom	
Item			m	m-FP		m-MT	
Light Ship	o	27,983	13.46				
Constant		0	0	125.500A	. 0	0	
Misc. We	ight	0	0	125.500A	. 0	0	
Cargo Oil		0	0	125.500A	. 0	0	
Fuel Oil		300	16.264	195.395A	0	4,689	
Lube Oil		93	9.374	195.400A	. 0	6	
Fresh Wa	ter	214	24.013	230.499A	. 0	997	
SW Balla	st	79,672	9.989	106.916A	. 0	107,088	
TOTALS		108,260	10.931	113.871A	. 0	112,779	
Stability	Calculation	Tr	im Calculation				
KMt		24.753 m	LCF Draft	10.467 m			
VCG		10.931 m	LCB (even keel)	114.85 m-AFT			
GMt		13.823 m	LCF		120.	687 m-AFT	
F.S. Corre	ection	1.042 m	MT1cm		1,84	1m-MT/cm	
GMt Cor	rected	12.781 m	Trim		0.	575 m-AFT	
			Prop. Immersion			167%	
			List			0 deg	
Drafts		i e					
A.P.	10.169 m	(33ft-4.35in)	Aft Marks	10.169 m	(33ft-4.35in)	
M.S.	10.456 m	(34ft-3.66in)	M.S.Marks	10.457 m	(34ft-3.71in)	
F.P.	10.744 m	(35ft-2.98in)	Fwd Marks	10.744 m	(35ft-2.98in)	
Strength	Calculations						
Shear For	ce at 9					7,357 MT	
Bending I	Moment at MID				374,225 m-	MT [HOG]	

Shear Force & Bending Moment Summary								
		Shear	Forces		Bending	Moments		
	Location	Buoyancy	Weight	Shear	Buoy.Mom.	Wt.Mom.	Moment	
No.	m-FP	Mt	Mt	Mt	m-Mt	m-MT	m-MT	
10	251.000A	5	262	257	0	739	738H	
9	225.900A	2,112	9,468	7,357	13,426	108,128	94,701H	
8	200.800A	9,742	13,714	3,972	152,126		247,138H	
7	175.700A	20,900	23,382	2,482	,		324,106H	
6	150.600A	34,033	34,985	952	1,219,733		363,842H	
MID	125.500A	47,335	47,167	-168	2,240,812	2,615,037	374,225H	
4	100.400A	60,719	59,327	-1,392	3,596,840	, ,	354,604H	
3	75.300A	74,174	71,543	-2,631	5,289,800		303,918H	
2	50.200A	87,759	83,814	-3,945	7,320,066	7,543,410	223,343H	
1	25.100A	100,757	95,142	-5,615	9,691,100	9,792,895	101,795H	
0	0	107,950	107,497	-453	12,328,597	12,329,355	758H	
Maximun	n Shear Force	at 9:	7,357 N	TI TI	·			
Maximun	n Bending Mo	ment at MID:	374,225	m-MTo	ns [HOG]			

The 125K DWT condition is specific to the TAPS trade because 125K DWT is the maximum limit for tankers allowed to enter Valdez. In this condition, all of the tanks, except the ballast tanks, are loaded to 125K DWT. Cargo tanks 1 and 4 are loaded to 98%, cargo tanks 2 are loaded to 50%, and cargo tanks 3 are loaded to 79%. This gives a total cargo load of 120,082 DWT. The aft peak tank is loaded to 35% to trim out the ship. All other tanks are filled to 98% (Table 4.9.2.5). In this condition, the tanker sits at a draft of 14.5 m, which gives 217% propeller immersion. The GZ criteria are met (Figure 4.9.2.3). The maximum shear and bending moment are 6,152 MT at station 8 and 142,071 m-MT in sag at station 6 (Table 4.9.2.6). Figure 4.9.2.3 shows the righting arm summary. Tables 4.9.2.5-6 show the stability and trim summary and the strength summaries.

	Available	Required
Area to 30.0 degrees	0.71 m-rad	0.06 m-rad
Area to 40.0 degrees	1.31 m-rad	0.09 m-rad
Area 30.0-40.0 degrees	0.60 m-rad	0.03 m-rad
Angle at Maximum GZ	38.2 deg	25.0 deg
Maximum GZ	3.545 m	0.200 m
Initial GM	4.563 m	0.150 m

Figure 4.9.2.3 125K DWT (GZ) Righting Arm Curve Summary

Table 4.9.2.5 125K DWT Trim and Stability Summary

Vessel Displacem	Vessel Displacement and Center's of Gravity							
Item	Weight MT				Fsmom m-MT			
Light Ship	27,983	13.46	131.640A	0				
Constant	0	0	125.500A	0	0			
Misc. Weight	0	0	125.500A	0	0			
Cargo Oil	120,082	15.835	108.290A	0	209,202			
Fuel Oil	2,935	16.264	195.395A	0	0			
Lube Oil	205	15.567	195.400A	0	6			
Fresh Water	331	24.017	230.499A	0	107			
SW Ballast	3,266	14.318	236.956A	0	81,713			
TOTALS	154,802	15.399	117.254A	0	291,028			
Stability Calculat	tion T	rim Calculation						
KMt	21.842 m	LCF Draft			14.535 m			
VCG	15.399 m	LCB (even keel)			117.27 m-AFT			
GMt	6.443 m	LCF			124.943 m-AFT			
F.S. Correction	1.88 m	MT1cm			2,040 m-MT/cm			
GMt Corrected	4.563 m	Trim			0.012 m-AFT			
		Prop. Immersion			217 %			
		List			0 deg			
Drafts								
A.P.	14.528 m	(47ft- 7.98in)	Aft Marks	14.528 m	(47ft- 7.98in)			
M.S.	14.534 m	(47ft- 8.22in)	M.S.Marks	14.535 m	(47ft- 8.22in)			
F.P.	14.541 m	(47ft- 8.47in)	Fwd Marks	14.541 m	(47ft- 8.47in)			
Strength Calcula	tions							
Shear Force at 8	6,152	MT						
Bending Moment	at 6 142,0	71 m-Mt [SAG]						

Table 4.9.2.6 125K DWT Shear Force and Bending Moment Summary

	Shear Force and Bending Moment Summary								
Shear Forces Bending Moments									
	Location	Buoyancy	Weight	Shear	Buoy.Mom.	Wt.Mom.	Moment		
No.	m-FP	MT	MT	MT	m-MT	m-MT	m-MT		
10	251.000A	3	262	259	75	739	814H		
9	225.900A	4,428	6,716	2,288	31,232	76,945	45,713H		
8	200.800A	17,115	10,962	-6,152	288,828	299,010	10,183H		
7	175.700A	33,673	30,868	-2,805	920,007	792,243	127,764S		
6	150.600A	52,163	53,943	1,780	1,998,349	1,856,278	142,071S		
MID	125.500A	70,750	74,423	3,673	3,540,978	3,478,028	62,949S		
4	100.400A	89,350	93,685	4,335	5,550,317	5,587,697	37,381H		
3	75.300A	107,944	107,378	-566	8,026,675	8,116,518	89,842H		
2	50.200A	126,615	122,580	-4,035	10,967,998	10,982,026	14,028H		
1	25.100A	144,482	144,626	145	14,375,703	14,347,888	27,815S		
0	0	154,489	154,516	28	18,152,152	18,152,114	39S		
Maxin	num Shear Fo	orce at 8:	-6,152	MT	•				
Maxin	num Bending	Moment at 6:	142,071	m-MT	[SAG]				

The 140K DWT loading condition is considered the maximum full load condition, and is the designed load line scenario. The draft is given from the MathCad model as 15.8 m. The tanks are loaded in the following manner: Cargo tanks 1 are loaded to 72%, Cargo tanks 2, 3, 4 and all other tanks are loaded to 98% with the ballast tanks used to trim out the ship. In this condition the aft peak tank is filled 58.2 %. The actual draft is 16 m due the additional ballasting necessary to trim the ship (Table 4.9.2.7). The problem of additional ballasting is addressed in Section 5.2.7. The GZ criteria meet MARPOL regulations (Figure 4.9.2.4). The maximum shear and bending moment are 7,591 MT at station 8 and 384,074 m-MT in sag at amidships. Table 4.9.2.8 shows the strength summary.

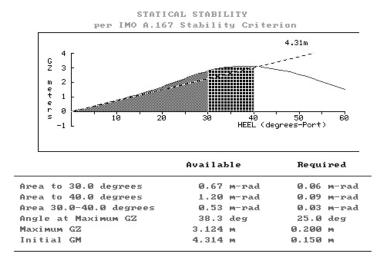


Figure 4.9.2.4 140K DWT (GZ) Righting Arm Curve Summary

Vessel Displacement and Centers of Gravity									
	Weight	VCG	LCG	TCG	Fsmom				
Item	Mt	M	m-FP	m	m-MT				
Light Ship	27,983	13.46							
Constant	0	0	125.500A		0				
Misc. Weight	0	0	120.00011		0				
Cargo Oil	136,814			0	193,477				
Fuel Oil	2,935			0	0				
Lube Oil	205	15.567	195.400A	0	6				
Fresh Water	331	24.017		0	107				
SW Ballast	5,103	14.318	236.956A	0	81,713				
TOTALS	173,372	15.422	118.299A	0	275,302				
Stability Calculat	ion Tr	im Calculation							
KMt	21.324 m	LCF Draft			16.119 m				
VCG		LCB (even keel)			118.16 m-AFT				
GMt	5.902 m	LCF			126.123 m-AFT				
F.S. Correction	1.588 m	MT1cm		,	2,102 m-MT/cm				
GMt Corrected	4.314 m	Trim			0.115 m-AFT				
		Prop. Immersion			236 %				
		List			0 deg				
Drafts									
A.P.		(53ft- 0.87in)	Aft Marks		(53ft- 0.87in)				
M.S.	16.119 m	(52ft-10.60in)	M.S.Marks	16.119 m	(52ft-10.59in)				
F.P.	16.061 m	(52ft- 8.33in)	Fwd Marks	16.061 m	(52ft- 8.33in)				
Strength Calculat	Strength Calculation								
Shear Force at 8		7,591 MT	<u> </u>						
Bending Moment	Bending Moment at MID 384,074 m-Mt [SAG]								

Table 4.9.2.8 140K DWT Shear Force and Bending Moment Summary

Shear Force and Bending Moment Summary											
	Shear Force Bending Moment										
	Location	Buoyancy	Buoyancy Weight Shear Buoy.Mom.		Wt.Mom.	Moment					
No.	m-FP	Mt	Mt	Mt	m-Mt	m-Mt	m-MT				
10	251.000A	-15	262	277	79	739	818H				
9	225.900A	5,682	8,553	2,872	43,209	97,256	54,046H				
8	200.800A	20,391	12,800	-7,591	357,048	365,432	8,385H				
7	175.700A	39,031	32,705	-6,325	1,096,942	904,777	192,165S				
6	150.600A	59,582	55,780	-3,802	2,335,626	2,014,924	320,702S				
MID	125.500A	80,215	78,988	-1,227	4,090,183	3,706,108	384,074S				
4	100.400A	100,846	102,255	1,409	6,362,602	5,980,614	381,988S				
3	75.300A	121,453	125,576	4,123	9,152,859	8,839,738	313,121S				
2	50.200A	142,130	148,321	6,191	12,458,249	12,283,812	174,437S				
1	25.100A	161,931	165,213	3,282	16,279,670	16,227,924	51,746S				
0	0	173,059	173,086	27	20,510,600	20,510,558	42S				
Shear	Shear Force at 8 7,591 MT										
Bendi	Bending Moment at MID 384,074 m-Mt [SAG]										

The last condition looked at is the Summer Load Line draft, which is given by the MathCad model as 21.4 m. This has to be lowered slightly to 19 m meters because of problems in damage stability. The problem will be discussed further in Section 4.9.3. The condition has similar cargo loading as the 140K DWT. It is achieved in HecSalv by increasing the density of the cargo to 0.990 MT/m3. Cargo tanks 1 are loaded to 84.5%, ballast tanks 4, 5 and the aft peak tank are filled to 98% to trim. The final draft of this loading condition comes out to 19 m. The GZ meets the MARPOL regulations (Figure 4.9.2.5). The maximum shear and bending moment are 11,890 MT at station 8 and 462,617 m-MT at amidships. Tables 4.9.2.9-10 show the stability and trim summary and the strength summaries.

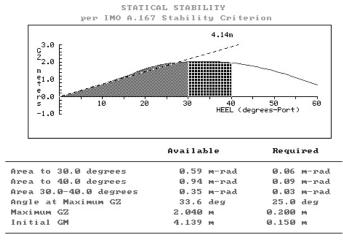


Figure 4.9.2.5 Summer Load Line Draft (GZ) Righting Arm Curve Summary

Table 4.9.2.9 Summer Load Line Draft Trim and Stability Summary

Vessel Displacement and Center's of Gravity								
	Weight	VCG	LCG	TCG	FSmom			
Item			m-FP	m	m-MTons			
Light Ship	27,983	13.46	131.640A	0				
Constant	0	0	125.500A	0	0			
Misc. Weight	0	0	125.500A	0	0			
Cargo Oil	160,614			0	220,823			
Fuel Oil	2,935	16.264	195.395A	0	0			
Lube Oil	205	15.567	195.400A	0	6			
Fresh Water	331	24.017	230.499A	0	107			
SW Ballast	16,365	11.484	199.187A	0	125,466			
TOTALS	208,434	15.187	119.111A	0	346,402			
Stability Calculat		Trim Calculatio	n					
KMt	20.987 m	LCF Draft			19.068 m			
VCG	15.187 m	LCB (even keel)			119.58 m-AFT			
GMt	5.8 m	LCF			126.88 m-AFT			
F.S. Correction	1.662 m	MT1cm			2,209 m-MT/cm			
GMt Corrected	4.139 m	Trim			0.443 m-AFT			
		Prop. Immersion			266 %			
		List			0 deg			
Drafts								
A.P.	18.849 m	(61ft-10.08in)	Aft Marks	18.849 m	(61ft-10.08in)			
M.S.	19.07 m	(62ft- 6.80in)	M.S.Marks	19.071 m	(62ft- 6.83in)			
F.P.	19.292 m	(63ft- 3.52in)	Fwd Marks	19.292 m	(63ft- 3.52in)			
Strength Calculations								
Shear Force at 8		,890 MT						
Bending Moment at MID 462,617 m-MT [SAG]								

Table 4.9.2.10 Summer Load Line Draft Shear Force and Bending Moment Summary

	Shear Force and Bending Moment Summary										
	Shear Forces Bending Moments										
	Location	Buoyancy	Weight	Shear	Buoy. Mom.	Wt. Mom.	Moment				
No.	m-FP	MT	MT	MT	m-MT	m-MT	m-MT				
10	251.000A	-67	262	329	138	739	877H				
9	225.900A	8,062	10,118	2,057	67,471	114,557	47,086H				
8	200.800A	26,254	14,365	-11,890	483,918	422,014	61,904S				
7	175.700A	48,519	41,006	-7,513	1,416,713	1,079,108	337,605S				
6	150.600A	72,759	70,713	-2,046	2,939,660	2,479,958	459,702S				
MID	125.500A	97,155	98,113	958	5,072,037	4,609,419	462,617S				
4	100.400A	121,619	124,298	2,679	7,817,574	7,400,588	416,986S				
3	75.300A	146,129	150,539	4,410	11,178,167	10,849,648	328,519S				
2	50.200A	170,795	176,641	5,847	15,152,421	14,957,816	194,605S				
1	25.100A	194,555	198,379	3,824	19,742,714	19,676,552	66,163S				
0	0	208,115	208,148	34	24,827,702	24,827,668	33S				
Shear	Shear Force at 8 -11,890 MT										
Bend	Bending Moment at MID 462,617 m-MT [SAG]										

All five conditions display excellent intact stability and meet the MARPOL regulations put forth for an oil tanker of greater than 5,000 DWT from MARPOL 73/78 Annex 1, Regulation 25A. These same loading conditions are used to verify that damage stability meets the Code of Federal Regulations.

4.9.3 Damage Stability

The four intact loading conditions are examined for damage stability. Each of these conditions are damaged at critical points along the hull following the Code of Federal Regulations –Annex I - Regulations for the Prevention of Pollution by Oil (Regulation 25, Section 2– Subdivision and Stability). The regulations are stated in Table 4.9.3.1. Essentially, the damage is considered to be a rectangular hole. To examine the maximum damage (filling the maximum tank volume), the opening is placed at bulkheads along the side of the hull. This results in a total of seven major damage cases (Figures 4.9.3.8-14 at the end of Section 4.9.3). Testing each loading case gives a total of 28 damage cases. Each of these cases is compared to the IMO Tanker Criteria (MARPOL Rules) for stability. Damage case summaries for each case are shown in Appendix A.7.

Side Damage						
Longitudinal	$1/3$ L $^{2/3}$ or 14.5 meters whichever is less					
Transverse	B/ ₅ or 11.5 meters whichever is less					
Vertical	From molded bottom at centerline upwards	with-out limit				
Bottom Damage						
_Extent	0.3L from FP	Any Other Part				
Longitudinal	$1/3$ L $^{2/3}$ or 14.5 m whichever is less	$1/3$ L $^{2/3}$ or 5 m whichever is less				
Transverse	B/6 or 11.5 m whichever is less	B/6 or 5 m whichever is less				
Vertical	B/15 or 6 m whichever is less	B_{15} or 6 m whichever is less				

The Ballast Arrival intact condition is used with each of the damage cases, which are summarized in Table 4.9.3.2. The IMO Tanker Damage Stability criteria are met for each of the seven cases. The "Bow Side Damage" case is the worst case with a heel of 2.1 deg, a maximum GZ of 7.941 m and a maximum GZ angle of 48.8 deg (Figure 4.9.3.1-2). The worst case trim and bending moment is the "Aft Slop Fuel Engine Room Damage" case at 5.846 m trim aft and a bending moment of 585,044 m-MT in hog. This bending moment is far below the total bending moment due to waves (1,000,000 m-MT) used in the structural calculations and therefore is satisfactory. (Figure 4.9.3.2)

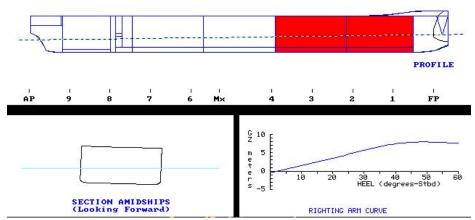
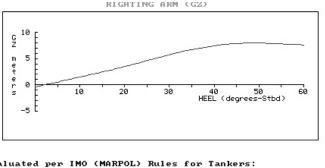



Figure 4.9.3.1 Ballast Arrival Condition "Bow Side Damage" Summary

Evaluated per IMO (MARPOL	Rules for Ta Available	nkers: Required
Static Heel Angle	2.18 deg	30.0 deg
Angle at Maximum GZ	48.88 deg	
Maximum GZ	7.941 m	0.100 m
Range of Positive GZ	>57.9 deg	20.0 deg
Gmt (upright damaged)	11.168 м	

Figure 4.9.3.2 (GZ) Righting Arm Curve for Ballast Arrival Condition "Bow Side Damage"

Table 4.9.3.2 Ballast Arrival Damage Conditions

Table 4.7.3.2 Danast Arrival Daniage Conditions										
Ballast Arrival Condition										
Bow Bow Side Side Aft Side Aft Slop Fuel Aft Slop Fuel Aft										
Case Name	Intact	Damage	Damage	Damage	Damage	Cargo	Engine Room	Damage		
Draft AP (m)	10.473	11.242	9.418	10.655	11.676	11.907	14.587	10.837		
Draft FP (m)	10.462	9.268	13.305	11.738	10.739	10.157	8.741	10.461		
Trim on LBP (m)	0.012A	1.974A	3.887F	1.083F	0.937A	1.749A	5.846A	0.376A		
Total Weight (MT)	108260	105502	119147	116718	116480	114343	121163	110230		
Static Heel (deg)	0	0.4P	2.1S	0.7S	0.5S	0.2S	0.2S	0.0P		
GMt (upright) (m)	14.133	15.007	11.168	11.752	11.944	12.876	12.958	14.565		
Maximum GZ (m)		9.271	7.941	8.885	9.146	9.343	8.9	9.746		
Max.GZ Angle (deg)		47.0P	48.8S	47.4S	46.7S	46.4S	45.8S	46.9P		
GZ Pos.Range (deg)		>59.6	>57.9	>59.3	>59.5	>59.8	>59.8	>60.0		
Outflow (MT)		13754	15429	16812	16379	9717	1744	6194		
Flooded Water (MT)		10996	26316	25269	24599	15800	14646	8164		
Shear Force (MT)		7197	7768	7347	6947	6870	8224	-5531		
B.Moment (m-MT)		298466H	435698H	309366H	270881H	370204H	585044H	354138H		

The 125K DWT condition is used with all the damage cases to give the damage summary in Table 4.9.3.3. The IMO Tanker Damage Stability criteria are met for each of the seven cases. The worst case is the "Side Damage" with a heel angle of 14.8 deg, a maximum GZ Angle of 42.5 deg and a maximum GZ of 2.519 m (Figure 4.9.3.3-4). The worst case bending moment is also in the "Side Damage" case at 324,227 m-MT in sag. This again is very small compared to the maximum structural bending moment. The worst case trim is in the "Aft Damage" case at 9.602 m aft.

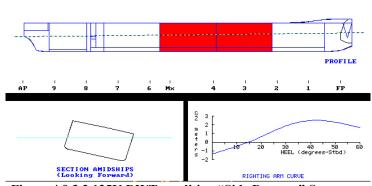
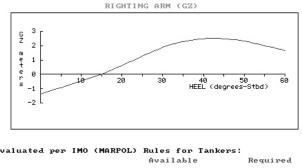



Figure 4.9.3.3 125K DWT condition "Side Damage" Summary

Evaluated per IMO (MARPOL)	Rules for Tankers: Available	Required
Static Heel Angle	14.8S deg	30.0 deg
Angle at Maximum GZ	42.58 deg	
Maximum GZ	2.519 m	0.100 m
Range of Positive GZ	>45.2 deg	20.0 deg
Gmt (upright damaged)	4.742 m	

Figure 4.9.3.4 (GZ) Righting Arm Curve for 125 DWT Condition "Side Damage"

Table 4.9.3.3 125K DWT Damage Conditions

125K DWT Condition								
		Bow	Bow Side	Side	Aft Side	Aft Slop Fuel	Aft Slop Fuel	Aft
Case Name	Intact	Damage	Damage	Damage	Damage	Cargo	Engine Room	Damage
Draft AP (m)	14.472	13.733	13.131	14.288	14.259	14.059	19.865	21.055
Draft FP (m)	14.444	15.709	18.583	17.847	14.704	14.419	12.156	11.452
Trim on LBP (m)	0.028A	1.977F	5.452F	3.559F	0.444F	0.360F	7.708A	9.602A
Total Weight (MT)	153912	157091	171295	173669	154235	151379	172626	175727
Static Heel (deg)	0	1.4S	13.8S	14.8S	3.5S	1.0P	0.5S	0.1P
GMt (upright) (m)	5.528	5.482	4.32	4.742	4.912	5.187	4.761	5.112
Maximum GZ (m)		3.745	2.447	2.519	3.894	3.646	3.386	3.57
Max.GZ Angle (deg)		40.5S	42.7S	42.5S	40.8S	40.8P	38.4S	38.5P
GZ Pos.Range (deg)		>58.6	>46.2	>45.2	>56.5	>59.0	>59.5	>59.9
Outflow (MT)		15326	24604	23937	32784	22246	4121	2493
Flooded Water (MT)		18505	41987	43695	33107	19713	22835	24308
Shear Force (MT)		-5647	-5978	-7762	-6278	-5841	-6431	-7372
B.Moment (m-MT)		204373H	145290S	324227S	180110S	117279S	241866Н	314755H

The 140K DWT intact loading condition is used with the damage cases to check for stability requirements. All seven cases meet the IMO Damage Stability Requirements. The worst case is the "Bow Side Damage" case with a heel of 11.6 deg. The worst case trim is the "Aft Damage" case with a trim to the aft of 10.223 m. This is still below the deck level and meets all IMO requirements. The worst case bending moment is the "Side Damage" case with a bending moment of 449,885 m-MT which, is far less than the offered structural design.

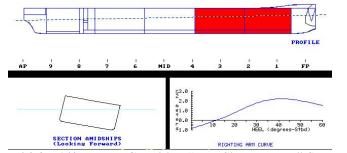


Figure 4.9.3.5 140K DWT Condition "Bow Side Damage" Summary

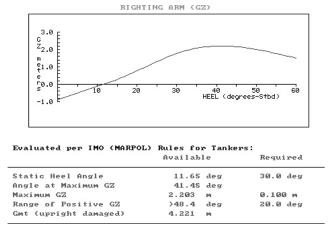


Figure 4.9.3.6 (GZ) Righting Arm Curve for 140K DWT Condition "Bow Side Damage

Table 4.9.3.4 140K DWT Damage Conditions

140K DWT Condition								
								Aft
Case Name	Intact	Damage	Damage	Damage	Damage	Cargo	Engine Room	Damage
Draft AP (m)	16.035	13.78	14.418	16.043	16.06	16.421	22.321	23.064
Draft FP (m)	16.009	20.52	19.961	16.303	16.085	15.859	13.374	12.841
Trim on LBP (m)	0.026A	6.741F	5.544F	0.260F	0.024F	0.562A	8.947A	10.223A
Total Weight (MT)	172228	2E+05	186616	174074	172862	173673	194753	196162
Static Heel (deg)	0	7.0S	11.6S	4.98	4.0S	1.7S	1.0S	0.1P
GMt (upright) (m)	5.171	5.032	4.221	4.81	4.678	4.847	4.559	4.852
Maximum GZ (m)		2.575	2.203	3.046	3.21	3.394	2.662	2.893
Max.GZ Angle (deg)		39.7S	41.4S	40.7S	40.3S	39.5S	37.7S	37.8P
GZ Pos.Range (deg)		>53.0	>48.4	>55.1	>56.0	>58.3	>59.0	>59.9
Outflow (MT)		11260	29444	36369	36309	22246	4121	4076
Flooded Water (MT)		24889	43832	38215	36944	23691	26647	28010
Shear Force (MT)		-5474	-6663	-8232	-8184	-8747	3464	-3190
B.Moment (m-MT)		141456S	302207S	449885S	438588S	408175S	173859S	129767S

The Summer Load Line draft is the worst intact and damage stability condition. The initial load line draft of 21.4 m from the MathCad model is satisfactory in intact stability, but fails in damage stability. By adjusting the density of the cargo and the ballast, slightly new Summer Load Line drafts can be tested with the damage cases. The deepest draft with good damage stability is 19 m. This case is summarized below in Table 4.9.3.5. The worst case heel is 10.4 deg. in the "Bow Side Damage" case. This has a maximum GZ of 1.312 m and a maximum GZ angle of 36 deg. (Figure 4.9.3.7-8) Worst case trim is the "Aft Damage" case with a trim of 12.057 m aft. Worst case bending moment is the "Side Damage" case at 539,822 m-MT. This bending moment is much smaller than the offered design bending moment.

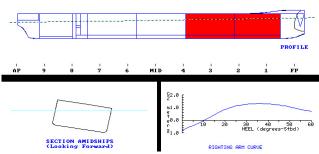
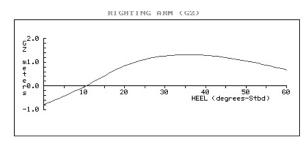



Figure 4.9.3.7 Summer Load Line Condition "Bow Side Damage" Summary

ORT LO Design

Evaluated per IMO (MARPOL) Rules for Tankers:

	Availabl	e	Required
Static Heel Angle	10.48	deg	30.0 deg
Angle at Maximum GZ	36.08	deg	
Maximum GZ	1.312	м	0.100 m
Range of Positive GZ	>49.6	deg	20.0 deg
Gmt (upright damaged)	4.229	м	

Figure 4.9.3.8 (GZ) Righting Arm Curve for Summer Load Line Condition "Bow Side Damage" Summary

Table 4.9.3.5 Summer Load Line Draft Damage Conditions

					Line Draf	t		
		Bow						Aft
Case Name	Intact	Damage	Damage	Damage	Damage	Cargo Damage	Engine Room	Damage
Draft AP (m)	19.091	17.01	17.84	19.153	18.512	18.381	26.484	27.409
Draft FP (m)	19.045	23.358	22.479	19.83	19.107	19.037	15.961	15.353
Trim on LBP (m)	0.046A	6.349F	4.639F	0.677F	0.596F	0.656F	10.523A	12.057A
Total Weight (MT)	208434	221767	221651	213615	205316	204199	235502	237693
Static Heel (deg)	0	6.0S	10.48	6.98	1.1S	3.2P	0.3P	0.0P
GMt (upright) (m)	4.841	4.893	4.229	4.56	4.733	4.777	4.409	4.308
Maximum GZ (m)		1.623	1.312	1.646	2.238	2.469	1.409	1.316
Max.GZ Angle (deg)		33.1S	36.0S	34.7S	35.7S	39.2P	27.9P	26.8P
GZ Pos.Range (deg)		>54.0	>49.6	>53.1	>58.9	>56.8	>59.7	>60.0
Outflow (MT)		15082	35837	41510	44696	30031	6091	6786
Flooded Water (MT)		28415	49053	46691	41578	25796	33158	36044
Shear Force (MT)		-9146	-10603	-12332	-10813	-10624	2229	-1984
B.Moment (m-MT)		232222S	366992S	539822S	440669S	412284S	136832S	96709S

All four of the intact loading cases pass the seven damage conditions by meeting the IMO Requirements for Damage Stability of Tankers using MARPOL Rules. All of the heel angles, GZ calculations and bending moment calculations are well below their thresholds and will provide a safe ship.

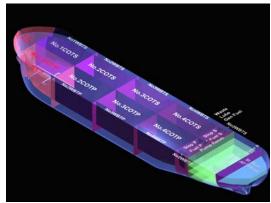


Figure 4.9.3.9 "Bow Damage" Case

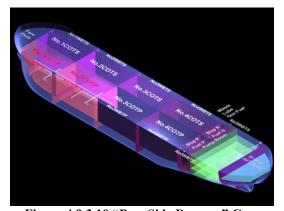


Figure 4.9.3.10 "Bow Side Damage" Case

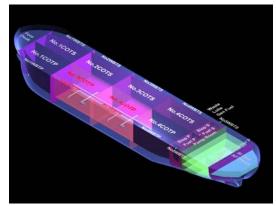


Figure 4.9.3.11 "Side Damage" Case

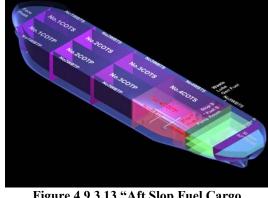


Figure 4.9.3.13 "Aft Slop Fuel Cargo Damage" Case

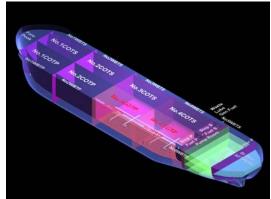


Figure 4.9.3.12 "Aft Side Damage" Case

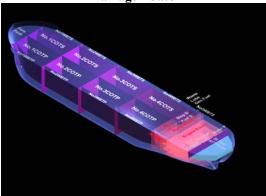


Figure 4.9.3.14 "Aft Slop Fuel Engine Room Damage" Case

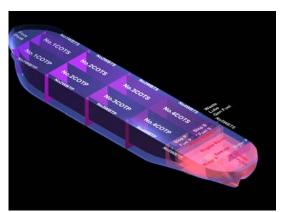


Figure 4.9.3.15 "Aft Damage" Case

4.10 Seakeeping and Maneuvering

4.10.1 Seakeeping

Seakeeping is done by using a 5 degree of freedom FORTRAN program created by MIT. The program builds a Lewis hull form and requires the following information at each station: location, B prime (the transverse distance at the water line of the station), T prime (the vertical distance from the waterline to the bottom of the station), Sigma (the area coefficient), centroid, and the girth. The program is run at two speeds 6.181m/s (12 knots) and 7.727 m/s (15 knots) with two different headings 45 degrees and 135 degrees in two loading conditions 140K DWT and ballast arrival. The location chosen for this is at the bottom of the bulbous bow for the purpose of

determining slamming events, bulb immersion events and deck wetness events. Once the information is entered the program is run and the relative motion, velocity, and acceleration RAO's are pull from output. The 140 DWT RAO's are shown plotted in figures 4.10.1.1-4. Once these are acquired a composite Ochi Sea State 6 response spectra is created in Mathcad (Figures 4.10.1.5-6) to multiply the RAO's by to get the motion and velocity response spectra (Figures 4.10.1.7-10). Next a critical velocity for slamming is calculated as well as the probability of slam and the number of slams per hour for each of the eight cases. These are shown in table 4.10.1.1. All Mathcad calculations are shown in Appendix A.9.

Table 4.10.1.1 Probability of Deck Wetnes, Bulb Emersion, and Slamming Events

140K DWT			j		ancision, and star	g	
Heading	Speed	Probability of Slam	Number of Slams per Hour	Probability of Bulb Emersion	Number of Bulb Emersion per hour	Probability of Deck Wetness	Number of Deck Wetness per Hour
135	6.181	7.127*10 ⁻⁴	0.337	1.667*10 ⁻³	0.788	0.03	14.173
135	7.727	1.326*10 ⁻³	0.617	2.7*10 ⁻³	1.256	0.039	18.167
45	6.181	0.141	65.259	0.25	115.777	0.467	216.625
45	7.727	0.047	19.203	0.139	56.975	0.338	139.123
BALLAST A	ARRIVAL						
135	6.181	4.589*10 ⁻⁵	0.023	1.274*10 ⁻⁴	0.064	7.315*10 ⁻³	3.674
135	7.727	9.76*10 ⁻⁵	0.048	2.312*10 ⁻⁴	0.114	0.01	5.009
45	6.181	1.647*10 ⁻⁵	8.031*10 ⁻³	6.253*10 ⁻⁴	0.305	0.018	8.532
45	7.727	6.272*10 ⁻⁶	3.053*10 ⁻³	6.3*10 ⁻⁴	0.307	0.018	8.555

The criteria for the TAPS trade are as follows: the prevailing ship headings relative to the direction of the waves are 045 degrees in full load condition and 135 degrees in ballast condition. These correlate to coming and going to Valdez. The table shows that the criteria for seakeeping is met by the tanker. The ship must be able to operate safely 98% of the time at endurance speed on these headings. This means operating safely through a Sea State 7 (Significant Wave Height of 9 m). Safe operation is defined as a maximum of 20 slams per hour assuming full load is the worst case. Looking at Table 4.10.1.1 it can be seen that this criteria is meet.

Limits on accelerations in berthing and working areas are set to account for crew safety and effectiveness. It has been shown that vertical accelerations over 4g's cause discomfort and motion sickness. Therefore a criteria of 0.4g with 0.001 probability of exceedence has been set for the ORTLO. Vertical accelerations are measured at the navigation bridge to get the RAO. This is then multiplied by the Ochi spectrum to get the acceleration response spectra. An acceleration with a 0.001 probability of exceedence is then calculated for the two headings and two speeds. (Table 4.10.1.2) The table shows that the ORTLO is well under the 4g requirement.

Table 4.10.1.2 Vertical Acceleration at Navigation Bridge

140K DWT		8
Heading	Speed	Acceleration in g's
135	6.181	0.313
45	6.181	0.289
135	7.727	0.317
45	7.727	0.167

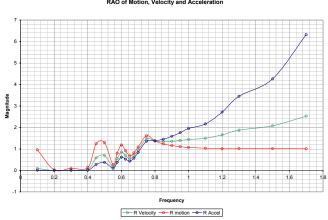


Figure 4.10.1.1 RAO's of 135 deg heading at 6.181m/s

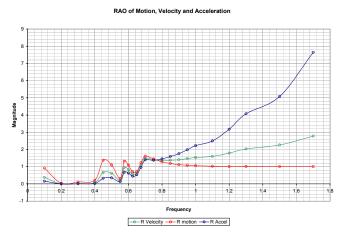


Figure 4.10.1.2 RAO's of 135 deg Heading at 7.727 m/s $\,$

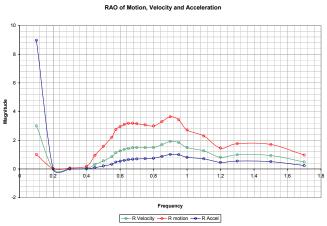


Figure 4.10.1.3 RAO's of 45 deg Heading at 6.181m/s

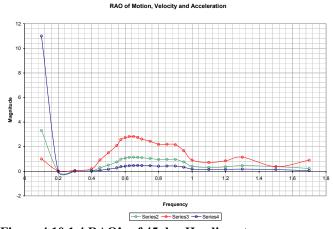
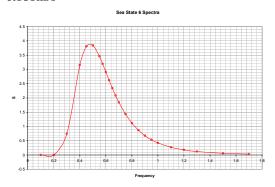



Figure 4.10.1.4 RAO's of 45 deg Heading at 7.727m/s

Response Spectra for 45 deg at 6.181m/s

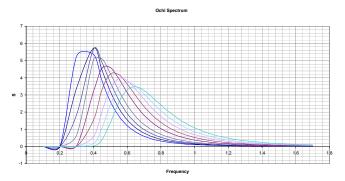


Figure 4.10.1.5 Ochi Spectrum

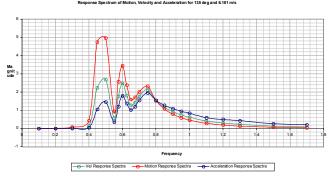


Figure 4.10.1.7 Response Spectra for 135 deg at .181 m/s

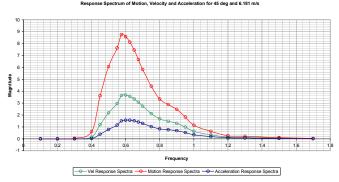


Figure 4.10.1.9 Response Spectra for 45 deg at 6.181m/s

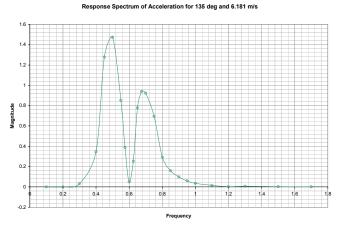


Figure 4.10.1.11 Navigation Deck Acceleration Response Spectra for 135 deg at 6.181m/s

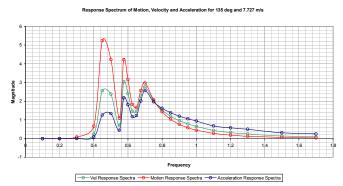


Figure 4.10.1.8 Response Spectra for 135 deg at 7.727m/s

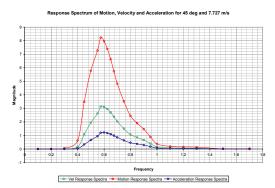


Figure 4.10.1.10 Response Spectra for 45 deg at 7.727m/s

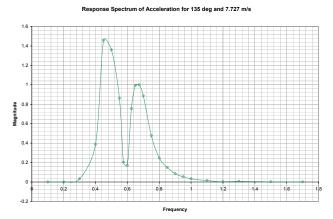


Figure 4.10.1.13 Navigation Deck Acceleration Response Spectra for 135 deg at 7.727m/s

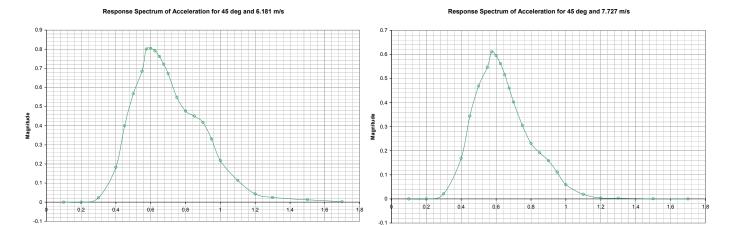


Figure 4.10.1.12 Navigation Deck Acceleration Response Spectra for 45 deg at 6.181 m/s

Figure 4.10.1.14 Navigation Deck Acceleration Response Spectra for 45 deg at 7.727 m/s

4.10.2 Maneuvering

Maneuvering predictions for the ORT LO are produced using a University of Michigan, Department of Naval Architecture and Marine Engineering Maneuvering Prediction Program (MPP) developed by M.G. Parsons. The program predicts the turning path characteristics of the vessel such as advance, transfer, tactical diameter, steady turning radius, and steady speed in turn. Figure 4.10.2.1 illustrates the turning path of a vessel. The "execute position of O" in the figure is the point at which the rudder of the ship begins to turn. The advance is the distance from the execute position along the ship's original heading to the point where the ship has turned 90 deg. The transfer is the distance from the original straight-line approach course to the origin of the ship, when it has turned 90 deg. The tactical diameter is the diameter of the initial turning circle of the ship, or the distance between the original approach route and the ship's route when it has turned 180 deg. When the forces affecting the turning vessel reach equilibrium, the ship settles down to a turn of constant radius, denoted the steady turning radius. The steady turning radius is proportional to the ship length and inversely proportional to the rudder deflection angle. The steady speed in turn is the speed of the tanker when equilibrium is reached.

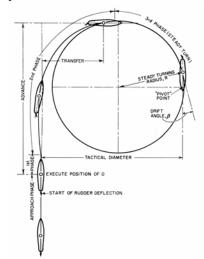


Figure 4.10.2.1 Turning Path Characteristics²

_

² Comstock, John P., ed. <u>Principles of Naval Architecture</u>, New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1967.

The MPP requires inputs such as vessel characteristics, steering characteristics, operating conditions, and water properties. Table 4.10.2.1 displays the input variables and the values entered. The tanker must not exceed a tactical diameter of 1000 m and a transfer of 500 m. With an approach speed of 15 knots and rudder angle at 35.00 deg, the advance is 705.4 m, the transfer is 345.38 m, the tactical diameter is 727.18 m, the steady turning radius is 277.79 m, and the steady speed in turn is 5.51 knots. The steady turning radius is 1.104 ship lengths. The transfer and tactical diameter are far below the requirements.

Table 4.10.2.1 MPP Inputs

14010 4.10.2.1 1/111 111 1115005	
Parameter	Input Value
Vessel Characteristics	
Length of waterline, LWL (m)	251.54
Maximum beam on LWL (m)	49.78
Draft forward (m)	15.80
Draft aft (m)	15.80
Block coefficient on LWL, C _B	0.833
Center of gravity, LCG from midships (%LWL, + forward)	-3.10
Yaw radius of gyration as a fraction of LWL	0.225
Submerged bow profile area as a fraction of LWL*T	0.0216
Steering Characteristics	
Total rudder area as fraction of LWL*T	0.0503
Steering gear constant (sec)	2.50
Center of effort of rudder from midships (%LWL, + aft)	49.0
Operating Conditions	
Water depth to ship draft ratio (1000 for deep water)	1000.0
Initial ship speed (knots)	15.00
Water Properties	
Salt water density at 15 deg C (kg/m ³)	1025.87
Salt water kinematic viscosity at 15 deg C (m ² /sec)	0.1188E-05

4.11 Cost and Risk Analysis

4.11.1 Cost Analysis

The Cost Analysis used for this vessel is weight based with adjustments for producibility (Appendix A.8). In order to attain the TOC, the cost section from the conceptual MathCad Model (Appendix A.2) was utilized to construct a Cost Analysis (Appendix A.8). A number of variables dealing with the ship's characteristics had to be re-input into the Cost Analysis in order for it to run correctly. SWBS group weights from the MathCad Model and the Weight Report (Appendix A.6) were input into the Cost Model depending on the completeness of the weight information. The sum of these SWBS groups represents the Lightship weight of the vessel. The Weight Margin Factor (WMF) had to be adjusted to 7.3% so that the actual weight of the vessel agreed with the conceptual weight. The WMF accounts for design error, added equipment, and added weight due to production. Producibility factors associated with different SWBS groups also effect cost. High producibility factors represent complicated structures which will cost more to construct. The cost for the ORT LO is roughly \$1 million more than the cost predicted in the conceptual design process (Table 4.11.1.1). The larger cost is due to an increase in SWBS weight groups. All of the Net Present Value (NPV) costs stayed the same for both cases.

Table 4.11.1.1 Cost Comparison

	1 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1	
Cost Type	Concept Design (\$ mil)	ORT LO (\$ mil)
BCC	111.92	112.69
NPV Fuel	34.85	34.85
NPV Manning	24.82	24.82
NPV Maintenance	16.84	16.84
NPV Penalties	0	0
TOC	197.38	198.22

ORT LO Design

4.11.2 Risk Analysis

Risk Analysis (Appendix A.8) for the ORT LO design is based on the risk section of the conceptual MathCad Model (Appendix A.2). The cargo and slop tank volumes from the 140K DWT loading condition are input into the O_s matrix within the model. This loading condition is used since it represents the worst case risk scenario. Risk is based on the mean oil outflow of the vessel. When the volume of the cargo tanks are reduced, the mean oil outflow is reduced in turn. The tank volumes for the ORT LO are less than those used in the conceptual analysis, so the risk value is reduced (Table 4.11.2.1). The probabilities remain constant for all cases since they have no dependency on tank volumes.

Table 4.11.2.1 Probability, Oil Outflow, and Risk Comparison

Collision Type	Concept Design	ORT LO
P _{collision}	2.17 x 10 ⁻⁵	2.17 x 10 ⁻⁵
Pgrounding	5.42 x 10 ⁻⁵	5.42×10^{-5}
P _{OSIDE}	0.890	0.890
P _{OBOT}	0.896	0.896
P_{O}	0.893	0.893
O_{MS}	2652 m ³	1900 m ³
O_{MB}	1905 m ³	1051 m ³
O_{M}	0.0139	8.76 x 10 ⁻³
Risk	0.161 m^3	0.115 m^3

5.0 Conclusions and Future Work

5.1 Assessment

The VT Tanker meets or surpasses the requirements set forth by the customer. Table 5.1.1 displays the required and actual specifications for this tanker.

Table 5.1.1 Compliance with Owner's Requirements

Requirement	Specification	ORT LO Tanker
Dead Weight Tonnage	125,000 MT plus 15,000 MT margin	140080 MT
	for future growth	
Endurance Range	10,000 nm at 15 knots	15,612 nm at 15 knots
Minimum Sustained Speed	15 knots at 90% MCR	15 knots at 90% MCR
Maximum Sustained Speed	15.78 knots at 90% MCR	16 knots at 90% MCR
Cargo Segregation	Minimum 4x2 with 2% slop tanks	4x2 with 2% slop tanks
Maximum Full Load Draft	54 ft	51.84 ft (15.8m)
Maximum In-Ballast Height	50 m	39 m (with mast 49 m)
Above Water		
Maximum TOC	199.44 Million dollars	198.222 Million dollars
Maximum Risk	0.1597 m^3	0.115 m^3
Minimum Double Bottom	2.6 m	4 m
Height		
Minimum Double Side Width	3.8 m	4 m
Minimum Cargo Block	4x2	4x2
Subdivision		
Electric Plant Redundancy	1	1
Lightship Weight	27,983.52 MT	27,984.0 MT
Structural Margin Factor	1	1
Minimum Manning	20	20
Minimum Deck Height	4 m	4 m

The ORT LO Tanker incorporates proven technology and equipment throughout its design. The structure is designed using reliable, "off the shelf" materials. Its design is tested and adjusted using ABS SafeHull, a widely used, rule based method. The deckhouse design is based on block orientation which enhances producibility. Another choice of proven technology can be illustrated through the choice of a low-speed diesel engine for efficiency, maintainability, and reliability. The drive train is typical of this type of engine which does not require a reduction gear. The four blade fixed pitch propeller is chosen for its reliable performance in various sea states. The mechanical and electrical systems are sized and selected based on existing tanker technology. The cargo and ballast piping arrangements are derived from previous successful designs. The mechanical approach for a power conversion unit is chosen for proven reliability versus the relatively new solid state electrical approach. The chosen design facilitates production and ensures safe and efficient operation of the ORT LO ship.

5.2 Future Plans

5.2.1 Hull Form, Appendages and Deckhouse

The hull form has several options that should be addressed the next time around the design spiral. From the profile view it can be seen that the stern of the ship is small and has a very steep slope into the propeller area. This results difficulty in placing the rudder post and the rudder in order to have enough surface area and still clear the propeller by the proper distance. The solution to this would be to pull the stern out and flatten the buttocks to the propeller area. This would give a better mounting area, the extra room needed for the rudder and a better flow field to the propeller. A possible problem with this would be a slight increase in drag. Also the stern could be vertical as opposed to an angle to allow for better separation off the hull and better producibility.

The next noticeable option is with the plan view of the hull the stern transitions very fast to the stern. This is due to the attempt to make the hull form very sea worthy in heavy seas. It carries from the parent hull form from the FastGen tanker. The transition from the parallel midbody to the stern lines is abrupt. This will be difficult to fair and build and well as cause separation in the flow field. The next time around the design spiral the stern of the hull could be tapered more to allow for producibility and a better flow field. Also in this area there is a reverse hook of the buttocks which would result in poor producibility and poor flow. The solution to this problem is to make the stern fuller which still providing a nice taper to the shaft.

Looking at the area around the shaft it can be seen that the hull form is much to large to allow good flow to the propeller. This could be tapered down to the hub diameter to allow for a better flow field.

Another change that could be made to the hull form is that the parallel midbody should be moved aft. This would allow for better trim conditions, little or no ballast necessary in the aft peak tank during full loading. This would result in a smaller engine room and the resulting size would have to be studied for feasibility.

5.2.2 Structural Design and Analysis

A complete structural analysis, including SafeHull Phase B, should be pursued with a second time around the design spiral. Particular areas of attention should include the following aspects.

The length of the cargo tanks may expose the transverse members to excessive stresses due to the longitudinal deflection. The vertical stiffeners on floors should be analyzed in detail at the intersection of the plating and innerbottom. This should be analyzed using finite element analysis with a dense mesh, as these prove to be persistent crack problems. The future analysis should include secondary and tertiary stresses on apple-shaped web frame cutouts, butt-welds of plane stiffeners, collars, and transverse bilge brackets. Additionally, requirements for the innerbottom plating should be increased to keep static stress at a safe level, below yield for any combined loading condition. The innerbottom plating thickness should be tapered longitudinally to suit dynamic pressure heads. The implementation of the various types of the stiffeners to improve maintenance and durability should be investigated in greater detail.

5.2.3 Power and Propulsion

Several power and propulsion issues could be improved during a second trip around the design spiral. More diverse propeller options could be considered within NavCad, involving an increased number of blades and/or alternative propeller series. Engine fuel rate is currently the main parameter considered when choosing the optimum propeller. Other factors such as maneuverability, cost, and efficiency could be further investigated and analyzed in the optimization process.

5.2.4 Mechanical and Electrical Systems

More detailed equipment specifications and manufacturer information could be collected and incorporated in the Equipment List and Weight Report. These improvements would produce a more accurate value for Lightship weight and more detail in the machinery arrangement drawings.

5.2.5 Cargo Systems

Different COW systems could be looked at in the future. A combination of deck-mounted and submerged nozzles is worth looking at for time conservation. The benefits of using a dedicated inert gas generator and submersible cargo pumps could be looked at as well.

5.2.6 Manning

Crew size could be reduced if the level of shipboard automation is increased. With increased engine room automation, an unlicensed technician in the Engine Department could be eliminated. The crew size calculation could also reflect trade and route characteristics.

5.2.7 Space and Arrangements

There are two main areas in the space and arrangements of tanks that should be more closely examined. The potable water tanks and the sewage tanks are presently too difficult to build and maintain. Given the opportunity to go around the design spiral again these tanks would be separate tanks located on Flat 1 of the engine room. Separate tanks could be produced to be delivered as "drop-in units" and easily maintained due to easier access to all sides of the tanks. The steering gear room is very large. In the future, it could be utilized as a bosen stores area and a machine shop in addition to its original purpose.

Given another time around the design spiral, ballast tanks 5, port and starboard, should be looked at. These ballast tanks could be eliminated by extending ballast tank 4 under the slop, fuel, waste and generator fuel tanks. This would eliminate extra structure and piping, reducing the lightship weight. This ballast tank extension would have to be studied in the damage stability.

The two meter clearance between the main deck and the deckhouse could be eliminated for maintenance benefits. The catwalk clearance above the deck could be increased to four meters for easier accessibility and safety. These processes would allow for the catwalk over the main deck to match up to the B deck.

The deckhouse central stairs and stairwells should be increased in size. For increased crew mobility within the deckhouse, the stairs could be larger in width and length for each deck. Surrounding the stairs, at least 0.8 m of free space is needed to allow crew members to move freely from one deck to the next. Some exterior aft stairs accessing the Deck B should be traded for interior stairs. Interior stairs would allow crew members access to machinery rooms without moving through extreme weather conditions. The deck heights could be reduced from four meters to three meters and still satisfy the producibility requirements.

The navigation deck (Deck E) could accommodate increased privacy for the Master and Chief Engineer of the vessel. Access to these living quarters should be available without entrance into the bridge area. Future changes should include increased visibility out of the deckhouse. The elevator should also be designed to allow access to the navigation deck.

The following design change to the machinery space of the ship could be addressed in the future. The unusual availability of space in Flats 1 through Flat 3 of the machinery space should be studied for feasibility. An economic study of the reduction of free space in the machinery space could decrease the cost of the construction of the space.

5.2.8 Weights

Many SWBS group weights need to be refined. There are some components that need a more accurate and detailed weight documentation. Some component weights are missing which required estimates to be made. Research could be done to find out weights for the missing components.

5.2.9 Cost and Risk

Since the cost of the vessel is weight-based, refinement of the SWBS weight groups is going to effect cost directly. Ultimately the weight-based cost estimate must be replaced with a more product and process-based calculation.

More research can be done on mean oil outflow and probabilities of grounding and collision to achieve a more accurate risk value. Risk is based on oil outflow and probability, so the quantitative risk value is only as accurate as the data it is computed from.

5.3 Conclusion

The ORT LO tanker meets or exceeds all necessary requirements and regulations. The design of this vessel has been optimized using many different disciplines to ensure a complete analysis.

The ORT LO Tanker hull form has been optimized for the TAPS trade. It is based on a parent hull form design that has good seakeeping abilities while allowing for 140K DWT tank carrying capacity. A bulbous bow has been utilized to reduce wave making and viscous drag as well as increasing fuel efficiency. The bulwark is designed to deflect oncoming waves and reduce deck wetness. This all combines to ensure the ORT LO Tanker will deliver oil in the most demanding of sea conditions.

The structural configuration of the double-bottom hull and cargo tanks results in an effective design that satisfies the owners' requirements. The scantlings of the structural members are within accepted industry producibility limits. The stress distribution of the structure, although it requires further analysis, predicts a successful design. The unusually large innerbottom spacing proves to be a moderate factor in the structural design. The goal of high maintainability is achieved using sufficient openings for access and ventilation. The weight requirement is also met.

The propulsion system within the ORT LO Tanker incorporates a low-speed diesel engine chosen for its cost efficiency, proven technology, and maintainability. The system also includes a four-blade fixed pitch propeller due to its optimal efficiency and minimal fuel rate. The engine, in conjunction with the propeller, produces ample power to propel the ship efficiently and effectively. The propulsion system satisfies the requirements for endurance speed and range. The vessel exceeds the calculations for required endurance electrical power and endurance fuel.

The mechanical and electrical systems on the vessel satisfy the needs of the crew to successfully transport crude oil from the TAPS trade route. The systems facilitate the efficient operation of the tanker. The capacities of the generators on the vessel surpass the required power calculated in the MathCad Model (Appendix A.2). The electrical system is highly effective and safeguarded against failure. Both mechanical and electrical systems include space for future growth.

Cargo systems utilize the most advanced equipment available for safe and efficient cargo handling. The tanker is capable of transporting two grades of crude oil in segregated systems. The cargo piping serves alternative pairs of tanks and is cross-connected for redundancy, allowing any tank to be serviced by any cargo pump. The cargo pumps facilitate the timely loading and unloading of the cargo. To eliminate the possibility of deck spills, the cargo is offloaded through discharge headers that run through the cargo tanks.

The ballast water system is completely segregated from the cargo system to prevent contamination of either system. The ballast water exchange system on the ship requires less operation and maintenance of auxiliary equipment. This system will meet future ballast water exchange requirements. Ballast pumps supply the means for ballasting the ship to ensure stability during the offloading procedures and unloaded voyages.

COW systems ensure the maximum cargo holding capacity and remove crude oil debris from the tanks. IGS is necessary for safe storage of cargo while in route and meets all requirements set forth by the USCG. Oil monitoring systems are utilized to ensure that water-oil mixtures are not discharged into the sea.

The Manning Plan for the ORT LO Tanker contains sufficient crew to operate the vessel according to US COFR and USCG regulations. A conglomerate of licensed and unlicensed individuals perform all the required duties aboard the vessel. There is a high level of shipboard automation that allows a minimal crew of 20 persons.

The deckhouse exceeds the owners' requirements for crew size and additional personnel. The design incorporates the efficient use of five decks: two decks of machinery space, two decks of living quarters, and a navigation deck. Central stairs and elevator, and various exterior entrances allow crew members to move freely through the entire superstructure. Crew accommodations include individual staterooms, galleys, mess areas, and various rooms to provide an excellent crew living environment. The navigation deck provides outstanding visibility of the ship and surroundings, exceeding USCG visibility requirements.

The tank arrangements are designed to optimize environmental protection and provide easy maintenance. The ORT LO Tanker has four meter double side widths and a four meter double bottom height to provide the most protection against collision and grounding. This also provides easy access to the J-tanks for inspection and maintenance which increases overall ship safety and life. All fuel tanks, lube tanks, and waste oil tanks are contained within the four meter double side and four meter double bottom, providing protection against spills and short piping runs.

The machinery space design optimizes the space arrangements of various components of cargo, propulsion, and electrical equipment. The majority of the equipment surrounds the main engine. Components are positioned to work efficiently in performing their duty. Pumps interacting with cargo, ballast, and supply tanks are positioned within close proximity to their respective tanks. Other components are effectively positioned to provide control of

propulsion and electrical systems. All equipment in the machinery space performs together in an efficient manner to meet and exceed the owner's requirements.

Weights for the vessel have been balanced and optimized to ensure stability and trim requirements. Weights are summed in all of the loading conditions to ensure for accurate and feasible tonnage.

The tanker has been examined for intact stability in all loading conditions and meets the IMO A.167 Righting Energy Criteria with a margin of safety. Damage stability has been studied for each loading condition in the most critical cases. The damage stability criteria set forth by Annex I - Regulations for the Prevention of Pollution by Oil (Regulation 25, Section 2– Subdivision and Stability) has been satisfied for all possible worst case scenarios and is considered to be successful in all cases and loading conditions.

A seakeeping analysis was performed on the ORT LO tanker with various headings, seas and speeds specific to the TAPS trade route. Deck wetness, slamming and vertical accelerations were checked against a TAPS trade criterion with the ORT LO tanker passing all criteria. Our ship is capable of operating along the TAPS trade route 98% of the time.

The maneuvering characteristics of the ship are sufficient to produce a steady turning diameter of 555.58 meters with a steady in turn speed of 5.51 knots. The ORT LO tanker has turning path characteristics far below the maximum requirements. The tanker maneuvers exceptionally for its trade and route characteristics.

References

Brown, Dr. Alan and LCDR Mark Thomas, USN. "Reengineering the Naval Ship Concept Design Process." 1998.

- Brown, Dr. Alan and Michael Amrozowicz. "Tanker Environmental Risk Putting the Pieces Together." Massachusetts Institute of Technology (MIT), 1997.
- Brown, Dr. Alan and Benedikte Haugene. "Assessing the Impact of management and Organizational Factors on the Risk of Tanker Grounding." Massachusetts Institute of Technology (MIT), 1998.
- Cheung, Maxwell C. and Stephen B. Slaughter. "Innerbottom Design Problems in Double-Hull Tankers." Marine Technology and SNAME news. April 1998: 65- 73.
- Harrington, Roy L, ed. <u>Marine Engineering.</u> New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1992.
- Kracht, Alfred M. "Design of Bulbous Bows." SNAME Transactions. 86 (1979): 197- 217.
- Motor Ship Magazine. "The Millennium Class Tanker Design." 1999.
- Numata, H. and M. Tamashima. "Utilizing Pressure Differences in Ballast Water Exchange." <u>Naval Architecture</u> and Marine Engineering. September 1999: 24-25.
- Storch, Richard Lee. Ship Production. Maryland: Cornell Maritime Press, 1988.
- Comstock, John P., ed. <u>Principles of Naval Architecture</u>, New Jersey: Society of Naval Architects and Marine Engineers (SNAME), 1967.

Appendix A.1 Tanker Requirements and Restrictions

A.1.1 Circular of Requirements

Optimum Risk TAPS - Trade Tanker (ORT) Circular of Requirements

Requirements:

The customer requires a TAPS (Trans Atlantic Pipeline System) trade tanker to transport crude oil from Alaska to ports on the West Coast of the United States. Some of the specific requirements and specifications are located in Table A.1.1.1

Table A.1.1.1 Tanker Requirements

Requirement	Specification
Dead Weight Tonnage	125,000 MT plus 15,000 MT margin for future growth
Minimum Sustained Speed	15 knots At 90% MCR
Endurance Range	10000 nautical miles At 15 knots
Nominal Cargo Density	0.8674 MT/m^3
Delivery (Base)Year	2000
Service Life	30 years
Discount Rate	7%
Maximum Shipbuilder Profit Margin	8%
Cargo Segregation	Minimum 4x2 with 2% slop tanks
Maximum Full Load Draft	54 ft
Maximum In-Ballast Height Above Water	50 meters

The customer also requires certain specifications for the equipment on the tanker. Four cargo pumps are needed for a total offloading rate of 50,000 bbls/hr at 150 psig. These pumps are also required to sustain a maximum loading rate of 110,000 bbls/hr. Two ballast pumps are required for a total capacity of 110,000 bbls/hr. Piping must be provided for the potential addition of steady-flow ballast water exchange capability. The tanker must be equipped with a bow thruster for increased maneuverability.

A cost/oil pollution risk trade-off frontier must be provided for ship concept selection. The cost factor in the trade-off frontier is defined by the Total Ownership Cost (TOC). TOC includes the acquisition cost for the tanker and costs related to discounted fuel, manning, maintenance, and operational delay. The oil pollution risk factor is defined as an accident consequence. The accident consequence is the product of the mean oil outflow and accident probabilities. The mean oil outflow is determined by the simplified IMO probabilistic method. The accident probabilities include grounding and collision, which allows specific routes, ship design characteristics, and manning to be considered. Additional goals derived from the concept design cost-risk analysis are located in Table A.1.1.2.

Table A.1.1.2 Tanker Goals from Cost-Risk Analysis

Requirement	Specification
Maximum TOC	199.44 million dollars
Maximum Risk	0.1597
Minimum Sustained Speed at 90% MCR	15.78 knots
Minimum Double Bottom Height	2.6 meters
Minimum Double Side Width	3.8 meters
Minimum Cargo Block Subdivision	4 x 2
Electric Plant Redundancy	1
Minimum Manning	20
Structural Margin Factor	1
Minimum Deck Height	4 meters

Mission Scenarios:

- 1. Primary Mission Scenario Port Valdez to Cherry Point, Washington, Puget Sound
 - Port Valdez Approach route
 - Gulf of Alaska to Prince William Sound to Port Valdez, via Hinchinbrook Entrance following dedicated traffic lanes to Valdez Arm and Valdez Narrows.
 - Length of Route from Valdez Arm to Port Valdez approx. 22 miles
 - Average width of channel 3180 ft
 - Min. width of channel 2400 ft
 - Average depth of channel 800 ft
 - Min. depth of channel 350 ft
 - Required tug escorts from Hinchinbrook to Port Valdez
 - VTS required and supplied by USCG
 - Six turns total, 3 left, 3 right
 - If winds > 40 knots, Valdez Narrows closed
 - If 31-40 knots, 2-3 extra tug escorts required
 - Environmental concerns due to diverse wildlife population
 - Cherry Point, Washington
 - Tanker unescorted for 70 miles between Pacific Ocean and Port Angeles
 - In Puget Sound must have a Washington State licensed pilot on board

- 125,000 DWT limit
- Environmental concerns due to diverse wildlife population
- 2. Other possible mission scenarios and ports
 - San Francisco
 - Max. Draft 54 ft
 - Max. Height 164 ft
 - Number of total turns 10
 - Distance of transfer 35 miles
 - Time of transfer 2.33 hrs
 - Mean channel width 150 yards
 - Long Beach
 - Accommodates tankers from 50,000 to 260,000 DWT
 - Depth of water 45 ft
 - VTS oversees a 25 mile range
 - Two, 1 mile wide traffic lanes enter and exit the port
 - 2 mile separation between lanes
 - 12 knot precautionary area
 - Environmental concerns due to diverse wildlife population
 - Air quality issues reduction in emissions caused by vessels and operations
 - Need for cleaner burning fuel
 - Time to port 1.808 hrs
 - China (approx. every 5 years for dry docking and repairs)
 - About 10,000 miles from San Francisco to Hong Kong
 - Environment—current issues: endangered marine species include the dugong, sea lion, sea otter, seals, turtles, and whales; oil
 pollution in Philippine Sea and South China Sea
 - Ports and harbors: Hong Kong, Kao-hsiung, Los Angeles (US), San Francisco (US), Seattle (US), Shanghai (China)
 - Ships are subject to superstructure icing in extreme north from October to May
- 3. Typical Voyage Timeline round trip between Valdez and Cherry Point
 - North bound ship travels in ballast for 150 hours
 - Valdez terminal loading of crude oil, 24 hours
 - South bound ship under full load travels for 150 hours
 - Cherry Point 24 hours required to unload cargo and replenish supplies
 - Entire round trip voyage completed 23 times a year

Times include speed reduction in Gulf of Alaska and Cherry Point ports.

Required Operational Capabilities (ROCs):

- 1. Cargo and ballast system capacity to load/offload/deballast/ballast in 24 hours.
- 2. Crude Oil Washing (COW)

These systems powered by electrical motor driven pumps are used to clean the residual crude oil off the inside of the cargo tanks between ballast and cargo stages of each voyage.

3. Inert Gas Systems (IGS)

Inert gas systems are used to prevent explosions in the cargo tanks. Without these systems explosive fumes mix with air inside the tanks and become highly volatile. The inert gas systems pump the cargo tanks with inert gas, usually diesel engine exhaust from the diesel engines on board, to prevent these types of explosions.

4. Ballast water exchange

Ballast water exchange systems are a relatively new precaution in tanker design. These systems prevent the transportation of dangerous microorganisms from one region to another. It may be prudent to install Ballast water exchange systems into current tankers in expectation of future regulatory constraints.

5. Wartime Compliance

Tankers must be able to take part in the national emergency effort by complying with military sealift command standards for underway replenishment.

Projected Operational Environment:

1. Sea State

Appendix A.1.2 provides the annual sea state occurrences in the open ocean, North Pacific taken from Principles of Naval Architecture vol. III pg. 28. This definition should be used in ORT seakeeping and structural load calculations.

2. Temperature

Temperatures of the air and water are also important factors in the operational environment. Appendix A.1.2 is a collection of air temperatures at Valdez, Alaska, and Seattle, Washington. Also there is a collection of water temperatures in Anchorage, Alaska and Seattle, Washington.

3 Ice

Ice is another factor in the operational environment. There are, on average, 10-15 large icebergs in the tanker lanes at Valdez Alaska. Usually the tankers navigate around the ice so as to not cause any unnecessary risk. Ships can be ice strengthened in order to further protect the bow from ice collision damage. This ice strengthening is divided into classes AA, A, B, and C as defined in ABS Rules for Building and Classing, Section 29. Ice strengthening is not required for the ORT.

ABS Requirements Applicable to Concept Design:

- Construction Requirements specified in SAFEHULL
- Section 5: Rudders and Steering Gears
- Section 17: Superstructures and Deckhouses

- Section 19: Machinery Space and Tunnel
- Section 20: Bulwarks, Ports, Ventilators, and Portlights
- Section 22: Vessels intended to Carry Oil in Bulk
 - General
 - Special Requirements for Deep Loading
 - Arrangement
 - Ventilation
 - **Pumping Arrangements**
 - Electrical Equipment
 - Testing
 - Machinery Spaces
- Sections 31-42: Construction and Classification of Machinery
 - Conditions of Classification of Machinery
 - Internal-combustion Engines
 - Electrical Equipment
 - Pumps and Piping Systems
 - Propellers and Propulsion Shafting
 - Fire Extinguishing Systems
 - Shipboard Automatic and Remote-control Systems

Applicable CFR's:

- CFR 33 Part 157--Rules For The Protection Of The Marine Environment Relating To Tank Vessels Carrying Oil In Bulk
- CFR 46 Subpart 162.050--Pollution Prevention Equipment
- CFR 46 Part 162--Engineering Equipment
- CFR 33 Part 155--Oil Or Hazardous Material Pollution Prevention Regulations For Vessels
- CFR 33 Subpart D--Crude Oil Washing (Cow) System On Tank Vessels
- CFR 46 Subpart 32.53--Inert Gas System
- CFR 33 Part 151--Vessels Carrying Oil, Noxious Liquid Substances, Garbage, Municipal Or Commercial Waste, And Ballast Water
- CFR 33 Subpart A--Implementation Of Marpol 73/78 And The Protocol On Environmental Protection To The Antarctic Treaty As It Pertains To Pollution From Ships
- CFR 46 Part 111, Electric Systems--General Requirements
- CFR 46 Part 112, Emergency Lighting and Power Systems
- CFR 46 Part 39, Vapor Control Systems
- CFR 46 Part 170, Stability Requirements For All Inspected Vessels
- CFR 46 Part 172, Special Rules Pertaining To Bulk Cargoes
- CFR 46 Part 199, Subpart D: Additional Requirements For Cargo Vessels
- CFR 46 Part 50-64, Subchapter F: Marine Engineering (subsystems are listed, may apply)

Local Regulations:

Air pollution

The Marine Environment Protection Committee (MEPC) of the International Maritime Organization agreed on a program of follow-up action towards implementation of the new Annex VI on the Prevention of Air Pollution from Ships, which was adopted at a conference in September 1997. Annex VI, when it comes into force, will set limits on sulfur oxide and nitrogen oxide emissions from ship exhausts and prohibit deliberate emissions of ozone depleting substances.

2. Anti-fouling paint

The Marine Environment Protection Committee (MEPC) of the International Maritime Organization has agreed to draft mandatory regulations to phase out and eventually prohibit the use of toxic anti-fouling paints containing toxins such as tributyl tin (TBT). At the recently concluded 21st session of the International Maritime Organization (IMO) Assembly in London in November, a resolution was approved that calls for the elimination of organotin biocides by 2003. The resolution bans the application of tin biocides as anti-fouling agents on ships by January 1, 2003 and prohibits the presence of tin biocides by January 1, 2008.

A.1.2 Annual Sea State Occurrences for the North Pacific

Table A.1.2.1 Annual Sea State Occurrences in the North Pacific

	Significan Height		Significan Height	t Wave (ft)	Sustaine Speed (1		Percentage		Vave Period Sec)
Sea State Number	Range	Mean	Range	Mean	Range	Mean	Probability of Sea State	Range**	Most Probable***
0.1	0-0.1	0.05	3-0.3	0.15	0-6	3	1.30		_
0-1	0.1-0.5	0.00	0.3-1.6	1.0	7-10	8.5	6.40	5.1-14.9	6.3
2			1.6-4.1	2.9	11-16	13.5	15.50	5.3-16.1	7.5
3	0.5-1.25	0.88					31.60	6.1-17.2	8.8
4	1.25-2.5	1.88	4.1 - 8.2	6.2	17-21	19			
5	2.5-4	3.25	8.2-13.1	10.7	22-27	24.5	20.94	7.7-17.8	9.7
6	4-6	5	13.1-19.7	16.4	28-47	37.5	15.03	10.0 - 18.7	12.4
7	6-9	7.5	19.7-29.5	24.6	48-55	51.5	7.60	11.7-19.8	15.0
0			29.5-45.9	37.7	56-63	59.5	1.56	14.5-21.5	16.4
8	9-14	11.5						16.4-22.5	20.0
>8	> 14	> 14	> 45.9	45.9	> 63	> 63	0.07	10.4-22.0	20.0

Ambient wind sustained at 19.5 m above surface to generate fully-developed seas. To convert to another altitude, H_2

ambient wind sustained at 1.5 in adversariate to generate tany exceptions apply $V_2 = V_1(H_2/19.5)^{1/3}$. Minimum is 5 percentile and maximum is 95 percentile for periods given wave height range. **Based on periods associated with central frequencies included in Hindcast Climatology. Source: Lee and Bales (1984).

Appendix A.2 Concept Design MathCad Model

TANKER Model - LO ORT

hp= 33000 ft-lbf	knt=1.69 _ft sec	milø knthr	MT=1000-kg-g	ltom2240lbf
Physical				
Sea water		$\rho_{SW} = 1.9905 \frac{\text{slug}}{\text{ft}^3}$	$\gamma_{SW^{m}\rhoSW^{\cdot}g}$	$v_{SW} = 1.281710^{-5} \frac{1}{s}$
Air properties:	A := 0.0023817 / f	lug t		
Liquids specific		$\gamma_F := 42.3 \frac{\text{ft}^3}{\text{Iton}}$	γ _{LO} := 39- <u>ft</u> 3	$\gamma_W = 36 \cdot \frac{\text{ft}^3}{\text{Iton}}$

Input - Owner's Requirements (All

PMF:= 1.0

Endurance	V e := 15-knt	MCR:= .9		
	o balance the resis acity for specified	stance and installed	propulsion e is specified ar	nd determines
Range and store:	s E:= 1000	Omile T c := E	T _S = 27.777778day	

DWT:= 140321MT Cargo Pumps: N COP := 4 Ballast Max Section Margins weight:

WMF:= 0.06 Input - Design Parameters (Input from Summary Page at

electrical load EDMF:= 1.0 EFMF:= 1.01 E24MF:= 1.2

NC01.= 41	14010 41	140041	NCD .= 41	Niido.= 21
Cbtmin= 2.0	Clbmin= 5.	Cbmin= .7	CDmin= 1.2	hdbmin= 2.0
Cbtmax= 4.0	Clbmax= 7.	Cbmax:= .9	CDmax= 3.0	hdbmax= 4.0
Nwds:= 21	Nmanfac≈ 11	Nsmf≈ 6	NHDK:= 11	NNcargα≈ 5
wdsmin= 2.0	manfacmi# .5	smfmir= 1.0	HDKmin= 3.0	Neargomis 4
wdsmax= 4.0	manfacma≈ 1.0	smfmax= 1.5	HDKmax= 4.0	Neargomax= 8
NPsystype= 6	NNkw:= 2	NNstern= 2		
Psystypemin 1				

KG_{MARG}= 0·m

$$\begin{array}{lll} C_{BT} := Cbtmin+ DP_1 & \underbrace{(Cbtmax-Cbtmin)} & C_{LB} := Cbtmin+ DP_2 & \underbrace{(Cbtmax-Clbmin)} & \\ C_{B} := Cbtmin+ DP_3 & \underbrace{(Cbtmax-Cbtmin)} & \\ C_{D} := Cbtmin+ DP_4 & \underbrace{(Cbtmax-Cbtmin)} & \\ NCD & -1 & \\ \end{array}$$

$$\label{eq:DB} $$h$ DB := hdbminm + DP_5 \frac{(hdbmax - hdbmin) m}{Nhdb - 1} $$w := wdsminm + DP_6 \frac{(wdsmax - wdsmin) m}{Nwds - 1}$$$$

 $ManFac := manfacmin + DP_{7} \cdot \frac{(manfacmax - manfacmin)}{Nmanfac - 1}$ SMF := smfmin+ DP₈ (smfmax- smfmin)

 $\label{eq:hdkmax} \text{H}_{DK} \coloneqq \text{HDKminm} + \text{DP}_{9} \cdot \frac{(\text{HDKmax-HDKmin}) \text{ m}}{\text{NHDK-1}}$ N CARGO := Neargomin+ DP₁₀ (Neargomax - Neargomin) NNeargo - 1

PSYS TYP := Psystypemin+ DP₁₁ (Psystypemax- Psystypemin)
NPsystype - 1 N $_{\mathrm{KW}} \coloneqq \mathrm{DP}_{12}$

 $C_{BT} = 3.15$ $C_{LB} = 5.05$ $C_B = 0.83$ $C_D = 1.74$ (Hull coefficients)

N CARGO = 4 h DB = 3.9 m w = 4 m (Double Hull Dimensions and Cargo Block Subdivision) ManFac = 0.7 (Reduction from standard crew size due to automation)

(Structural Margin Factor, 1.0 satisfies ABS corrosion allowance)

PSYS TYP = 2 N KW = 1 (Propulsion System and Power Redundancy Options)

 $N_{\text{stern}} = 2$ $C_{\text{stern}} = if(N_{\text{stern}} = 2, -25, -11)$ PC := if(N stern=2,.75,.7)

Principal Characteristics and Coefficients on DWL

$$V_{FL} \approx \frac{w_{FL}}{\gamma_{SW}} = C_{M} \approx C_{X} = C_{P} \approx \frac{C_{B}}{C_{M}}$$

$$LWL \approx \left(\frac{V_{FL}C_{BT}C_{LB}^{2}}{C_{P}C_{M}}\right)^{\frac{1}{3}} = B \approx \frac{LWL}{C_{LB}} = T \approx \frac{B}{C_{BT}}$$

 $A_M := C_{M'}B \cdot T$ $C_W := 0.36 + 0.64 \cdot C_P$ $A_W := C_{W'}LWL \cdot B$ $D := C_{D'}T$

 $LWL = 251.39474 \; m \qquad B = 49.781137 \; m \qquad D = 27.498152 \; m \qquad T = 15.803535 \; m \qquad W_{FL} = 1.684 \cdot 10^5 \text{ M} T = 10.803535 \; m \; = 10.8$ $C_M = 0.995$ $C_P = 0.834171$ $C_W = 0.893869$ $A_W = 1.118652 \cdot 10^4 \text{ m}^2$ $V_{FL} = 1.641547 \cdot 10^5 \text{ m}^3$

 $W_{ENG} = N_P \cdot W_{PENG}$ $W_{ENG} = 722 \cdot MT$ $w_{MBreq} := if(N_{p}=2, 2\cdot w_{ENG} + 24\cdot m, w_{ENG} + 12\cdot m)$ ${\rm L_{MBreq} \coloneqq L_{ENG} + 12 \cdot m} \qquad {\rm H_{MBreq} \coloneqq H_{ENG} \cdot 1.5}$

Inlet/exhaust cross section area required for each PE:

$$A_{IE} := \frac{40.877 \cdot m^2}{2 \cdot 15015 \cdot hp} \cdot N_P \cdot P_{BPENG}$$
 $A_{IE} = 41.598439 \text{ m}^2$

Manning and Deckhouse Volume

N_T defines the total crew size, N_t the additional accommodations: N_A := 3

$$N_T := 10 + cei \left[ManFac \left(N_P \cdot 4 + \frac{V_{FL}}{16000 \cdot m^3} \right) \right]$$
 $N_T = 20$

Provisions:
$$W_{F31} := N_T \cdot 2.0 \cdot 10^{73} \frac{1 ton}{day} T_S$$
 $W_{F31} = 1.128941 \cdot MT_S$

$$\begin{aligned} & \text{General stores:} & \text{ W}_{F32} = 0.0002 \frac{\text{Ilon}}{\text{day}} \text{ T}_{S} \text{ N}_{T} + 0.004 \cdot \text{Ilon} \text{ N}_{T} \end{aligned} \qquad & \text{ W}_{F32} = 0.363519 * \text{MT} \end{aligned}$$

$$& \text{Crew}: & \text{ W}_{F10} = 400 \cdot \text{IbFN}_{T} \qquad & \text{ W}_{F10} = 3.628739 * \text{MT} \qquad & \text{ W}_{crew} = W$}_{F31} * \text{ W}_{F32} * \text{ W}_{F10} \end{aligned} \qquad & \text{ W}_{crew} = 5.121199 * \text{MT} \end{aligned}$$

1) 46 CFR Ch.I 32.20-1 (10-1-98 Edition, conning vision):
$$d_m = 2.m + .02 \, \text{LWL} \qquad \text{(minimum draft in ballast)} \qquad d_m = 7.027895 \, \text{m}$$

$$d_m = 2 - m + .02 + W + U$$
 (minimum oratin balast) $d_m = 7.02 + W + U$
 $L_{V} = 500 \text{ m} + .85 + W + U$
 $H_{V} = \frac{\left(D + H_{DK} - d_m\right)}{500 \text{ m}} + U_{V} + 1 \text{ m}$
 $H_{V} = 35.928136 \text{ m}$

2) $A_C := 11200 \cdot ft^2$ Constant areas (lounges, galeys, laundry, elevator, stair tower, LAN, etc.) $A_{CO2} := 1012 \cdot ft^2$ $A_{MechShop} := 2953 \cdot ft^2$ $A_{LAN} := 350 \cdot ft^2$ $A_{Req} := A_{CO2} + A_{MechShop} + A_{C} + A_{Bridge} + A_{LAN}$ $A_{Req} = 1.7202 \cdot 10^4 \cdot ft^2$

3) Living areas: $A_L := (N_T + N_A) \cdot (240 \cdot ft^2 + 18 \cdot ft^2) + 1800 \cdot ft^2$

4) Store areas:
$$A_S := (N_T + N_A) \cdot 131 \cdot ft^2$$
 $C_{passage} := 1.157$

5) Total Deck House Area: A DH: (A Req + A L + A S) C passage

6) Number of Deck House Decks:
$$N_{DK} = cel \left(\frac{H_V - D + d_m}{H_{DK}}\right)$$
 $N_{DK} = 5$ if $N_{DK} < 5$ $N_{DK} = 5$ $N_{DK} = 5$

7) Area of each Deck House Deck: A DK := A DH N DK

8) Breadth and Length of the Deck House:
$$B_{DH} \approx B - 8 \cdot m$$
 $L_{DHreq} \approx \frac{A_{DK}}{B_{DH}}$ $L_{DHreq} = 14.380676 \cdot m$

9) Deck House Volume: $V_D = N_{DK} \cdot H_{DK} \cdot B_{DH} \cdot L_{DHreq}$ $V_D = 4.2437 \cdot 10^5 \cdot \text{eff}^3$

 $L_{\rm IEreq} := \frac{2 \cdot N_{\rm P} \cdot A_{\rm IE} + A_{\rm CO2} + A_{\rm IG} + A_{\rm Gen}}{2 \cdot \left(B_{\rm DH} - 10 \cdot m\right)} \qquad L_{\rm IEreq} = 5.465713 \text{ m}$

11.) Required Length for the Superstructure: L SSreq $^{:=}$ L DHreq $^{+}$ L IEreq L SSreq $^{:=}$ $^{$ $V_{SS} := L_{IEreq} \cdot 2 \cdot H_{DK} \cdot (B_{DH} - 10 \cdot m) + V_{D} \qquad V_{SS} = 4.734451 \cdot 10^{5} \cdot m^{3}$

Resistance and Power

Viscous Drag

i := 1..9 $V_i := i \cdot 2 \cdot knt$ $V_7 := V_e$ $V_e = 15 \cdot knt$ $V_8 := V_S$ $V_S = 15.74 \cdot knt$

Correlation allowance: $C_A = 0.0005$

 $A_{BT} = .05 \cdot A_{M}$ $A_{BT} = 39.139218 \text{ m}^2$

$$S := LWL \cdot (2 \cdot T + B) \cdot \sqrt{C_M} \left(.453 + .4425 \cdot C_B - .2862 \cdot C_M - .003467 \cdot \frac{B}{T} + .3696 \cdot C_W\right) + 2.38 \cdot \frac{A_{BT}}{C_B} \qquad S = 1.756139 \cdot 10^4 \text{ m}^2$$

$$L_R := (1 - C_P) \cdot LWL$$
 $L_R = 41.688575 \text{ m}$ (Run length)

c 14 := 1 + .011-C etarn

$$\text{formfac:= .93 + .487118 c} \\ 14 \left(\frac{T}{LWL} \right)^{46006} \left(\frac{B}{LWL} \right)^{1.08006} \left(\frac{LWL}{LR} \right)^{1.21563} \left(\frac{LWL}{V} \right)^{1.21563} \left(\frac{LWL}{V} \right)^{3.6846} \left(1 - C \right)^{-60424} \\ \text{formfac:= 1.27176}$$

$$\text{Using the ITTC friction expression:} \qquad R_i \approx \frac{V_i}{\sqrt{LWL}} \qquad R_{N_i} \approx LWL - \frac{V_i}{v_{SW}} \qquad C_{F_i} \approx \frac{0.075}{\left(\log(R_{N_i}) - 2\right)^2}$$

$$R_{V_i} := \frac{1}{2} \cdot \rho_{SW} \cdot S \cdot C_{F_i} \cdot (V_i)^2 \cdot formfac$$

Wave Making Drag

$$C_{V} := \frac{V_{FL}}{LWL^{3}}$$
 $C_{V} = 0.01033$ $C_{X} = 0.995$ LWL = 251.39474 m B = 49.781137 m

$$\rm A_{BT} = 39.139218~m^2 \qquad (bulb \ section \ area \ at \ FP)$$

$$\begin{split} & h_B := \sqrt{\frac{A_{BT}}{\pi}} & \qquad h_B = 3.529646 \text{ m} & \qquad \text{(height of bulb center)} \\ & A_{T} := \frac{B_{TTC} \chi}{100} & \qquad A_T = 78.278436 \text{ m}^2 & \qquad \text{(transom area)} & \qquad A_M = 782.784364 \text{ m}^2 \\ & \qquad \qquad V_i & \qquad \qquad \end{split}$$

Call the residuary drag coefficients module, which calculates & for different beam to draft ratios:

$$c_3 := \frac{.56 \cdot A_B T}{B \cdot T} \left(31 \cdot \sqrt{A_B T} + T - h_B \right) \qquad c_3 = 0.012263 \qquad c_2 := \exp\left(-1.89 \cdot \sqrt{c_3} \right) \qquad c_2 = 0.811156$$

$$c_5 := 1 - \frac{.8 \cdot A_T}{B \cdot T \cdot C_M}$$
 $c_5 = 0.92$

$$\lambda_R := \begin{cases} 1.446 \cdot C_P - .03 \cdot \frac{LWL}{B} & \text{if } \frac{LWL}{B} < 12 \end{cases} \qquad \lambda_R = 1.054711$$

$$1.446 \cdot C_P - .036 & \text{otherwise} \end{cases}$$

$$c_{15} = \begin{cases} -1.69385 & \text{if } \frac{LWL^3}{V_{FL}} < 512. \\ \\ 0.0 & \text{if } \frac{LWL}{V_{FL}} > 1726.91 \\ \\ \frac{LWL}{\frac{1}{3}} = 8 \\ -1.69385 + \frac{V_{FL}}{\frac{1}{3}} & \text{otherwise} \end{cases}$$

$$i_{E} \approx 1 + 89 \cdot exp \left[- \left(\frac{LWL}{B} \right)^{80885} \cdot \left(1 - C_{W} \right)^{30484} \left(1 - C_{P} \right)^{6367} \left(\frac{L}{B} \right)^{34574} \cdot \left(\frac{100 \cdot V_{FL}}{LWL^{3}} \right)^{16302} \right] \\ \qquad \qquad i_{E} = 51.68436 \cdot \frac{1}{2} \cdot \frac{1}$$

$$c_1 := 2223105 \cdot c_7^{3.78613} \left(\frac{T}{B}\right)^{1.07961} \cdot \left(90 - i_{\overline{E}}\right)^{-1.37565}$$
 $c_1 = 9.290851$

$$m_1 := .0140407 \cdot \frac{LWL}{T} - 1.75254 \cdot \frac{V_{FL}^{\frac{1}{3}}}{LWL} - 4.79323 \cdot \frac{B}{LWL} - c_{16} \qquad m_1 = -2.24814$$

$$m_{4_i} := .4 \cdot c_{15} \cdot \exp \left[-.034 \cdot \left(F n_i \right)^{-3.29} \right]$$

$$R_{W_{i}} = V_{FL}, p_{SW}, gc_{1}, c_{2}, c_{5}, exp \left[m_{1}, (Fn_{i})^{-.9} + m_{4_{i}}, cos \left[\frac{\lambda_{R}}{(Fn_{i})^{2}} \right] \right]$$

$$P_B := \frac{.56 \cdot A_{BT}^{..5}}{(T - 1.5 \cdot h_B)}$$
 $P_B = 0.333373$

$$\min_{i} := \frac{V_{i}}{\sqrt{g \cdot (T - h_{B} - .25 \cdot A_{BT})^{-5} + .15 \cdot (V_{i})^{2}}}$$

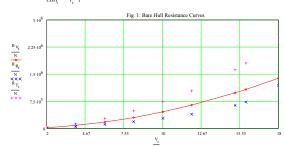
$$\sqrt{s} \cdot \left(1 - a_B - \frac{3}{2} - \frac{3}{2}\right) \cdot \left(Fni_0^{-3} - A_{BT}\right) + \dots \cdot \left(\frac{3}{2}\right)}{1 + \left(Fni_0^{-3} - \frac{3}{2}\right) \cdot \left(Fni_0^{-3} - A_{BT}\right) \cdot A_{BT}^{-1.5} \rho_{SW'S}}$$

$$1 + \left(Fni_0^{-3} - \frac{3}{2} - \frac{3}{2}\right) \cdot \left(Fni_0^{-3} - A_{BT}\right) \cdot A_{BT}^{-1.5} \rho_{SW'S}$$

$$FnT_i := \frac{V_i}{\boxed{\frac{2 \cdot g \cdot A \cdot T}{B + B \cdot C \cdot W}}}$$

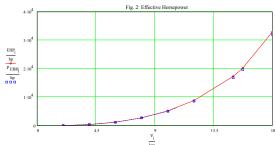
$$c_{6_i} := \begin{bmatrix} .2 \cdot (1 - .2 \cdot FnT_i) & \text{if } FnT_i < 5 \\ 0. & \text{otherwise} \end{bmatrix}$$

$$R_{TR_i} := .5 \cdot \rho_{SW} \cdot (V_i)^2 \cdot A_{T} \cdot c_{6_i}$$


$$R_{A_i} := .5 \cdot \rho_{SW} \cdot (V_i)^2 \cdot S \cdot C_A$$

Bare Hull Resistance

$$R_{T_i} = R_{V_i} + R_{R_i}$$


Ship Effective Horsepower

Bare hull: $P_{EBH_i} = R_{T_i} \cdot V_i$

Air frontal area (+5% for masts, equip., etc): A $_F$:= 1.05·B· $\left(D$ = T + N $_{DK}$ ·H $_{DK}\right)$ $A_F = 1656.683718 \text{ m}^2$ $C_{AA} := 0.7$ $P_{EAA_i} := \frac{1}{2} \cdot C_{AA} \cdot A_{F} \cdot \rho_{A} \cdot \left(V_i\right)^3$

Total effective horsepower: $EHP_i := PMF \cdot \left(P_{EBH_i} + P_{EAA_j}\right)$

Power Balance

Approximate propulsive coefficient:

$$SHP_i := \frac{EHP_i}{PC}$$
 $SHP_e := SHP_7$ $SHP_e = 2.298913 \cdot 10^4 \cdot hp$ $SHP_S := SHP_8$

Required installed power

$P_{IREQ} := \frac{SHP_c}{\eta \cdot MCR}$ $P_{IREQ} = 26064.8 \cdot hp$	$P_{IS} := \frac{SHP_S}{\eta \cdot MCR}$	$P_{IS} = 3.050251 \cdot 10^4 \circ hp$
--	--	---

Space

Total hull volume:	$V_{HT} := C_{B} \cdot LWL \cdot B \cdot D$	$V_{HT} = 2.856292 \cdot 10^5 \text{ m}^3$
Total ship volume:	$V_T := V_{HT} + V_D$	V _T = 297646.01 m ³

Electrical Load

Based on DDS 310-1. Estimate n	naximum functional load for winter cruise cond	ition:
$KW_P \coloneqq 0.00323 \cdot \frac{kW}{hp} \cdot P_I$	(SWBS 200, propulsion).	KW p = 98.7088 •kW
$KW_S \coloneqq 0.0031 \frac{kW}{ft^2} \cdot LWL \cdot T \cdot N_P$	(SWBS 561, steering).	KW _S = 132.56907•kW
$KW_E := 0.0002 \cdot \frac{kW}{ft^3} \cdot V_D$	(SWBS 300, electric plant, lighting).	KW _E = 84.873997•kW
KW M := 25·kW (SWBS	430+475, miscelaneous).	KW _M = 25 •kW
$KW_F := 0.00002 \cdot \frac{kW}{ft^3} \cdot \left(V_T\right)$	(SWBS 521, firemain).	KW _F = 210.225393 •kW
$KW_A := 0.65 \cdot N_{T} \cdot kW$	(SWBS 530+550, misc aux).	KW _A = 13 •kW
KW _{SERV} := $0.395 \cdot N_T kW$	(SWBS 600, services).	KW $_{\mathrm{SERV}}$ = 7.9 kW
KW H := $0.0007 \cdot \frac{kW}{ft^3} \cdot (V_D)$	KW _H = 297.058991 •kW	
KW $_{V} := 0.103 \cdot \text{KW}$ $_{H}$	$KW_V = 30.597076 \cdot kW$	
$KW_{AC} := 0.67 \cdot \left[0.1 \cdot kW \cdot N_T + 0.0 \right]$	$0067 \cdot \frac{\text{kW}}{\text{ft}^3} \cdot \text{V}_{\text{D}}$ KW AC = 191.839687 •kW	
KW _{BT} := N _{BT} 2237⋅kW K	W _{BT} = 2237 •kW	

 $\label{eq:KW} \text{KW}_{\text{CARGO}} := \text{KW}_{\text{BP}} + \text{KW}_{\text{COP}} + \text{KW}_{\text{COW}} + \text{KW}_{\text{CSP}} \qquad \text{KW}_{\text{CARGO}} = 6755 \text{+kW}$

 $\mathsf{KW}_\mathsf{SSMFLM} \coloneqq \mathsf{EDMF}\text{-}\mathsf{EFMF}\text{-}\mathsf{KW}_\mathsf{SSMFL}$ KW _{SSMFLM} = 908.93266 •kW (MFL w/margins)

KW PTOMFLM: EDMF-EFMF-KW PTOMFL KW PTOMFLM = 7958.715825 •kW (MFL w/margins)

 $\text{KW}_{\text{DG}} \approx \text{N}_{\text{KW}} \cdot \text{cei} \left(\frac{\text{KW}_{\text{SSGREQ}}}{250 \cdot \text{kW}} \right) \cdot 250 \cdot \text{kW} + \text{KW}_{\text{EMERG}}$ KW _{DG} = 1750 •kW

Space

Tankage

Fuel

Based on [3]. Start with fuel for propulsion systems Average endurance brake horsepower required:

$$P_{eBAVG} = \frac{SHP_e}{\eta}$$
 $P_{eBAVG} = 2.34583 \cdot 10^4 \cdot hp$

Correction for instrumentation inaccuracy and machinery design changes:

$$f_1 := \begin{array}{ll} 1.04 & \text{if 1.1-SHP e} \, s \frac{1}{3} \, \frac{P_1}{2} & f_1 = 1.03 \\ \\ 1.03 & \text{if 1.1-SHP e} \, e^2 \frac{2}{3} \, \frac{P_1}{2} & \text{SFC }_{ePE} = 0.273373 \cdot \frac{lbf}{hp \cdot hr} \\ \\ 1.02 & \text{otherwise} \end{array}$$

Specified fuel rate: $FR_{SP} := f_1 \cdot SFC_{ePE}$

FR AVG = $0.295653 \times \frac{lbf}{hp \cdot hr}$ Average fuel rate allowing for plant deterioration: $FR_{AVG} = 1.05 \cdot FR_{SP}$ Burnable propulsion endurance fuel weight: $W_{BP} := \frac{E}{V_{P}} \cdot P_{eBAVG}FR_{AVG}$ $W_{BP} = 2064.142357 \cdot lton$

Required propulsion fuel weight: $W_{FP} := \frac{W_{BP}}{TPA}$ W FP = 2172.781428 •lton

Required propulsion fuel tank volume (including allowance for expansion and tank internal structure):

V_{FP} := 1.02·1.05·γ_F·W_{FP} $V_{FP} = 2787.345259 \text{ m}^3$

SFC $_{G} := 0.4727 \cdot \frac{\text{lbf}}{\text{hp-hr}}$ $\mathsf{SFC}_{eG} \coloneqq \mathsf{SFC}_{ePE} \quad \text{ (assumes PTO)}$

Margin for instrumentation inaccuracy and machinery design changes: $$\rm f_{1e} \coloneqq 1.04$$

Specified fuel rate: FR $_{GSP} := f_{1e} \cdot \text{SFC}_{eG}$

Average fuel rate, allowing for plant deterioration: $FR_{GAVG} := 1.05 \cdot FR_{GSP}$ $FR_{GAVG} = 0.400327 \cdot \frac{lbf}{kW \cdot br}$

Burnable electrical endurance fuel weight:

W Be = 278.421645 •MT $W_{Be} := \frac{E}{V_e} \cdot KW_{24AVG} \cdot FR_{GAVG}$

V $_{e}$ Required electrical fuel weight: $W_{Fe} := \frac{W_{Be}}{TPA}$ W Fe = 288.446737 •lton

```
Required electrical fuel volume: V_{Fe} = 1.02 \cdot 1.05 \cdot \gamma_{Fe} \cdot W_{Fe} = 370.032915 \text{ m}^3
                                                                                                                                                                                                                                                                                                                                             W_4 := \frac{C_{400}}{ManFac}
                                                                                                                                                                                                                                                                                                                                                                                                                                 W. = 8.012256 •MT
  Total fuel weight and tanks volume: W_{F41} = W_{FP} + W_{Fe}
                                                                                                                                                                                                       W F41 = 2461.228165 •lton
                                                                                                                                                                                                         V_F = 3157.378174 \cdot m^3
                                                                                                                                                                                                                                                                                                                                           SWBS 500
                                                                                                                    V_F := V_{FP} + V_{Fe}
  Other Tanks
                                                                                                                                                                                                                                                                                                                                              W_{AUX} \coloneqq \left[0.00067 \cdot \left(\frac{V_D}{R^3}\right)^{1.443} + 5.14 \cdot \frac{V_D}{R^3} + 6.19 \cdot \left(\frac{V_D}{R^3}\right)^{0.7224} + 377 \cdot N_T + 2.74 \cdot \frac{P_D}{hp}\right] \cdot 10^{-4} \cdot lton + 200 \cdot lton
 Lubrication oil:
                                                       W_{F46} := 17.6 \cdot lton V_{LO} := 1.02 \cdot 1.05 \cdot W_{F46} \cdot \gamma_{LO} V_{LO} = 20.816688 \text{ m}^3
  Potable water:
                                                       W_{F52} := N_{T} \cdot 7.3 \cdot lton
                                                                                                                                         W F52 = 146 olton
                                                                                                                                                                                                     N_T = 20
                                                                                                                                                                                                                                                                                                                                                                                                                                      W_{598} = 0.000062 \cdot V_T \frac{lton}{rt^3}
                                                         V_W := 1.02 \cdot W_{F52} \cdot \gamma_W
                                                                                                                                          V_{W} = 151.810013 \text{ m}^3
                                                                                                                                                                                                                                                                                                                                             W_{AUXCARGO} := 955 \cdot MT + 1.9 \cdot \frac{MT}{m} \cdot LWL \cdot \frac{\left(N_{CARGO} + 6\right)}{12}
                                                         V_{SEW} := (N_T + N_A) \cdot 2.005 \cdot ft^3 V_{SEW} = 1.305831 \text{ m}^3
                                                                                                                                                                                                                                                                                                                                              Environmental support: W 593 := 8-lton
                                                                                                                                     V<sub>WASTE</sub> = 63.147563 m<sup>3</sup>
  Waste oil:
                                                        V_{\text{WASTE}} = 0.02 \cdot V_{\text{F}}
                                                                                                                                                                                                                                                                                                                                                                   W<sub>5</sub> := W AUX + W AUXCARGO + W 593 + W 598
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                W<sub>e</sub> = 2473.740418 •MT
    Total ship tankage volume required:
                                                                                                                                                                                                                                                                                                                                           SWBS 600
     V_{TK} := V_F + V_{LO} + V_W + V_{SEW} + V_{WASTE} V_{TK} = 3394.458269 \text{ m}^3
                                                                                                                                                                                                                                                                                                                                                                                                             C_{600} := .1027 \cdot \frac{MT}{2}
                                                                                                                                                                                                                                                                                                                                             SWBS 600 Coefficient:
    Cargo Volume, Weights and VCGs
                                                                                                                                                                                                                                                                                                                                              W<sub>6</sub> := C 600 · V D
                                                                                                                                                                                                                                                                                                                                                                                                                      W<sub>6</sub> = 1234.127395 • MT
         B_{CB} := B - 2 \cdot w
         D_{CB} := D - h_{DB}
                                                                                                                                                          C STK := .6 C FTK := .8
                                                                                                                                                                                                                                                                                                                                           SWBS 700
                                                                                                                                                                                                                                                                                                                                                                                                               W_a = 1.376489 \cdot 10^5 \cdot MT
          W_{CARGO} := DWT - W_{F41} - W_{F46} - W_{F52} - W_{crew} W_{CARGO} = 1.376489 \cdot 10^5 \text{ oMT}
                                                                                                                                                                                                                                                                                                                                              W<sub>7</sub> := W CARGO
                                                 W CARGO
                                                                                                                                                                                                                                                                                                                                           Weight Summary
         C CARGO = (98.7 CARGO
                                                                                                                    C_{CARGO} = 1.6193 \cdot 10^5 \text{ m}^3
                                                                                                                                                                                                                                                                                                                                          \label{eq:wargin} \text{Margin for future growth:} \qquad \text{W}_{margin}\text{=} \text{ WMF} \cdot \sum^{0} \quad \text{W}_{i} \qquad \qquad \text{W}_{margin}\text{=} \text{ 1583.972743 -MT}
                                                                           ^{.98 \cdot N} CARGO ^{\cdot C} CARGO
          L_{CTK} := \frac{1}{\left(N_{CARGO} - 1 + C_{FTK} \cdot C_{B}\right) \cdot B_{CB} \cdot D_{CB} \cdot \left(C_{B} + .164\right)}
                                                                                                                                                                                                                                                                                                                                         W<sub>LS</sub> = 2.798352 \cdot 10^4 \circ MT
                                             .02·C CARGO
         L_{STK} := \frac{C_{STK} \cdot C_{B} \cdot B_{CB} \cdot D_{CB}}{C_{STK} \cdot C_{B} \cdot B_{CB} \cdot D_{CB}}
                                                                                                                                                                                                                                                                                                                                           Total weight:
                                                                                                                                                                                                                                                                                                                                                                                                                               W<sub>T</sub> = 1.683045·10<sup>5</sup>•MT
                                                                                                                                                                                                                                                                                                                                              W_T := W_{LS} + DWT
         L_{CB} := L_{CTK} + L_{STK}
                                                                                                                            L<sub>CB</sub> = 183.367775 m
                                                                                                                                                                                                                                                                                                                                             Stability
     Ballast Tanks
                                                                                                                                                                                                                                                                                                                                          Calculate light ship weight groups center of gravity and moment.
                                                                                          V<sub>FPT</sub> = 6540.908448 m<sup>3</sup>
      V <sub>FPT</sub> := 0.0229·V <sub>HT</sub>
                                                                                                                                                                                          Forepeak tank volume
                                                                                                                                                                                                                                                                                                                                          VCG_{BH} := 0.4863 \cdot \left(D - \frac{2}{5} \cdot m + \frac{h_{DB}}{5}\right) \quad VCG_{BH} = 13.557145 \text{ m}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            P_1 := (W_1 - W_{DH}) \cdot VCG_{BH}
     V APT := .00938·V HT
                                                                                          V_{APT} = 2679.201801 \text{ m}^3
                                                                                                                                                                                          Aftpeak tank volume
                                                                                                                                                                                                                                                                                                                                             VCG DH := D + (0.65·N DK·H DK) VCG DH = 40.498152 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   P_2 := W_{DH} \cdot VCG_{DH}
                                                                                                                                                                                                                                                                                                                                                                                                                                                              VCG 100 := P 100
W,
                                                                                                                                                                                                                                                                                                                                           P<sub>100</sub> := P<sub>1</sub> + P<sub>2</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VCG 100 = 14.15417 m
                                                                                                                                                                                                               V_{BAL} = 7.943743 \cdot 10^4 \text{ m}^3
     V_{BAL} = 2 \cdot [L_{CB} \cdot w \cdot (D - h_{DB})] + (L_{CB} \cdot B \cdot h_{DB}) + V_{FPT} + V_{APT}
                                                                                                                                                                                                                                                                                                                                           VCG <sub>200</sub> := 0.3265·D VCG <sub>200</sub> = 8.978147 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P_{200} := W_2 \cdot VCG_{200}
  Machinery box
  \rm L_{MB} = LWL - 0.05 \cdot LWL - L_{CB} - 3~m - 0.062 \cdot LWL \qquad \text{ length of cofferdam = 3m} \qquad L_{MB} = 36.870754~m~L_{SS} := L_{MB} - 1.008 \cdot L_{MB} = 10.008 
                                                                                                                                                                                                                                                                                                                                           VCG 300 := 0.7355-D
                                                                                                                                                                                                                                                                                                                                                                                                                   VCG 300 = 20.224891 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P 300 = W, VCG 300
  H_{MB} := D H_{MB} = 27.498152 \text{ m} V_{MB} := (C_{X}:H_{MB}:L_{MB}:B)
                                                                                                                                                                                                                                                                                                                                           VCG<sub>400</sub> := (0.755)·(N<sub>DK</sub>·H<sub>DK</sub>) + D VCG<sub>400</sub> = 42.598152 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P<sub>400</sub> := W<sub>4</sub>·VCG<sub>400</sub>
  V_{MB} = 5.021962 \cdot 10^4 \text{ m}^3 w_{MB} := B w_{MB} = 49.781137 \text{ m}
                                                                                                                                                                                                                                                                                                                                          VCG 500 := 0.65-D
                                                                                                                                                                                                                                                                                                                                                                                                                            VCG <sub>500</sub> = 17.873799 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P 500 := W<sub>c</sub>-VCG 500
                                                                                                                                                                                                                                                                                                                                           VCG 600 := 0.867-D
                                                                                                                                                                                                                                                                                                                                                                                                                              VCG<sub>600</sub> = 23.840897 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P 600 := W<sub>6</sub>·VCG 600
  Weight
   SWBS 100
                                                                                                W1=C100*SMF*(Ncargo+6)/12.*LWL**3*B*(Cb+.7)/(3.*D10-2.*hdb)+Wdh
  Hull and Structure:
                                                                                                                                                                                                                                                                                                                                          VCG Fuel:= 0.70-D
                                                                                                                                                                                                                                                                                                                                                                                                                              VCG Fuel = 19.248706 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P Fuel: W F41 VCG Fuel
  W DH:= 0.001-MT V SS
                                                                                          W DH = 473.445102 •MT
                                                                                                                                                                                                                                                                                                                                           VCG Water := 0.95·D
                                                                                                                                                                                                                                                                                                                                                                                                                              VCG Water = 26.123244 m
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P Water := W F52-VCG Water
                                                                                                                     yNA := \frac{B \cdot D + B \cdot h}{2} \frac{D + B \cdot h}{2} \frac{D}{2} = 36.094596 \cdot \frac{MT}{3}
                                                                                                                                                                                                                                                                                                                                             VCG_{crew} \coloneqq D + 2 \cdot N_{DK} \cdot H_{DK} \qquad VCG_{crew} = 67.498152 \text{ m}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 P crew:= VCG crew·W crew
  VCG_{Cargo} := \frac{0.98 \cdot (D - h_{DB})}{2} + h_{DB} VCG_{Cargo} = 15.463094 \text{ m}
  {\rm IND} := {\rm B \cdot D}^2 + {\rm B \cdot h}_{\rm DB}^2 + \frac{4}{3} \cdot {\rm D}^3 - {\rm yNA}^2 \cdot (4 \cdot {\rm D} + 3 \; {\rm B}) \qquad \qquad {\rm tt} := \frac{({\rm D} - {\rm yNA}) \cdot {\rm Mb}}{2 \cdot {\rm yNA}}
                                                                                                                                                                                                                                                                                                                                              VCG_{Bal} : " V_{FPT} : VCG_{FPT} + V_{APT} : VCG_{APT} + B : h_{DB} : L_{CB} : 0.5 : h_{DB} + 2 : (D - h_{DB}) : w : L_{CB} \left[ 0.5 : (D - h_{DB}) \right] : (D - h_{DB}) = 0.5 : (D - h_{DB}) : (D - h_{DB}
   Vsteel := LWL \cdot (4 \cdot D + 3 \cdot B) \cdot tt + \left( N_{CARGO} + 3 \right) \cdot B \cdot D \cdot tt \qquad W_{BH} := C_{100} \cdot Vsteel \cdot SMF \qquad W_{BH} = 2.089097 \cdot 10^4 \cdot MT 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           V BAL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        VCG <sub>Bal</sub> = 7.386165 m
  W_1 := W_{BH} + W_{DH} W_1 = 2.136442 \cdot 10^4 \cdot MT
                                                                                                                                            tt = 0.00774 m
                                                                                                                                                                                                          Mb = 4.489498·10<sup>5</sup>•MT·m
                                                                                                                                                                                                                                                                                                                                             {\rm P_{Bal} \coloneqq V_{BAL} \gamma_{SW} \cdot VCG_{Bal}} \qquad \quad {\rm P_{Bal} \equiv 6.01912 \cdot 10^5 \cdot MT \cdot m}
SWBS 200
                                                                                                                                                                                                                                                                                                                                           Total Light Ship vertical moment is (note that variable payload is deducted):
                                                                                                                                                                                                                                                                                                                                          PLS <sup>38</sup> P 100 + P 200 + P 300 + P 400 + P 500 + P 600 VCG LS <sup>38</sup> WLS - W margin
                                                                 SWBS 200 Coefficient: C 200 = 2.4748 W ENG = 722 • MT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 VCG<sub>LS</sub> = 14.772617 m
                                                                                                                                                                                                                                                                                                                                           \text{Vertical CG in departure ballast:} \qquad \text{VCG}_{BAL} = \frac{\text{VCG}_{LS} \cdot \text{W}_{LS} + \text{P}_{Fuel} \cdot \text{P}_{Walter} \cdot \text{P}_{Bal} \cdot \text{P}_{Crew}}{\text{W}_{LS} + \text{V}_{BAL} \cdot \text{SW} + \text{W}_{F4l} + \text{W}_{F52} + \text{W}_{crew}} \qquad \text{VCG}_{BAL} = 9.521653 \text{ m}_{Crew} 
                                                              W<sub>2</sub> = 1786.8056 •MT
  W_2 := C_{200} \cdot W_{ENG}
  C 200 := .01439-MT
                                                                                                                                                                                                                                                                                                                                           Here we assume that the 10% weight margin's CG location is at the CG of light ship.
  W_2 := C_{200} \cdot P_I \cdot N_P^{-7} + W_{ENG}
                                                                                              W<sub>2</sub> = 1161.7584 • MT
                                                                                                                                                                                                                                                                                                                                             KG_{BAL} = VCG_{BAL} + KG_{MARG} KG_{BAL} = 9.521653 \text{ m}
                                                                                                                                                                                                                                                                                                                                           C_{11} = -0.537 + 1.44 \cdot C_{W} \qquad C_{11} = 0.750172 \qquad T_{BAL} = \frac{W_{LS} + V_{BAL} ? SW}{W_{rr}} - T \qquad T_{BAL} = 10.273736 \text{ m}
SWBS 300 (Modeled on USN ASSET Parametrics)
                                                                                                                                                                               KW DG = 1750 •kW
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LWLB<sup>3</sup>·C _{IT}\gamma _{SW}
                                                                                                                                                                                                                                                                                                                                         KB_{BAL} = \frac{T_{BAL}}{3} \left( 2.4 - \frac{C_{P} C_{X}}{C_{W}} \right) \\ KB_{BAL} = 5.039106 * m \\ BM_{BAL} = \frac{LWLB^{3} C_{TT} 7_{SW}}{12 \left( W_{LS} + V_{BAL} 7_{SW} + W_{F41} + W_{F52} \right)} \\ + \frac{1}{2} \left( W_{LS} + W_{BAL} - W_
  W_3 \coloneqq 50 \cdot lton + 0.036 \cdot \frac{lton}{kW} \cdot KW \cdot DG + 0.00525 \cdot \frac{lton}{kW} \cdot KW \cdot PTO
                                                                                                                                                                               KW <sub>PTO</sub> = 8000 •kW
  W<sub>3</sub> = 157.487271 •MT
SWBS 400
  SWBS 400 Coefficient: C_{400} = 5.52 \cdot Iton C_{400} = 5.608579 \cdot MT
```

$_{\rm GM}$ $_{\rm BAL}$ ** $_{\rm KB}$ $_{\rm BAL}$ + $_{\rm BM}$ $_{\rm BAL}$ - $_{\rm KG}$ $_{\rm BAL}$ $_{\rm GM}$ $_{\rm BAL}$ = 13.256029 $_{\rm SM}$ $_{\rm CGMB}$ ** $_{\rm CGMB}$ ** $_{\rm CGMB}$ = 0.266286	
Total Full Load ship: BM BAL = 17.738577 m VCG LS:W LS+P Fuel+P Water+P Caroo+P crew	+ Command, Control, Surveillance
$ \text{Vertical CG of Full Ship} \qquad \text{VCG} \\ \text{Full} = \frac{\text{VCG}_{LS} \cdot \text{W}_{LS} + \text{P}_{Fucl} + \text{P}_{Water} + \text{P}_{Cargo} + \text{P}_{crew}}{\text{W}_{T}} \qquad \text{VCG}_{Full} = 15.413875 \text{ m} $	$K_{N4} := \frac{2 \cdot \text{Mdol}}{\text{MT}^{617}}$ $C_{L_4} := .10857 \cdot \text{PF}_4 \cdot \text{F}_1 \cdot \text{K}_{N4} \cdot \left(\text{W}_4\right)^{.617}$ $C_{L_4} = 1.485985 \cdot \text{Mdol}$
Here we assume that the 10% weight margin's CG location is at the CG of light ship. KG and KCC and KG are as KG and 15 413275 m.	
KG Full: VCG Full+ KG MARG KG Full= 15.413875 m	+ Auxiliary $K_{N5} := \frac{.15 \cdot \text{Mdol}}{\text{MT}^{782}}$ $C_{L_5} := .09487 \cdot \text{PF}_5 \cdot \text{F}_1 \cdot \text{K}_{N5} \cdot \left(\text{W}_5\right)^{.782}$ $C_{L_5} := 10.319923 \cdot \text{Mdol}$
KB = $\frac{7}{3} \left(2.4 - \frac{C_P C_X}{C_W} \right)$ KB = 25.431052 ·ft BM = $\frac{LWLB^3 C_{TT}}{12 \cdot V_{FL}}$ BM = 11.810731 m	
GM Full: ** KB + BM - KG Full	+ Outfit $K_{N6} := \frac{.36 \cdot Mdol}{MT^{784}}$ $C_{L_6} := .09859 \cdot PF_6 \cdot F_1 \cdot K_{N6} \cdot (W_6)^{.784}$ $C_{L_6} := 17.841015 \cdot Mdol$
Freeboard (Load Line) Requirement:	(Less payload GFM cost)
Ftable(L) = $4.62 \cdot 10^{-3} \cdot L + 1.87 \cdot m$ Fmin = Ftable(LWL) $\frac{C}{1.36} + \left(D - \frac{LWL}{15}\right) \cdot 3 \cdot \frac{in}{ft}$ Tmax = D - Fmin	+ Margin Cost:
	W
Design Balance / Summary - Tanker WFI - WT	$C_{LM} := \frac{w_{margin}}{(w_{LS} - w_{margin})} \cdot \left(\sum_{k} C_{L_k} \right)$ $C_{LM} = 5.121408 \cdot Mdol$
$W_T = 1.683045 \cdot 10^5 \text{-MT}$ $W_{FL} = 1.68400 \cdot \text{MT}$ $W_{FL} = 1.6840$	+ Integration/Engineering: (Lead ship includes detail design engineering and plans for class)
LWL = 251.39 ·m B = 49.78 m T = 15.8 m A_M = 782.78 ·m ² C_W = 0.894 A_W = 1.12·10 ⁴ m ² 19 C_M = 0.995 C_P = 0.834 20	
C _{RT} = 3.15 C _{LR} = 5.05 C _R = 0.83 C _D = 1.74 (Hull coefficients)	$K_{N8} := \frac{2 \cdot Mdol}{Mdol^{1.099}}$ $C_{L_8} := .034 \cdot K_{N8} \cdot \left[\sum_{i1} C_{L_{i1}} + C_{LM} \right]^{1.099}$ $C_{L_8} = 9.610606 \cdot Mdol$
N CARGO = 4 h DB = 3.9 m w = 4 m (Double Hull Dimensions and Cargo Block Subdivision) 0	+ Ship Assembly and Support: (Lead ship includes all tooling, jigs, special facilities for class)
ManFac = 0.7 (Reduction from standard crew size due to automation) 1	$K_{N9} := \frac{2 \cdot Mdol}{(Mdol)^{839}}$ $C_{L_9} := .135 \cdot K_{N9} \cdot \left(\sum_{i,1} C_{L_{i1}} + C_{LM} \right)^{.839}$ $C_{L_9} := 11.827806 \cdot Mdol$
SMF = 1 (Structural Margin Factor, 1.0 satisfies ABS corrosion allowance) 1 Hov = 4 m Average deck height (deckhouse) 2	(ilde) (il
H _{DK} = 4 m Average deck height (deckhouse) [2] PSYS TYP = 2 N _{KW} = 1 (Propulsion System and Power Redundancy Options)	= Total Lead Ship Construction Cost: (BCC)
Stern Design: N stern = 2 C stern :* id(N stern = 2, -25, -11) PC :* id(N stern = 2, .75, .7)	$C_{LCC} = \sum_{k} C_{L_k} + C_{L_g} + C_{L_g} + C_{LM}$ $C_{LCC} = 111.916626 * Mdol$
Balance Check Required Available Error	+ Profit:
Weight: $W_T = 1.683045 \cdot 10^5 \cdot MT$ $W_{FL} = 1.684 \cdot 10^5 \cdot MT$ ERR = $5.673142 \cdot 10^{-4}$	$F_P := .08$ $C_{LP} := F_P \cdot C_{LCC}$ $C_{LP} = 8.95333 \cdot Mdol$
Load Line: Tmax = 21.447732 m T = 15.803535 m	= <u>Lead Ship Price</u> :
Propulsion power: $P_{IREQ} = 2.606477:10^4$ -hp $P_{I} = 3.056\cdot10^6$ -hp $W_{LS} = 2.798352:10^4$ -MT $V_{S} = 15.74$ -km $P_{IS} = 3.050251:10^4$ -hp	$P_L = C_{LCC} + C_{LP}$ $P_L = 120.869956 \cdot Mdol$
Mach. box height: $H_{MBreo} = 18.3375 \text{ m}$ $H_{MB} = 27.498152 \text{ m}$ $\left[2.136442 \cdot 10^4 \right]$	R _{discount} = 7
L _{MB} = 36.870754 m 1161.7584 157.487271	30
w _{MBreq} = 19.3 m w _{MB} = 49.781137 m W = 8.012256 •MT	$F_{NPV} := \sum_{i=1}^{30} \frac{1}{\left(1 + \frac{R \text{ discount}}{100}\right)^i} F_{NPV} = 12.409041$
V _{MB} req = 2·10 m V _{MB} = 5.021962·10 m 1234.127395	100 /
Deckhouse limits: $L_{SSreq} = 19.846389 \text{ m}$ $L_{SS} = 36.870754 \text{ m}$ $\left[1.376489 \cdot 10^{5}\right]$	Annual and Lifetime (30 year) Operation Costs W F41 MΓ
Cargo Block Check	T _{steam} := 39-8-day FuelRate:= $\frac{W \text{ F41}}{E}$ FuelRate= 90.026038 $\frac{MT}{day}$ T _{steam} = 312-day
$ \begin{aligned} & \text{Stability: In Bailiast:} & & \text{C}_{GMB} = 0.266286 & & & & & & & & & & & & & & & & & & &$	' e
.33-DWT = 4.630593-10 ⁴ -MT	$C_{NPVfuel} = (F_{NPV} \cdot FuelRateT_{steam}) = \frac{100 \cdot dol}{MT}$ $C_{NPVfuel} = 34.854668 \cdot Mdol$
N _T =20 V _{SS} =1.340647·10 ⁴ m ³ KW _{DG} =1750·kW KW _{PTO} =8000·kW V _{TK} =3394.458269 m ³	C NPVMan := F NPV:N T-100·Kdol C NPVMan = 24.818082•Mdol
SIMPLIFIED TANKER COST MODEL	
Units definition Mdol ≈ coul Bdol ≈ 1000 Mdol Kdol ≈ Mdol 1000 1000	At Ve late 20 days / year:
	$C_{\text{NPVvpen}} = F_{\text{NPV}} \left[10 \text{-day} - T_{\text{steam}} \left(1 - \frac{V_{\text{c}}}{V_{\text{S}}} \right) \right] \cdot 50 \frac{\text{Kdol}}{\text{day}}$
Input il = 1,27	
1. Inflation:	C NPVvpen := if(C NPVvpen > 0·Mdol, C NPVvpen · 0·Mdol) C NPVvpen = 0 • Mdol
Base Year: Y _B := 2000 iy := 1_Y _B = 1981 Average Inflation Rate (%):	Cscantlings= $1 - \frac{\text{SMF} - 1}{\text{SMF}}$ Cscantlings= 1
Average Inflation Rate (%): (from 1981-2000) $R_{1} = 5$. $F_{1} = \prod_{iv} \left(1 + \frac{R_{1}}{100}\right)$ $F_{1} = 2.52695$	SMF
2. Producability:	$ ^{C} {\text{NPVmaint}} = ^{F} {\text{NPV}} \left[\frac{\left(\text{N}_{\text{P}} \cdot 100 \text{ Kdol} + \text{N}_{\text{KW}} \cdot 100 \text{ Kdol} + \text{N}_{\text{CARGO}} \cdot \text{Cscantlingsl} \cdot 100 \cdot \text{Kdol} \right)}{\text{ManFac}} + 500 \cdot \text{Kdol} \right] + 500 \cdot \text{Kdol} $
Producability factor: $CF := \frac{1}{3}$ $k := 16$	ManFac ManFac
PFprimq := $CF \frac{C}{N} \frac{B}{N \text{ term}} + CF \left[\frac{(w-2m)}{1m} \right] + CF \left[\frac{(h_{DB}-2m)}{1m} \right]$	^C NPVmaint ⁼ 16.840842 •Mdol
Stell C	THE WALL OF THE PARTY OF THE PA
$ PFprimc_{3} := \frac{V_{MB} - V_{MBreq}}{V_{MB}} \qquad PFprimc_{3} := \frac{\left(H_{DK} - 3 \cdot m\right)}{1 \cdot m} \qquad PFprimc_{3} := PFprimc_{3} $	Total Ownership Cost (NPV): TOC := P L + C NPVfuel + C NPVMan + C NPVmaint + C NPVvpen
	34.456049
PFprime ₃ := PFprime ₃ PFprime ₃ := PFprime ₄ PF ₄ := 125 PFprime ₄ PF ₅ := PF ₂ PF ₃	[0.640417] 13.43999 C LCC = 111.916626•Mdol 7.813843
PF ₆ := PF ₃ [0.640417]	0.849563
0.849563 PF = 0.75	$PF = \begin{pmatrix} 0.75 \\ 0.75 \end{pmatrix} \qquad C_L = \begin{pmatrix} 10.319923 \\ 17.841015 \end{pmatrix} *Mdol$
3. Lead Ship Cost: a. Lead Ship Cost: Shipbuilder Portion: log 5.4dol 0.493798 0.637172 0.637172	0.637172 17.841015 TOC = 197.383549 • Mdol
[0.75]	9.610606
SWBS costs: (See Enclosure 1 for K ₁ factors); includes escalation estimate Structure K ₁₁ :: 285-Mdol Structure K ₁₁ :: 285-Mdol	[11.827806]

Structure $K_{N1} := \frac{285 \cdot \text{Mdol}}{\text{MT}^{772}} \quad C_{L_1} = .03395 \cdot \text{PF}_1 \cdot \text{F}_1 K_{N1} \cdot (W_1)^{772} \quad C_{L_1} = 34.456049 \cdot \text{Mdol}$ + Propulsion $K_{N2} = \frac{8 \cdot \text{Mdol}}{\text{hp}^{808}}$ $C_{L_2} = .00186 \cdot \text{PF}_2 \cdot \text{F}_1 \cdot \text{K}_{N2} \cdot \text{P}_1^{808}$ $C_{L_2} = 13.43999 \cdot \text{Mdol}$ $+ \ \, \text{Electric} \qquad \quad K_{N3} := \frac{55 \cdot \text{Mdol}}{\text{MT}^{91}} \qquad \quad C_{L_3} := .07505 \cdot \text{PF}_3 \cdot F_{\Gamma} K_{N3} \cdot \left(W_3\right)^{91} \qquad \quad C_{L_3} := 7.813843 \cdot s^0 \cdot \text{Mdol}$

RISK OF TANKER GROUNDING AND COLLISION

1. Waterway channel, ship and ship track characteristics - assume track is along center of right hand lane in channel with two lanes; averaged for TAPS routes:

channel width: ww := 800·m number of turns: Lturn:= 4 Rturn:= 4

track distribution: $\mu := -200 \cdot m$ $\sigma := 75 \cdot m$ DD := $50 \cdot mile$

(per round trip)

Number of ships passed: N ships = 10

pdf for location of ship relative to center of channel: z:=-600·m,-599·m.. 100·m

Probability and time ship out of channels

 $TT = 1.2 \cdot 10^4 \text{ s}$

$$R_{\text{steering}} = N_p$$
 $R_{\text{prop}} = N_p$ $N_p = 1$

- 2. Management factor matrix
- 3. Probability shaping factors
- 4. HEP's master, mates, crew?
- 5. Error made in planning track (refer to chart 1)
- 6. Unsafe planned track $\rm E_{uplan} := 4.581336 \cdot 10^{-6}$

7. Course deviates from direct planned safe track E_{pilot} ; $\frac{8.9625 \cdot 10^{-5}}{ManFac}$ (assumes more error w/fewer crew $\text{Average piloting error rate:} \qquad \lambda pilot = \lambda fix \\ \text{E} \quad pilot \\ \text{P} \quad \text{out} \qquad \quad \lambda pilot \\ = 1.634752 \cdot 10^{-7} \cdot \text{min}^{-1}$

8. Course deviates from direct planned safe track (assumes Poisson process for fix errors; failure = at least one piloting error during time out of lane):

Probability of at least one piloting error when out of channel during the whole transit:

9. Course deviates in turn from safe planned track (assumes Poisson process for fixes; failure = taking zero fixes before exiting channel on turn)

Time until out of channel, left turn $tL := \frac{ww}{4 + v}$ tL = 25.884338 sww = 800 m Time until out of channel, right turn $tR := \frac{3 \cdot ww}{4 \cdot v}$ tR = 77.653015 s

Probability of no fixes before out of channel during left turn: $pfixL:=e^{-\lambda fixxtL}$ pfixL=0.866059

Probability of no fixes before out of channel during right turn: pfixR:= $e^{-\lambda fixtR}$ pfixR= 0.649595

Probability fail to turn: P turn:= .001

Captain fails to detect failure to turn: $P_{turncapt} = .01$

Course deviates in turn from safe planned track:

$$E_{turn} \coloneqq 1 - \left(1 - P_{turn} \cdot P_{turncapf} p fix I\right)^{Lturn} \cdot \left(1 - P_{turn} \cdot P_{turncapf} p fix I\right)^{Rturn}$$

$$E_{turn} = 6.062 \cdot 10^{-5}$$

9.5 Probability of collision during single transit (Based on probability of unsafe track)

$$E_{collisiori}^{= 1 - \left(1 - P_{turn'}P_{turncapt}pfixt\right)^{N} ships}$$

$$E_{collisiori}^{= 8.660256 \cdot 10^{-5}}$$

pfixL= 0.866059

Probability that the course intersects another ship $${\rm P}_{\rm Shiphaz}${\rm :=}~0.25$$

10. Course deviates from safe planned track and is unsafe

11. Powered course is unsafe

$$E_{upower} = E_{upilot} + E_{uplan}$$
 $E_{upower} = 5.124088 \cdot 10^{-5}$

12. Drift Grounding - Unable to follow safe track

Unsafe wind/current (probability drift intersects hazard):

P drift:= .25

Assistance failure (unescorted):

E _{assist}:= .25 Anchor failure: Lost way during transit:

E anchor = .25

P lostway:= 1 - e^{-TT-3drift} P lostway= 1.869286·10⁻⁴ $TT = 1.2 \cdot 10^4 \text{ s}$

Unable to follow safe track:

13. Probability of grounding during lifetime

16. Probabilities of accidents happening $P_{collision} = 2.165064 \cdot 10^{-5}$ P ground= 5.416164·10⁻⁵

Oil Outflow calculation based on Proposed MARPOL Annex I Regulation [19

 $L_{slop} := L_{STK}$ $L_{cot} := L_{CTK}$

Defining the forward and aft boundaries of the cargo tanks and slop tanks.

$$x_{a_i} \approx .062 \cdot LWL + L_{MB} + 3 \cdot m + L_{STK} + \frac{\left(N \cdot CARGO - \frac{i}{2}\right)^2 L \cdot CTK}{N \cdot CARGO} \tag{Cargo Tanks}$$

$$\begin{array}{c} x_{\frac{1}{4}} := .062 : LWL + L_{MB} + 3 : m + L_{STK} + \\ \hline & N_{CARGO} - \frac{i - 2}{2} \right) L_{CTK} \\ x_{\frac{1}{4}} := .062 : LWL + L_{MB} + 3 : m + L_{STK} + \\ \hline & N_{CARGO} \\ x_{\frac{1}{4}} := x_{\frac{1}{4}} := x_{\frac{1}{4}} x$$

55.457228

62 053063

Side Damage Probability

Reading in the probability files which are in the same directory as this worksheet

$$\begin{array}{lll} \operatorname{PSA}_{1} & \text{if} & & & & \operatorname{PSF}_{1} & \text{if} & & \\ & & & & & \\ \operatorname{XL}_{a_{1}} \leftarrow & & & & & \\ \operatorname{XL}_{a_{1}} \leftarrow & & & & & \\ \operatorname{white} & \operatorname{XL}_{a_{1}} \wedge & & & & \\ \operatorname{XL}_{f_{1}} \leftarrow & & & & \\ \operatorname{L}_{f_{1}} \leftarrow & & & & \\ \operatorname{white} & \operatorname{XL}_{f_{2}} \wedge & & \\ \operatorname{hite} & \operatorname{XL}_{f_{2}} \wedge & & & \\ \operatorname{hite} & \operatorname{XL}_{f_{2}} \wedge & & \\ \operatorname{hite} & \operatorname{hite} \wedge & & \\ \operatorname{hite} & \operatorname{All}_{f_{2}} \wedge & & \\ \operatorname{hite}$$

$$\begin{split} \text{PSL}_{i} &= \left| j \leftarrow 0 \right. \\ \text{ZD}_{i_{1}} \leftarrow \frac{z_{1}}{D_{S}} \\ \text{while } ZD_{i_{2}} \vdash E_{j_{2}+1,1} \\ j \leftarrow j + 1 \\ E_{j,2} \leftarrow \frac{E_{j_{1}+1,2} - E_{j_{2}}}{0.08} \left(ZD_{i_{1}} - E_{j_{1}} \right) \\ \end{split} \qquad \begin{aligned} & \text{PSU}_{i} \coloneqq \left[j \leftarrow 0 \\ & ZD_{i_{1}} \leftarrow \frac{z_{i}}{D_{S}} \\ & \text{while } ZD_{i_{2}} \vdash F_{j_{1}+1} - F_{j_{1}+1} \right] \\ & j \leftarrow j + 1 \\ & E_{j,2} \leftarrow \frac{E_{j_{1}+1,2} - E_{j_{2}}}{0.08} \left(ZD_{i_{1}} - E_{j_{1}} \right) \end{aligned}$$

The probability that the damage will lie totally outboard of the tank, from MARPOL

This is from the IMO proposal.
PSY :=
$$1/24.96 - 199.6 \cdot \frac{y}{y}$$
 if =

$$\begin{split} PSY & \cong \left[\left(24.96 - 199.6 \frac{y}{B_S} \right) \frac{y}{B_S} & \text{if } \frac{y}{B_S} \le 0.05 \\ 0.749 & * \left[5 - 44.4 \left(\frac{y}{B_S} - 0.05 \right) \right] \left(\frac{y}{B_S} - 0.05 \right) & \text{if } 0.05 < \frac{y}{B_S} < 0.1 \\ 0.888 & * 0.56 \left[\left(\frac{y}{B_S} \right) - 0.1 \right] & \text{if } \frac{y}{B_S} \ge 0.1 \end{split} \right. \end{split}$$

 $P_{ST} := (1-PSY) \qquad P_{SV} := (1-PSU-PSL) \qquad P_{SL} := (1-PSF-PSA)$

$$P_{S_i} = P_{ST} \cdot P_{SL_i} \cdot P_{SV_i}$$

$$G \coloneqq READPRN("pba.prn") \qquad I \coloneqq READPRN("pbp.prn")$$

$$\mbox{ \begin{tabular}{ll} \begin{tabular}{$$

$$\begin{split} \text{PBA}_{i} &\approx \quad j \leftarrow 0 \\ & \text{XL}_{a_{i}} \leftarrow \frac{x_{a_{i}}}{L} \\ & \text{while XL}_{a_{i}} > G_{j+1,1} \\ & \quad j = j+1 \\ & G_{j,2} + \frac{G_{j+1,2} - G_{j,2}}{0.05} \left(\text{XL}_{a_{i}} - G_{j,1}\right) \end{split}$$

$$\begin{split} \text{PBF}_i &\approx \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{X_{i_j}^{\epsilon}}{L} \\ &\text{while } XL_{i_j^{\epsilon}} + H_{j+1,1} \\ &\text{} j \leftarrow j + 1 \\ &\text{} H_{j,2} + \frac{H_{j+1,2} - H_{j,2}}{0.05} \left(XL_{i_j^{\epsilon}} - H_{j,1} \right) \end{split}$$

$$\begin{split} \text{PBS}_i &\approx \begin{vmatrix} \mathbf{j} \leftarrow \mathbf{0} \\ \forall \mathbf{B}_{\mathbf{S}_i} \leftarrow \frac{\mathbf{Y}_{\mathbf{S}}}{\mathbf{B}_{\mathbf{B}}} \\ &\text{while } \forall \mathbf{B}_{\mathbf{S}_i} \geq J_{i+1,1} \\ &\mathbf{j} \leftarrow \mathbf{j} + 1 \\ J_{j,2} + \frac{J_{j+1,2} - J_{j,2}}{0.05} \left(\forall \mathbf{B}_{\mathbf{S}_i} - \cdot \right) \end{split}$$

$$\begin{split} P_{\text{Bz}} &:= \left[\left(14.5 - 67 \cdot \frac{z_1}{D_S} \right) \cdot \left(\frac{z_1}{D_S} \right) \text{ if } \frac{z_1}{D_S} \le 0.1 \\ 0.78 + 1.1 \cdot \left[\left(\frac{z_1}{D_S} \right) - .1 \right] \text{ otherwise} \end{split} \right] \end{split}$$

i := 2,4.. 2·N CARGO + 2

$$\begin{split} \text{PBP}_i &\approx \int_{\mathbf{j} \leftarrow 0} & \text{YB}_{\mathbf{p}_i^{\leftarrow} - 5} \\ & \text{While YB}_{\mathbf{p}_i^{>} \mathbf{I}_{j+1,1}} \\ & \text{j} \leftarrow \text{j} + 1 \\ & \text{l}_{1,2} + \frac{\mathbf{l}_{1+1,2} - \mathbf{l}_{1,2}}{\mathbf{l}_{2} + \mathbf{l}_{2} - \mathbf{l}_{1,1}} \left(\text{YB}_{\mathbf{p}_i} - \mathbf{l}_{1,1} \right) \end{split}$$

$$\begin{array}{lll} PBP_i \coloneqq \left| j \leftarrow 0 & i \approx 1, 3 - 2 \cdot N \cdot CARGO + 1 & PBS_i \approx \left| j \leftarrow 0 \right. \right. \\ & YB \cdot p_i \leftarrow .5 & While \ YB \cdot p_i > I_{j+1,1} & While \ YB \cdot p_i > I_{j+1,1} \\ & j \leftarrow j + 1 & j \leftarrow j + 1 & j \leftarrow j + 1 \\ & I_{j,2} + \frac{I_{j+1,2} - I_{j,2}}{0.05} \left(YB \cdot p_i - I_{j,i} \right) & J_{j,2} + \frac{J_{j+1,2} - I_{j,2}}{0.05} \left(YB \cdot q_i - I_{j,i} \right) \end{array}$$

 $P_{BL} = (1 - PBF - PBA) \qquad P_{BT} = (1 - PBP - PBS) \\ P_{BV} = \begin{pmatrix} 1 - P_{Bz} \end{pmatrix} \\ P_{B_i} = P_{BL_i} \cdot P_{BT_i} \cdot P_{BV}$

$$O_{\frac{82N_{CARGO}+1}{2}} := \frac{.98..02 \cdot C_{CARGO}}{2.} \qquad O_{\frac{82N_{CARGO}+2}{2}} := O_{\frac{82N_{CARGO}+1}{2}}$$

$$O_{s_1} \coloneqq .98 \cdot C_{FTK} \cdot C_B \cdot \frac{V_{CTK}}{2 \cdot N_{CARGO}} \qquad O_{s_2} \coloneqq O_{s_1}$$

$$L_{STK} = 6.595835 \text{ m}$$
 $W_7 = 1.376489 \cdot 10^5 \cdot \text{MT}$

$$O_{S} = \begin{bmatrix} 1.417672 \cdot 10^{4} \\ 1.417672 \cdot 10^{4} \\ 2.135048 \cdot 10^{4} \\ 2.135048 \cdot 10^{4} \\ 2.135048 \cdot 10^{4} \end{bmatrix}$$

ENTER p, THE OVER PRESSURE OF IGS, NO LESS THAN 5 kPa: $p \coloneqq 5 \cdot 10^3 \cdot Pa$

ENTER p, THE OVER PRESSURE OF IGS, NO LESS THAN 5 kPa:
$$p \approx 5 \cdot 10^{7} \text{ Pa}$$

$$t_{c} \approx \begin{bmatrix} 0 \\ -2.5 \end{bmatrix} \text{ m} \qquad d_{s} = 15.803535 \text{ m} \qquad p = 0.509858 \text{ m} \frac{\text{MT}}{\text{m}^{3}}$$

$$p = 0.509858 \text{ m} \cdot \frac{MT}{m^3}$$

$$h_c := \frac{\left(d_s + t_c - z_l\right) \cdot \rho_s - \frac{p}{g}}{\rho_p}$$

$$h_c = \begin{bmatrix} 13.49034 \\ 10.533626 \end{bmatrix} m$$

$$\rho_{m} := \frac{\rho_{s} + \rho_{n}}{2}$$
 $\rho_{m} = 946.630769 \text{ kg/m}^{2}$

Height of the oil/seawater mixture captured in the ballast tanks

$$\begin{split} h_{m} & \coloneqq \left[\frac{\left(d_{s} + 1_{c} - z_{m} \right) \rho_{s}}{\rho_{m}} \right] \\ & h_{m} & \coloneqq \left[\frac{17.126254}{14.41701} \right]^{n_{m}} \\ & B_{tank} & \succeq \frac{B_{S}}{2} - w \\ & h_{98\%} & \succeq 0.98 \cdot \left(D_{S} - h_{DB} \right) \\ & B_{tank} & \succeq 20.890568 \text{ m} \\ \end{split}$$

Calculating the Outlow of each tank in grounding, with the 0 subscript referring to no tide change and the 2.5 subscript referring to a 2.5 metre reduction in tide

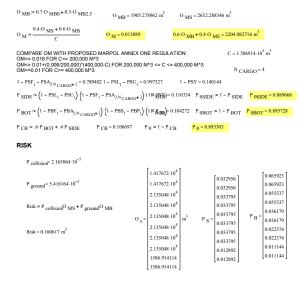
$$O_{BO_i} := \frac{O_{S_i}}{h_{98\%}} (h_{98\%} - h_{c_1})$$
 $O_{B2.5_i} := \frac{O_{S_i}}{h_{98\%}} (h_{98\%} - h_{c_2})$

$$b_{\text{ cot }} = \frac{^{18}\text{CB}}{^{2}} - 1_{\text{ cot }} = \frac{^{12}\text{CTK}}{^{18}\text{ N-CARGO}} - 1_{\text{ slop }} = 1_{\text{ slop }} = 1_{\text{ STK}} - 1_{\text{ slop }} = 1_{\text{ slop slop$$

Calculating the oil captured in the ballast tanks with the same subscript system $1_{cot} = 44.192985 \ m$

$$C_{DB0_i} = .5 \cdot \left(z_{1} l_{cot} \cdot b_{cot} + y \cdot l_{cot} \cdot h_{m_i} \right)$$

$$C_{DB2.5_i} := .5 \cdot \left(z_{\Gamma^1 \cot^{-b} \cot^{+y} \cot^{-h} m_2}\right)$$


$$\stackrel{C}{C}_{DB02:N_{CARGO} + 1} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) } \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot b_{slop} + y \cdot l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{\text{i.e. } .5 \cdot \left(z_{\Gamma} l_{slop} \cdot h_{m_l}\right) }{} \\ \stackrel{C}{DB02:N_{CARGO} + 2} \stackrel{C}{DB02:N_{CARGO$$

$$C_{DB2.52:N_{CARGO}+1} := \left[.5 \cdot \left[\left(\left(z_1 l_{slop} l_{slop} \right) + y \cdot l_{slop} l_{m_2} \right) \right] \right. \\ \left. C_{DB2.52:N_{CARGO}+2} := C_{DB2.52:N_{CARGO}+1} := C_{DB2.52:N_{C$$

Ensuring the capture does not exceed the outflow

$$O_{MB0} \approx \sum_{i=1}^{2-N} \sum_{i=1}^{CARGO} \sum_{i=1}^{+2} P_{B_{i}} (O_{B0_{i}} - C_{DB0_{i}}) \qquad O_{MB0} = 1619.271123 \text{ m}^{3}$$

$$O_{MB2.5} = \sum_{i=1}^{2-N} CARGO + 2 P_{B_i} \left(O_{B2.5_i} - C_{DB2.5_i} \right) O_{MB2.5} = 2572.630588 \text{ m}^3$$

Appendix A.3 Offset Tables

Available upon request

Appendix A.4 SAFEHULL Structural Analysis

Rules

SafeHull Tanker Requirement

Version: V6.00 (2000 Rules)
Project Name: LOORT3

Date: 25-Mar-Time: 23:48:50 Page: 2 ABS Steel Vessels

Rules

2.3 Hull-Girder Section Modulus Requirements:

Bottom Deck

SafeHull Tanker Requirement Version: V6.00 (2000 Rules)
Project Name:

Gross Reqd SM

(SMr, cm2-m) (SMa, cm2-m)

451,321 451,321

LOORT3

650,058 467,207

2.0 Longitudinal Strength:

2.1 Hull Girder Bending Moments Amidships

Still Water Sagging BM (Msws) =	-4/0,000.00	(tt-m)
Still Water Hogging BM (Mswh) =	320,000.00	(tf-m)
ABS Vertical Wave Sagging BM (Mws) =	-562,252.31	(tf-m)
ABS Vertical Wave Hogging BM (Mwh) =	526,568.31	(tf-m)
T. 111 C 1D C 14	1 022 252 21	(10.)

2.2 Cross Section Information:

LSC Longitudinal Location. (m) Group # from AP Description

1

125.70

Mid Ship Section

2.4 Material Reference Table:

Group Numer: Gross Design SM SMa/SMr

Mat. No. Ultimate Stress	Mat. ID	Yield Stress		
Q-Factor	Sm	(kgf/cm2) (kgf/cm2)		
1	MILD	2400.	4100.	1.000
2	HT32	3200.	4500.	0.780
3	HT36	3600.	5000.	0.720
4	HT40	4000.	5200.	0.680

Material

HT32

3.0 Longitudinal Scantlings

LSC Group #

X-Coordinate from AP = 125.70 (m) Description: Mid Ship Section

Steel Vessels Rules

SafeHull Tanker Requirement

Version: V6.00 (2000 Rules)

2.0 Longitudinal Strength:

2.1 Hull Girder Bending Moments Amidships

Still Water Sagging BM (Msws) =	-470,000.00	(tf-m)
Still Water Hogging BM (Mswh) =	320,000.00	(tf-m)
ABS Vertical Wave Sagging BM (Mws) =	-562,252.31	(tf-m)
ABS Vertical Wave Hogging BM (Mwh) =	526,568.31	(tf-m)
Total Vertical Bending Moment (Mt) =	1,032,252.31	(tf-m)

2.2 Cross Section Information:

LSC Longitudinal Location. (m)

Group # from AP Description

125.70 Mid Ship Section

3.1 Extent of Structure Materials:

Extent
Distance Above Base Line (m)
Required

Range From to Material

> 1 27.50 24.42 HT32 2 24.42 .00 MILD

3.2 Longitudinal Scantling (Plating) Requirements:

	Plate #	Location	Plate ID	Material	Req. Net Offered Net Thick. (mm)	Req. Gross 0.5 mm (mm)	Req. Gross to Thick. (mm)	Offered Gross Thick. (mm)	Thick. (mm)
	1	Keel Plate	KPL-01	HT32	18.65	19.00	19.65	19.50	20.00
	2	Bottom	BTM-01	HT32	17.15	17.00	18.15	18.00	18.00
	3	Bottom	BTM-02	HT32	17.15	17.00	18.15	18.00	18.00
	4	Bottom	BTM-03	HT32	17.15	17.00	18.15	18.00	18.00
	5	Bottom	BTM-04	HT32	17.15	17.00	18.15	18.00	18.00
	6	Bottom	BTM-05	HT32	17.15	17.00	18.15	18.00	18.00
	7	Bilge	BLG-01	HT32	17.15	17.00	18.15	18.00	18.00
	8	Bilge	BLG-02	HT32	17.15	17.00	18.15	18.00	18.00
	9 10	Bilge	BLG-03	HT32 HT32	17.15	17.00	18.15	18.00	18.00
	10	Bilge Side Shell	BLG-04 SHL-01	HT32	17.15 16.46	17.00 16.50	18.15 17.96	18.00 18.00	18.00 18.00
	12	Side Shell	SHL-01	HT32	16.46	16.50	17.96	18.00	18.00
	13	Side Shell	SHL-02	MILD	18.53	18.50	20.03	20.00	20.00
	14	Side Shell	SHL-04	MILD	18.53	18.50	20.03	20.00	20.00
	15	Side Shell	SHL-05	HT32	16.46	16.50	17.96	18.00	18.00
	16	Gunwale	GWR-01	HT32	16.46	17.00	17.46	17.50	18.00
	17	Gunwale	GWR-02	HT32	16.46	17.00	17.46	17.50	18.00
1	18	Gunwale	GWR-03	HT32	16.46	17.00	17.46	17.50	18.00
	19	Gunwale	GWR-04	HT32	16.46	17.00	17.46	17.50	18.00
2	20	Upper Deck	DEC-01	HT32	13.93	14.00	14.93	15.00	15.00
	21	Upper Deck	DEC-02	HT32	16.03	16.00	18.03	18.00	18.00
	22	Upper Deck	DEC-03	HT32	13.20	13.00	15.20	15.00	15.00
	23	Inner Bottom	INB-01	HT32	15.15	15.50	16.65	16.50	17.00
	24	Inner Bottom	INB-02	HT32	15.15	15.50	16.65	16.50	17.00
	25	Inner Bottom	INB-03	HT32	15.15	15.50	16.65	16.50	17.00
	26	Inner Bottom	INB-04	HT32	15.15	15.50	16.65	16.50	17.00
	27	Inner Skin	INS-01	HT32	13.91	14.50	15.41	15.50	16.00
	28 29	Inner Skin Inner Skin	INS-02 INS-03	HT32 MILD	13.19 13.24	13.50 13.50	14.69 14.74	14.50 14.50	15.00 15.00
	30	Inner Skin	INS-03 INS-04	MILD	13.24	12.50	13.25	13.50	14.00
	30 31	Inner Skin	INS-04 INS-05	HT32	17.98	18.50	19.48	19.50	20.00
	32	C.L. Bhd	CTR-01	HT32	13.83	14.00	15.83	16.00	16.00
	33	C.L. Bhd	CTR-02	HT32	13.50	14.00	15.50	15.50	16.00
	34	C.L. Bhd	CTR-03	MILD	12.97	13.00	14.97	15.00	15.00
	35	C.L. Bhd	CTR-04	MILD	11.52	12.00	13.52	13.50	14.00
	36	C.L. Bhd	CTR-05	HT32	12.84	13.00	14.84	15.00	15.00
3	37	WT Bot. Grd.	BGR-01	HT36	21.31	21.50	22.81	23.00	23.00
3	38	NT Bot. Grd.	NBG-01	HT32	8.71	10.00	10.71	10.50	12.00
	39	NT Bot. Grd.	NBG-02	HT32	8.71	10.00	10.71	10.50	12.00
	10	NT Bot. Grd.	NBG-03	HT32	8.71	10.00	10.71	10.50	12.00
	11	NT Bot. Grd.	NBG-04	HT32	8.71	10.00	10.71	10.50	12.00
	12	NT Bot. Grd.	NBG-05	HT32	8.71	10.00	10.71	10.50	12.00
	13 14	NT Bot. Grd.	NBG-06	HT32	8.71	10.00 11.00	10.71	10.50	12.00 13.00
	14 15	NT Bot. Grd.	NBG-07	HT32 HT32	8.71 8.71	11.00	10.71	10.50	13.00
	15 16	NT Bot. Grd. NT Bot. Grd.	NBG-08 NBG-09	HT32	8.71	11.00	10.71 10.71	10.50 10.50	13.00
	17	NT Bot. Grd.	NBG-09 NBG-10	HT32	12.48	13.00	14.48	14.50	15.00
	18	NT Bot. Grd.	NBG-10 NBG-11	HT32	12.48	13.00	14.48	14.50	15.00
	19	NT Bot. Grd.	NBG-11 NBG-12	HT32	12.48	13.00	14.48	14.50	15.00
	50	NT Stringer	NTS-01	HT32	11.16	11.00	13.16	13.00	13.00
	51	NT Stringer	NTS-02	HT32	11.16	11.00	13.16	13.00	13.00
	52	NT Stringer	NTS-03	HT32	11.16	11.00	13.16	13.00	13.00
	53	NT Stringer	NTS-04	MILD	11.16	11.00	13.16	13.00	13.00
	54	NT Stringer	NTS-05	MILD	11.16	11.00	13.16	13.00	13.00
5	55	NT Stringer	NTS-06	MILD	11.16	11.00	13.16	13.00	13.00
	56	NT Stringer	NTS-07	MILD	11.16	11.00	13.16	13.00	13.00
	57	NT Stringer	NTS-08	MILD	11.16	11.00	13.16	13.00	13.00
	58	NT Stringer	NTS-09	MILD	11.16	11.00	13.16	13.00	13.00
	59	NT Stringer	NTS-10	MILD	11.69	12.00	13.69	13.50	14.00
-	50	NT Stringer	NTS-11	MILD	11.69	12.00	13.69	13.50	14.00
	51 **Noto**	NT Stringer	NTS-12	MILD	11.69	12.00	13.69	13.50	14.00

REQUIRED_GROSS t(mm) = REQUIRED_NET_t(mm) + MINIMUM_CORROSION_MARGIN

Page 101

	Scantling (Stiffener) Location	Requirements: Stiffener ID		Stiffener Material	Req. Net	Offered	Req. Gross	Offered
#	Description				SM (cm3)	Net SM (cm3)	SM Gross SM (cm3)	(cm3)
1 2	Keel Plate Keel Plate	KPL- 101 KPL- 102	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,352.00 1,352.00	1,393.00 1,393.00	1,438.00 1,438.00
3	Bottom	BTM- 101	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
4	Bottom	BTM- 102	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
5	Bottom	BTM- 103	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
6 7	Bottom Bottom	BTM- 204 BTM- 205	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,320.00 1,320.00	1,406.00 1,406.00	1,417.00 1,417.00
8	Bottom	BTM- 206	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
9	Bottom	BTM- 207	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
10 11	Bottom Bottom	BTM- 208 BTM- 309	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,320.00 1,320.00	1,406.00 1,406.00	1,417.00 1,417.00
12	Bottom	BTM- 310	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
13	Bottom	BTM- 311	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
14	Bottom	BTM- 312	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
15 16	Bottom Bottom	BTM- 313 BTM- 414	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,320.00 1,320.00	1,406.00 1,406.00	1,417.00 1,417.00
17	Bottom	BTM- 415	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
18	Bottom	BTM- 416	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
19 20	Bottom	BTM- 417 BTM- 418	400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,320.00	1,406.00	1,417.00 1,417.00
20 21	Bottom Bottom	BTM- 419	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32	1,310.00	1,320.00 1,320.00	1,406.00 1,406.00	1,417.00
22	Bottom	BTM- 520	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
23	Bottom	BTM- 521	400x120x11.5x23 LIA	HT32	1,310.00	1,320.00	1,406.00	1,417.00
24 25	Bottom Bottom	BTM- 522 BTM- 523	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,310.00 1,310.00	1,320.00 1,320.00	1,406.00 1,406.00	1,417.00 1,417.00
26	Side Shell	SHL- 101	400x120x11.5x23 LIA	HT32	1,182.00	1,332.00	1,258.00	1,417.00
27	Side Shell	SHL- 102	400x120x11.5x23 LIA	HT32	1,144.00	1,332.00	1,218.00	1,417.00
28 29	Side Shell Side Shell	SHL- 103 SHL- 204	375x120x11.5x20 LIA	HT32 HT32	1,110.00	1,128.00	1,187.00	1,208.00
30	Side Shell	SHL- 204 SHL- 205	375x120x11.5x20 LIA 375x120x11.5x20 LIA	HT32	1,047.00 992.00	1,128.00 1,128.00	1,121.00 1,061.00	1,208.00 1,208.00
31	Side Shell	SHL- 206	375x120x11.5x20 LIA	HT32	935.00	1,128.00	1,001.00	1,208.00
32	Side Shell	SHL- 207	375x120x11.5x20 LIA	HT32	902.00	1,128.00	965.00	1,208.00
33 34	Side Shell Side Shell	SHL- 208 SHL- 209	375x120x11.5x20 LIA 375x120x11.5x20 LIA	HT32 HT32	877.00 852.00	1,128.00 1,128.00	939.00 912.00	1,208.00 1,208.00
35	Side Shell	SHL- 310	375x120x11.5x20 LIA 375x120x10.5x18 LIA	MILD	1,017.00	1,049.00	1,096.00	1,131.00
36	Side Shell	SHL- 311	375x120x10.5x18 LIA	MILD	986.00	1,049.00	1,062.00	1,131.00
37	Side Shell	SHL- 312	375x120x10.5x18 LIA	MILD	954.00	1,049.00	1,028.00	1,131.00
38 39	Side Shell Side Shell	SHL- 313 SHL- 314	375x120x10.5x18 LIA 375x120x10.5x18 LIA	MILD MILD	922.00 891.00	1,049.00 1,049.00	994.00 960.00	1,131.00 1,131.00
40	Side Shell	SHL- 315	375x120x10.5x18 LIA	MILD	859.00	1,049.00	926.00	1,131.00
41	Side Shell	SHL- 416	325x120x11.5x15 LIA	MILD	795.00	804.00	862.00	871.00
42 43	Side Shell Side Shell	SHL- 417 SHL- 418	325x120x11.5x15 LIA 325x120x11.5x15 LIA	MILD MILD	763.00 731.00	804.00 804.00	827.00 792.00	871.00 871.00
44	Side Shell	SHL- 419	325x120x11.5x15 LIA	MILD	699.00	804.00	758.00	871.00
45	Side Shell	SHL- 420	325x120x11.5x15 LIA	MILD	667.00	804.00	723.00	871.00
46	Side Shell	SHL- 421	325x120x11.5x15 LIA	MILD	635.00	804.00	688.00	871.00
47 48	Side Shell Side Shell	SHL- 522 SHL- 523	300x100x10.5x15 LIA 300x100x10.5x15 LIA	MILD MILD	553.00 540.00	612.00 612.00	603.00 588.00	667.00 667.00
49	Side Shell	SHL- 524	300x100x10.5x15 LIA	MILD	514.00	612.00	560.00	667.00
50	Side Shell	SHL- 525	250x90x10.5x15 LIA	HT32	375.00	449.00	408.00	489.00
51 52	Side Shell Side Shell	SHL- 526 SHL- 527	250x90x10.5x15 LIA 250x90x10.5x15 LIA	HT32 HT32	349.00 323.00	449.00 449.00	380.00 352.00	489.00 489.00
53	Side Shell	SHL- 528	250x90x10.5x15 LIA 250x90x10.5x15 LIA	HT32	297.00	449.00	323.00	489.00
54	Upper Deck	DEC- 101	250x100x10.5x14 LIA	HT32	467.00	504.00	519.00	559.00
55	Upper Deck	DEC- 102	250x100x10.5x14 LIA	HT32	467.00	504.00	519.00	559.00
56 57	Upper Deck Upper Deck	DEC- 103 DEC- 104	250x100x10.5x14 LIA 250x100x10.5x14 LIA	HT32 HT32	467.00 467.00	504.00 504.00	519.00 519.00	559.00 559.00
58	Upper Deck	DEC- 205	200x90x9x12 LIA	HT32	252.00	261.00	298.00	309.00
59	Upper Deck	DEC- 206	200x90x9x12 LIA	HT32	250.00	261.00	297.00	309.00
60 61	Upper Deck Upper Deck	DEC- 207 DEC- 208	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	249.00 248.00	261.00 261.00	296.00 294.00	309.00 309.00
62	Upper Deck	DEC- 209	200x90x9x12 LIA 200x90x9x12 LIA	HT32	247.00	261.00	293.00	309.00
63	Upper Deck	DEC- 210	200x90x9x12 LIA	HT32	246.00	261.00	292.00	309.00
64 65	Upper Deck Upper Deck	DEC- 211 DEC- 212	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	245.00 244.00	261.00 261.00	290.00 289.00	309.00 309.00
66	Upper Deck	DEC- 212 DEC- 213	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	243.00	261.00	288.00	309.00
67	Upper Deck	DEC- 214	200x90x9x12 LIA	HT32	242.00	261.00	286.00	309.00
68	Upper Deck Upper Deck	DEC- 215 DEC- 216	200x90x9x12 LIA	HT32 HT32	240.00 239.00	261.00 261.00	285.00	309.00
69 70	Upper Deck	DEC- 216 DEC- 217	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	238.00	261.00	284.00 282.00	309.00 309.00
71	Upper Deck	DEC- 218	200x90x9x12 LIA	HT32	237.00	261.00	281.00	309.00
72	Upper Deck	DEC- 219	200x90x9x12 LIA	HT32	236.00	261.00	280.00	309.00
73 74	Upper Deck Upper Deck	DEC- 220 DEC- 221	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	235.00 234.00	261.00 261.00	279.00 277.00	309.00 309.00
75	Upper Deck	DEC- 222	200x90x9x12 LIA 200x90x9x12 LIA	HT32	233.00	261.00	276.00	309.00
76	Upper Deck	DEC- 223	200x90x9x12 LIA	HT32	232.00	261.00	275.00	309.00
77	Upper Deck Upper Deck	DEC- 224	200x90x9x12 LIA	HT32	231.00	261.00	273.00	309.00
78 79	Upper Deck Upper Deck	DEC- 225 DEC- 226	200x90x9x12 LIA 200x90x9x12 LIA	HT32 HT32	229.00 228.00	261.00 261.00	272.00 271.00	309.00 309.00
80	Upper Deck	DEC- 227	200x90x9x12 LIA	HT32	200.00	261.00	237.00	309.00
81	Upper Deck	DEC- 328	200x90x9x12 LIA	HT32	180.00	255.00	213.00	302.00
82 83	Inner Bottom Inner Bottom	INB- 101 INB- 102	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,220.00 1,220.00	1,317.00 1,317.00	1,303.00 1,303.00	1,406.00 1,406.00
84	Inner Bottom	INB- 102 INB- 103	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
85	Inner Bottom	INB- 104	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
86	Inner Bottom	INB- 105	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
87 88	Inner Bottom Inner Bottom	INB- 206 INB- 207	400x120x11.5x23 LIA 400x120x11.5x23 LIA	HT32 HT32	1,220.00 1,220.00	1,317.00 1,317.00	1,303.00 1,303.00	1,406.00 1,406.00
89	Inner Bottom	INB- 208	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
90 91	Inner Bottom	INB- 209	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
91	Inner Bottom	INB- 210	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00

92	Inner Bottom	INB- 311	400x120x11.5x23 LIA	HT32	1.220.00	1.317.00	1.303.00	1.406.00
93	Inner Bottom	INB- 312	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
94	Inner Bottom	INB- 313	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
95	Inner Bottom	INB- 314	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
96	Inner Bottom	INB- 315	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
97	Inner Bottom	INB- 416	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
98	Inner Bottom	INB- 417	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
99	Inner Bottom	INB- 418	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
100	Inner Bottom	INB- 419	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
101	Inner Bottom	INB- 420	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
102	Inner Bottom	INB- 421	400x120x11.5x23 LIA	HT32	1,220.00	1,317.00	1,303.00	1,406.00
103	Inner Skin	INS- 101	350x120x10.5x16 LIA	HT32	701.00	853.00	774.00	942.00
104	Inner Skin	INS- 102	350x120x10.5x16 LIA	HT32	781.00	853.00	862.00	942.00
105	Inner Skin	INS- 103	350x120x10.5x16 LIA	HT32	690.00	853.00	761.00	942.00
106	Inner Skin	INS- 204	350x120x10.5x16 LIA	HT32	751.00	861.00	814.00	934.00
107	Inner Skin	INS- 205	350x120x10.5x16 LIA	HT32	732.00	861.00	793.00	934.00
108	Inner Skin	INS- 206	350x120x10.5x16 LIA	HT32	712.00	861.00	773.00	934.00
109	Inner Skin	INS- 207	350x120x10.5x16 LIA	HT32	693.00	861.00	752.00	934.00
110	Inner Skin	INS- 208	350x120x10.5x16 LIA	HT32	674.00	861.00	731.00	934.00
111	Inner Skin	INS- 209	350x120x10.5x16 LIA	HT32	655.00	861.00	711.00	934.00
112	Inner Skin	INS- 310	350x120x10.5x16 LIA	MILD	781.00	861.00	847.00	934.00
113	Inner Skin	INS- 311	350x120x10.5x16 LIA	MILD	757.00	861.00	821.00	934.00
114	Inner Skin	INS- 312	350x120x10.5x16 LIA	MILD	733.00	861.00	795.00	934.00
115	Inner Skin	INS- 313	350x120x10.5x16 LIA	MILD	708.00	861.00	768.00	934.00
116	Inner Skin	INS- 314	350x120x10.5x16 LIA	MILD	684.00	861.00	742.00	934.00
117	Inner Skin	INS- 315	350x120x10.5x16 LIA	MILD	659.00	861.00	715.00	934.00
118	Inner Skin	INS- 416	300x100x11.5x16 LIA	MILD	610.00	631.00	662.00	684.00
119	Inner Skin	INS- 417	300x100x11.5x16 LIA	MILD	586.00	631.00	635.00	684.00
120	Inner Skin	INS- 418	300x100x11.5x16 LIA	MILD	561.00	631.00	608.00	684.00
121	Inner Skin	INS- 419	300x100x11.5x16 LIA	MILD	536.00	631.00	582.00	684.00
122 123	Inner Skin Inner Skin	INS- 420 INS- 421	300x100x11.5x16 LIA 300x100x11.5x16 LIA	MILD	512.00 487.00	631.00 631.00	555.00 528.00	684.00 684.00
123	Inner Skin	INS- 421 INS- 522	250x90x11.5x16 LIA	MILD MILD	487.00 424.00	486.00	459.00	526.00
		INS- 522 INS- 523	250x90x11.5x16 LIA 250x90x11.5x16 LIA				448.00	
125 126	Inner Skin Inner Skin	INS- 523 INS- 524	250x90x11.5x16 LIA 250x90x11.5x16 LIA	MILD MILD	414.00 406.00	486.00 486.00	438.00	526.00 526.00
126	Inner Skin	INS- 524 INS- 525	225x90x9x12 LIA	HT32	288.00	331.00	319.00	366.00
128	Inner Skin	INS- 526	200x90x9x12 LIA 200x90x9x12 LIA	HT32	271.00	284.00	299.00	313.00
128	Inner Skin	INS- 526 INS- 527	200x90x9x12 LIA 200x90x9x12 LIA	HT32	253.00	284.00	280.00	313.00
130	Inner Skin	INS- 528	225x90x9x12 LIA 225x90x9x12 LIA	HT32	290.00	331.00	321.00	366.00
131	WT Bot. Grd.	BGR- 101	425x120x11.5x24 LIA	HT36	1.476.00	1.519.00	1.588.00	1.634.00
132	WT Bot. Grd.	BGR- 101	425x120x11.5x24 LIA 425x120x11.5x24 LIA	HT36	1,441.00	1,519.00	1,551.00	1,634.00
133	WT Bot. Grd.	BGR- 102	400x120x11.5x24 LIA 400x120x11.5x23 LIA	HT36	1.336.00	1,369.00	1,439.00	1,475.00
134	C.L. Bhd	CTR- 101	350x120x10.5x16 LIA	HT32	804.00	855.00	886.00	942.00
135	C.L. Bhd	CTR- 202	350x120x10.5x16 LIA	HT32	759.00	855.00	837.00	942.00
136	C.L. Bhd	CTR- 203	350x120x10.5x16 LIA	HT32	716.00	855.00	790.00	942.00
137	C.L. Bhd	CTR- 204	350x120x10.5x16 LIA	HT32	698.00	855.00	770.00	942.00
138	C.L. Bhd	CTR- 205	350x120x10.5x16 LIA	HT32	680.00	855.00	750.00	942.00
139	C.L. Bhd	CTR- 206	350x120x10.5x16 LIA	HT32	662.00	855.00	730.00	942.00
140	C.L. Bhd	CTR- 207	350x120x10.5x16 LIA	HT32	644.00	855.00	710.00	942.00
141	C.L. Bhd	CTR- 208	350x120x10.5x16 LIA	HT32	626.00	855.00	690.00	942.00
142	C.L. Bhd	CTR- 309	350x120x10.5x16 LIA	HT32	608.00	847.00	670.00	934.00
143	C.L. Bhd	CTR- 310	325x120x11.5x15 LIA	MILD	747.00	761.00	823.00	839.00
144	C.L. Bhd	CTR- 311	325x120x11.5x15 LIA	MILD	724.00	761.00	798.00	839.00
145	C.L. Bhd	CTR- 312	325x120x11.5x15 LIA	MILD	700.00	761.00	772.00	839.00
146	C.L. Bhd	CTR- 313	325x120x11.5x15 LIA	MILD	677.00	761.00	747.00	839.00
147	C.L. Bhd	CTR- 314	325x120x11.5x15 LIA	MILD	654.00	761.00	721.00	839.00
148	C.L. Bhd	CTR- 315	325x120x11.5x15 LIA	MILD	631.00	761.00	695.00	839.00
149	C.L. Bhd	CTR- 416	325x120x11.5x15 LIA	MILD	607.00	753.00	670.00	831.00
150	C.L. Bhd	CTR- 417	325x120x11.5x15 LIA	MILD	584.00	753.00	644.00	831.00
151	C.L. Bhd	CTR- 418	300x100x10.5x15 LIA	MILD	561.00	581.00	623.00	646.00
152	C.L. Bhd	CTR- 419	300x100x10.5x15 LIA	MILD	537.00	581.00	597.00	646.00
153	C.L. Bhd	CTR- 420	300x100x10.5x15 LIA	MILD	514.00	581.00	571.00	646.00
154	C.L. Bhd	CTR- 421	300x100x10.5x15 LIA	MILD	490.00	581.00	545.00	646.00
155	C.L. Bhd	CTR- 422	300x100x10.5x15 LIA	MILD	467.00	581.00	519.00	646.00
156	C.L. Bhd	CTR- 523	250x90x11.5x16 LIA	MILD	443.00	460.00	487.00	506.00
157	C.L. Bhd	CTR- 524	250x90x11.5x16 LIA	MILD	420.00	460.00	461.00	506.00
158	C.L. Bhd	CTR- 525	250x90x11.5x16 LIA	MILD	396.00	460.00	435.00	506.00
159	C.L. Bhd	CTR- 526	250x90x11.5x16 LIA	MILD	372.00	460.00	409.00	506.00
160	C.L. Bhd	CTR- 527	225x90x9x12 LIA	HT32	275.00	313.00	311.00	354.00
161	C.L. Bhd	CTR- 528	225x90x9x12 LIA	HT32	257.00	313.00	290.00	354.00
162	C.L. Bhd	CTR- 529	200x90x9x12 LIA	HT32	238.00	269.00	267.00	302.00
163	C.L. Bhd	CTR- 530	200x90x9x12 LIA	HT32	219.00	269.00	246.00	302.00
164	C.L. Bhd	CTR- 531	200x90x9x12 LIA	HT32	200.00	269.00	225.00	302.00

C.L. Blid CTR- 530 200x90x9x12 LIA H132

C.L. Bld CTR- 531 200x90x9x12 LIA HT32

GROSS SM (cm3) = REQUIRED_NET_SMr(cm3) x OFERED_GROSS_SM / OFFERED_NET_SMa

3.4 Moment of Inertia (Stiffener within 0.1D from Deck) Requirements:

	Location	Stiffener ID	Description	Material	Z	Y	Req. Net Offered IX Net IX
Stiffener #.			(m) (m) (c	cm4) (cm4)			IX NCCIX
1	SIDE SHELL	SHL- 526	250x90x10.5x15 LIA	HT32	24.89	24.95	2,622.00 10,131.00
2	SIDE SHELL	SHL- 527	250x90x10.5x15 LIA	HT32	24.89	25.70	2,622.00 10,131.00
3	SIDE SHELL	SHL- 528	250x90x10.5x15 LIA	HT32	24.89	26.45	2,622.00 10,131.00
4	UPPER DECK	DEC- 101	250x100x10.5x14 LIA	HT32	23.69	27.50	2,167.00 11,756.00
5	UPPER DECK	DEC- 102	250x100x10.5x14 LIA	HT32	22.99	27.50	2,167.00 11,756.00
6	UPPER DECK	DEC- 103	250x100x10.5x14 LIA	HT32	22.29	27.50	2,167.00 11,756.00
7	UPPER DECK	DEC- 104	250x100x10.5x14 LIA	HT32	21.59	27.50	2,167.00 11,756.00
8	UPPER DECK	DEC- 205	200x90x9x12 LIA	HT32	20.04	27.52	2,414.00 4,918.00
9	UPPER DECK	DEC- 206	200x90x9x12 LIA	HT32	19.19	27.54	2,414.00 4,918.00
10	UPPER DECK	DEC- 207	200x90x9x12 LIA	HT32	18.34	27.57	2,414.00 4,918.00
11	UPPER DECK	DEC- 208	200x90x9x12 LIA	HT32	17.49	27.59	2,414.00 4,918.00
12	UPPER DECK	DEC- 209	200x90x9x12 LIA	HT32	16.64	27.61	2,414.00 4,918.00
13	UPPER DECK	DEC- 210	200x90x9x12 LIA	HT32	15.79	27.63	2,414.00 4,918.00
14	UPPER DECK	DEC- 211	200x90x9x12 LIA	HT32	14.94	27.65	2,414.00 4,918.00

15	UPPER DECK	DEC- 212	200x90x9x12 LIA	HT32	14.09	27.67	2,414.00 4,918.00
16	UPPER DECK	DEC- 213	200x90x9x12 LIA	HT32	13.24	27.69	2,414.00 4,918.00
17	UPPER DECK	DEC- 214	200x90x9x12 LIA	HT32	12.39	27.72	2,414.00 4,918.00
18	UPPER DECK	DEC- 215	200x90x9x12 LIA	HT32	11.54	27.74	2,414.00 4,918.00
19	UPPER DECK	DEC- 216	200x90x9x12 LIA	HT32	10.69	27.76	2,414.00 4,918.00
20	UPPER DECK	DEC- 217	200x90x9x12 LIA	HT32	9.84	27.78	2,414.00 4,918.00
21	UPPER DECK	DEC- 218	200x90x9x12 LIA	HT32	8.99	27.80	2,414.00 4,918.00
22	UPPER DECK	DEC- 219	200x90x9x12 LIA	HT32	8.14	27.82	2,414.00 4,918.00
23	UPPER DECK	DEC- 220	200x90x9x12 LIA	HT32	7.29	27.85	2,414.00 4,918.00
24	UPPER DECK	DEC- 221	200x90x9x12 LIA	HT32	6.45	27.87	2,414.00 4,918.00
25	UPPER DECK	DEC- 222	200x90x9x12 LIA	HT32	5.60	27.89	2,414.00 4,918.00
26	UPPER DECK	DEC- 223	200x90x9x12 LIA	HT32	4.75	27.91	2,414.00 4,918.00
27	UPPER DECK	DEC- 224	200x90x9x12 LIA	HT32	3.90	27.93	2,414.00 4,918.00
28	UPPER DECK	DEC- 225	200x90x9x12 LIA	HT32	3.05	27.95	2,414.00 4,918.00
29	UPPER DECK	DEC- 226	200x90x9x12 LIA	HT32	2.20	27.98	2,414.00 4,918.00
30	UPPER DECK	DEC- 227	200x90x9x12 LIA	HT32	1.35	28.00	2,315.00 4,881.00
31	UPPER DECK	DEC- 328	200x90x9x12 LIA	HT32	.70	28.00	1,725.00 4,496.00
32	INNER SKIN	INS- 526	200x90x9x12 LIA	HT32	20.89	24.95	2,815.00 5,439.00
33	INNER SKIN	INS- 527	200x90x9x12 LIA	HT32	20.89	25.70	2,815.00 5,439.00
34	INNER SKIN	INS- 528	225x90x9x12 LIA	HT32	20.89	26.45	3,062.00 7,156.00
35	CENTER BHD	CTR- 528	225x90x9x12 LIA	HT32	.00	25.00	1,822.00 6,154.00
36	CENTER BHD	CTR- 529	200x90x9x12 LIA	HT32	.00	25.75	1,790.00 4,737.00
37	CENTER BHD	CTR- 530	200x90x9x12 LIA	HT32	.00	26.50	1,790.00 4,737.00
38	CENTER BHD	CTR- 531	200x90x9x12 LIA	HT32	.00	27.25	1,790.00 4,737.00

Part # 2 Transverse Members Summary Report

SUMMARY-MAINTRAN

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules) Rules 5-1-4 INITIAL SCANTLING CRITERIA SHIP: LOORT3

Cargo density in WING tank = 0.8670 (tf/m3) user input Cargo density in WING tank = 0.9000 (tf/m3) used in calculating pressure

5-1-4/11.7 Web Sectional Area of Side Transverses:

for Upper Part of Side Transverse

		Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required	Net	N/A	229.251	10.72	N/A
Rounded	Net	İ		10.50	
85%	Net	N/A	194.863		
Offered	Net	42595.2	440.000	11.00	400.00
Required	Gross*	N/A	250.092	11.72	N/A
Offered	Gross	46281.2	480.000	12.00	N/A

*Note: Required Gross definition:

Section Modulus: = Required Net * -----

Offered Net

Offered Gross Web Area: = Required Net * ---Offered Net

Web Thickness: = Required Net + Corrosion Margin

for Lower Part of Side Transverse

		Section Modulus (cm3)	Web Area	Web Thickness (mm)	Web Depth (cm)
Required	Net	N/A	31.285	10.72	N/A
Rounded	Net	İ		10.50	
85%	Net	N/A	26.592		
Offered	Net	29086.1	440.000	11.00	400.00
Required	Gross*	N/A	34.129	11.72	N/A
Offered	Gross	31714.6	480.000	12.00	N/A

SUMMARY-MAINTRAN

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules) Rules 5-1-4 INITIAL SCANTLING CRITERIA

5-1-4/15.3.1 Section Modulus of Vertical Web on Longitudinal Bulkhead:

SM = M/fb

*** for tankers with one centerline longitudinal bulkhead with oiltight centerline bulkhead where both side of bulkhead are equally loaded
Required NET Section Modulus of Vertical Web on Long. BHD

SM = M/fb = 4796. (cm3)

M = k c p s lb**2 10**4

c = 0.480

*** for tankers with one centerline longitudinal bulkhead with oiltight centerline bulkhead where both side of bulkhead are equally loaded

Required NET Section Modulus of Vertical Web on Long. BHD M = k c p s lb**2 10**4 c = 0.480 SM = M/fb =

5-1-4/15.3.2 Web Sectional Area of the Vertical Web on Longitudinal Bulkhead

*** for tanker with NO STRUTS and Longitudinal Bulkhead

Loaded from both sides

260.25(cm2) Required net Sectional Area for Upper part = 260.25(cm2 F = k s [Ku 1 (Pu + Pl) - hU Pu] 10**3 = 281069.2 (kgf)

where Ku = 0.130
*** for tanker with NO STRUTS and Longitudinal Bulkhead

Loaded from both sides *** UPPER part of Vertical Webs

		Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required	Net	6394.2	243.461	10.72	50.40
Rounded	Net			10.50	
85%	Net	5435.1	206.942		
Offered	Net	9214.5	240.000	16.00	150.00
Required (Gross*	6789.7	254.677	11.72	N/A
Offered (Gross	9784.4	255.000	17.00	N/A

*** LOWER part of Vertical Webs

		Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required	Net	7992.7	253.589	10.72	50.40
Rounded	Net	İ		10.50	
85%	Net	6793.8	45.550		
Offered	Net	9214.5	240.000	16.00	150.00
Required	Gross*	8487.1	254.938	11.72	N/A
Offered	Gross	9784.4	255.000	17.00	N/A

_SUMMARY-MAINTRAN

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules) Rules 5-1-4 INITIAL SCANTLING CRITERIA

SHIP : LOORT3

5-1-4/11.3.1 Section Modulus of Deck Transverses SM = M/fb

*** for tankers with one centerline longitudinal bulkhead with only one of the cargo tank(port or starboard) is loaded (c2 = 0.5)

The required Section Modulus = 82593. (cm3)
85% SM = 70204. (cm3)

	Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required Net Rounded Net	82593.2 	501.492	10.72 10.50	186.68
85% Net	70204.2	426.268		
Offered Net	83844.0	412.500	16.50	250.00
Required Gross*	89188.4	547.082	12.22	N/A
Offered Gross	90539.1	550.000	18.00	N/A

**Warning: The offered value is less than requirement _SUMMARY-MAINTRAN

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules)

25 MARCH 2000 23:23:11

Rules 5-1-4 INITIAL SCANTLING CRITERIA

SHIP : LOORT3

5-1-4/15.5.1 Section Modulus of Horizontal Girder on Transverse Bulkhead
5-1-4/15.5.2 Web Sectional Area of Horizontal Girder on Transverse Bulkhead
*** for WING TANK ***

Girder Description: Lower Stringer

	Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required Net	129810.4	549.333	10.72	357.80
Rounded Net	İ		10.50	
85% Net	110338.9	466.933		
Offered Net	142831.7	581.250	15.50	375.00
Required Gross*	138224.0	602.494	12.22	N/A
Offered Gross	152089.2	637.500	17.00	N/A

Required Gross*

Offered Gross

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules) Rules 5-1-4 INITIAL SCANTLING CRITERIA

SHIP : LOORT3

5-1-4/15.5.1 Section Modulus of Horizontal Girder on Transverse Bulkhead 5-1-4/15.5.2 Web Sectional Area of Horizontal Girder on Transverse Bulkhead *** for WING TANK ***

Girder Description: Low Stringer

______ Section Modulus Web Area Web Thickness Web Depth (cm3) (cm2) (mm) (cm) (cm3) (cm2) (mm) (cm) 542.121 10.72 10.50 Required Net 128106.4 Rounded Net 85% Net 460.803 581.250 15.50 375.00 594.585 12.22 N/A 17.00 N/A 108890.4 Offered Net 149224.5

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules)

136350.5

158827.7

Rules 5-1-4 INITIAL SCANTLING CRITERIA

SHIP : LOORT3

5-1-4/15.5.1 Section Modulus of Horizontal Girder on Transverse Bulkhead 5-1-4/15.5.2 Web Sectional Area of Horizontal Girder on Transverse Bulkhead *** for WING TANK ***

Girder Description: High Stringer

		Section Modulus	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required	Net	97657.5	413.268	10.72	357.80
Rounded	Net			10.50	
85%	Net	83008.9	351.277		
Offered	Net	104915.2	437.500	12.50	350.00##
Required	Gross*	104827.9	462.860	12.22	N/A
Offered	Gross	112618.6	490.000	14.00	N/A

Required Inertia for Web Portion = 25815700.00 (cm4) Offered Inertia for Web Portion = 26253640.00 (cm4)

##Note: WHERE THE OFFERED DEPTH OF WEB PORTION IS LESS THAN THE REQUIRED MINIMUM DEPTH, THE OFFERED DEPTH IS ACCEPTABLE WHEN INERTIA REQUIREMENTS SATISFIED. (SEE 5-1-4/11.11)

_SUMMARY-MAINTRAN

25 MARCH 2000 23:23:11

ABS/SAFEHULL/MAINTRAN V6.00 (2000 Rules) Rules 5-1-4 INITIAL SCANTLING CRITERIA

SHIP : LOORT3

5-1-4/15.5.1 Section Modulus of Horizontal Girder on Transverse Bulkhead 5-1-4/15.5.2 Web Sectional Area of Horizontal Girder on Transverse Bulkhead *** for WING TANK ***

Girder Description: Higher Stringer

		Section Modulus (cm3)	Web Area (cm2)	Web Thickness (mm)	Web Depth (cm)
Required	Net	69061.1	292.253	10.72	357.80
Rounded	Net	İ		10.50	
85%	Net	58702.0	248.415		
Offered	Net	104471.1	437.500	12.50	350.00##
Required	Gross*	74157.4	327.324	12.22	N/A
Offered	Gross	112180.4	490.000	14.00	N/A

Required Inertia for Web Portion = 19269896.00 (cm4) Offered Inertia for Web Portion = 25905094.00 (cm4)

##Note: WHERE THE OFFERED DEPTH OF WEB PORTION IS LESS THAN THE REQUIRED MINIMUM DEPTH, THE OFFERED DEPTH IS ACCEPTABLE WHEN INERTIA REQUIREMENTS SATISFIED. (SEE 5-1-4/11.11)

SUMMARY-TRANBH

25 MARCH 2000 23:23:13

ABS/SAFEHULL/TRANBH V6.00 (2000 Rules)
Rules 5-1-4/13.1&13.3: TRANSVERSE BHD. PLATE/STIFFENER SHIP: Optimum Risk 168 DWT DH Tanker

---- Note ----

Required_Gross_t(mm) = Required_Net_t(mm) + Corrosion_Margin

Gross_SM(cm3) = Required_Net_SMr(cm3) X Offered_Gross_SM / Offered_Net_SMa

Cargo density in wing tank = 0.8670 (tf/m3) user input

Cargo density in wing tank = 1.0250 (tf/m3) used in calculating pressure

* Upper ------

--- PLATE ---

No. YP Required_Thickness Offered Required_Thickness Offered
(m) Net(mm) Round_Net(mm) Net_t(mm) Gross(mm) Round_Gross(mm) Gross_t(mm) 1 16.000 13.29 13.50 14.00 14.29 14.50 ---- STIFFENER ----15.00

No. YSTFP Stf.ID Required_Net Offered_Net Gross Offered_Gross (m) SMr(cm3) SMa(cm3) SM(cm3) SM(cm3) (m) 852.21 903.50 1034.34

1 18.625 12 975.63 ------

Cargo density in wing tank = 0.8670 (tf/m3) user input
Cargo density in wing tank = 1.0250 (tf/m3) used in calculating pressure

_____ * Middle * TBMiddle

--- PLATE ---

No. YP Required_Thickness Offered Required_Thickness Offered (m) Net(mm) Round_Net(mm) Net_t(mm) Gross(mm) Round_Gross(mm) Gross_t(mm) 1 10.750 14.95 15.00 ---- STIFFENER ----15.00 15.95 16.00 16.00

No. YSTFP Stf.ID Required Net Offered Net Gross Offered Gross (m) SMr(cm3) SMa(cm3) SM(cm3) SM(cm3) 1 13.375 20 2247.45 2352.21 2339.78 2448.84

Cargo density in wing tank = 0.8670 (tf/m3) user input
Cargo density in wing tank = 1.0250 (tf/m3) used in calculating pressure

* Lo	ower		* TBLower			
	PLATE				=======	
No.	YP Requ (m) Net(m	uired_Thicknes m) Round_Net(ss Offered (mm) Net_t(mm	Required One of the second se	_Thickness Round_Gross(mm)	Offered Gross_t(mm)
1	5.500 15.	34 15.50	16.00			17.00
No. YST	- STIFFENER TFP Stf.ID R a)	equired_Net	Offered_Net SMa(cm3)	Gross Off SM(cm3)	ered_Gross SM(cm3)	
			2494.20 2			
Cargo d	density in w	ving tank = 1.		sed in calcu	lating pressure	
==== * St			* TBStool		======= 	
	PLATE				======	
No.	YP Requ (m) Net(m	ired_Thicknes m) Round_Net((mm) Net_t(mm	n) Gross(mm)	_Thickness Round_Gross(mm)	Gross_t(mm)
1	3.900 16.	86 17.00	17.00		18.00	18.00
No. YST		equired_Net	Offered_Net SMa(cm3)			
			499.45			
			c = 1.0250 (tf/			
==== * Ur			* Upper-J		======= 	
					=======	
No.		ired_Thicknes			_Thickness	
					Round_Gross(mm)	Gross_t(mm)
	- STIFFENER		11.50			13.00
(n	n)	SMr(cm3)	Offered_Net SMa(cm3)	SM(cm3)	SM(cm3)	
1 18.7	790 15	1235.76	1353.68 1	.307.63	1432.40	
	-		c = 1.0250 (tf/			
* Mi ====	iddle =======		* Middle-J			
* Mi ==== No.	iddle ======== PLATE YP Requ	i=====================================	* Middle-J	Required	====== Thickness	Offered
* Mi ==== No.	ddle PLATE YP Requ (m) Net(m	ired_Thicknes m) Round_Net(* Middle-J	Required	 	Offered Gross_t(mm)
* Mi ==== No.	ddle PLATE YP Requ (m) Net(m	ired_Thicknesm) Round_Net(* Middle-J ======= ss Offered (mm) Net_t(mm	Required	 _Thickness _Round_Gross(mm)	Offered Gross_t(mm) 15.00
* Mi ==== No. 1 1	ddle PLATE YP Requ (m) Net(m	ired_Thicknes m) Round_Net(* Middle-J ss Offered mm) Net_t(mm) 13.50 Offered_Net SMa(cm3)	Required a) Gross(mm)		Gross_t(mm)
* Mi ==== No. 1 1	PLATE YP Requ (m) Net(m	dired_Thickness m) Round_Net(30 13.50 lequired_Net SMr(cm3) 1745.31	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1	Required a) Gross(mm) 14.80 Gross Off SM(cm3) .835.16		Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YSI (n	ddle PLATE YP Requ (m) Net(m) 10.750 13 STIFFENER FFP Stf.ID R a) 375 18	nired_Thicknes m) Round_Net(30 13.50 SMr(cm3) 1745.31	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16	Thickness Round_Gross(mm)	Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YST (n	PLATE YP Requ (m) Net(m) 10.750 13. STIFFENER TFP Stf.ID R a) 175 18	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mr 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) 835.16 m3)		Gross_t(mm) 15.00
* Mi ==== No. YST (n ===================================	PLATE YP Requ (m) Net(m 10.750 13. STIFFENER FFF Stf.ID R a) 375 18 density in	dired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 (m3)	Thickness Round_Gross(mm) 15.00 ered_Gross SM(cm3) 2036.77	Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YST (n ==== 1 13.3	PLATE YP Requ (m) Net(m) 10.750 13. STIFFENER FFP Stf.ID R a) 375 18 c density in	nired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mr) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 .m3)		Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YSI (n ==== 1 13.3 Ballast	PLATE YP Requ (m) Net(m 0.750 13. SIFFENER FFP Stf.ID R a)	tired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)	Thickness Round_Gross(mm) 15.00 ered_Gross SM(cm3) 2036.77	Gross_t(mm) 15.00 Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YST (n 1 13.3 Ballast * Lc ==== No.	PLATE YP Requ (m) Net(m) 10.750 13. STIFFENER FFP Stf.ID R a) 375 18 density in	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)		Gross_t(mm) 15.00 Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YST (n	PLATE YP Requ (m) Net(m) 10.750 13. STIFFENER FFP Stf.ID R a) 375 18 density in	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3)	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)		Gross_t(mm) 15.00 Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YSI (n 1 13.3 ==== * LC ==== No.	PLATE YP Requ (m) Net(m) 10.750 13 STIFFENER FPF Stf.ID R STFP Stf.ID R WEY YP Requ (m) Net(m) 5.500 14 STIFFENER FFF Stf.ID R	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3)	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 .m3)		Gross_t(mm) 15.00 Offered Gross_t(mm)
* Mides	PLATE	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mr 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) 835.16 Required 1) Gross(mm) 16.38 Gross Off SM(cm3)		Offered Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Ballast * LC ==== No. 1	PLATE YP Requ (m) Net(m) 10.750 13 STIFFENER FFP Stf.ID R a) 375 18 Wer PLATE YP Requ (m) Net(m) 5.500 14. STIFFENER FFP STIFFE	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 .m3)		Offered Gross_t(mm) 15.00
* Mi No. 1 1 No. YS3 (n 1 13.3 Ballast No. 1 No. YS3 (n No. 1 Ballast + Hc	PLATE YP Requ (m) Net(m 10.750 13. STIFFENER FFP Stf.ID R a) STDF Requ (m) Net(m 10.750 13. STIFFENER TFP Stf.ID R a) STDF STFFENER TFP Stf.ID R a) Comparison STIFFENER	dired_Thickness m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .837.44 (m3)		Offered Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Eallast	PLATE YP Requ (m) Net(m 10.750 13. SITIFENER FFP Stf.ID R a) STDF Requ (m) Net(m 10.750 13. SITIFENER FFP Stf.ID R a) STDF Requ (m) Net(m 10.750 14. SITIFENER FFP Stf.ID R a) STDF Stf.ID R a) STDF Stf.ID R a)	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mr 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mr 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .835.16 (m3) .837.44 (m3)		Offered Gross_t(mm) 15.00
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Ballast * Lc === * Lc No. 1 No. YS3 (n 1 8.1	PLATE PLATE YP Requ (m) Net(m 10.750 13 STIFFENER FFP Stf.ID R 375 18	ired_Thicknes m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J ss Offered (mm) Net_t(mm) * Hopper-J ss Offered (mm) Net_t(mm)	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)		Offered Gross_t(mm) 15.00 Offered Gross_t(mm) 17.00 Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Ballast * Lo ==== No. 1 8.1 Ballast * Ho ==== No. 1 8.1	PLATE PLATE YP Requ (m) Net(m 10.750 13. STIFFENER FFP Stf.ID R a) PLATE YP Requ (m) Net(m 5.500 14. STIFFENER FFP Stf.ID R a) 125 20 density in 125 20 density in 125 20 The requ (m) Net(m 127 20 The requ (m) Net(m 128 20 The requ (m) Net(m 129 20 The requ (m) Net	dired_Thickness m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J ss Offered (mm) Net_t(mm) * Hopper-J ss Offered (mm) Net_t(mm) * Hopper-J ss Offered (mm) Net_t(mm)	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)		Offered Gross_t(mm) 15.00 Offered Gross_t(mm) 17.00 Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Ballast ==== * Lc ==== No. 1 No. YS7 (n 1 8.1 Ballast ==== * Hc	PLATE PEATE YP Requ (m) Net(m 10.750 13 STIFFENER FFP Stf.ID R a)	dired_Thickness and 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J ss Offered (mm) Net_t(mm) 17.00 Offered_Net	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)	Thickness Round_Gross(mm) 15.00 ered_Gross SM(cm3) 2036.77	Offered Gross_t(mm) Offered Gross_t(mm) Offered Gross_t(mm)
* Mi ==== No. 1 1 No. YS3 (n 1 13.3 Ballast * Lo ==== No. 1 1 8.1 Ballast * Ho ==== No. 1 No. YS3 (n 1 8.1 No. YS3 (n 1 8.1 No. YS3 (n 1 8.1)	PLATE YP Requ (m) Net(m) 10.750 13. STIFFENER FFP STF.ID R a) 1775 18 3 density in 1875 18 4 density in 1875 18 5 density in 1876 18 6 density in 1876 18 7 Requ (m) Net(m) 1876 10 R a) 1876 10 R a) 1876 10 R a) 1876 10 R a) 1876 10 R a) 1876 10 R a) 1876 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a) 1877 10 R a)	dired_Thickness m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J ss Offered (mm) Net_t(mm) 17.00	Required 1) Gross(mm) 14.80 Gross Off SM(cm3) .835.16 .733 .744 .733 .737.44 .733 .744 .743 .743		Offered Gross_t(mm) Offered Gross_t(mm) Offered Gross_t(mm)
* Mides	### PLATE YP Requ (m) Net(m) 10.750 13 STIFFENER FFP Stf.ID R a)	dired_Thickness m) Round_Net(30 13.50	* Middle-J ss Offered (mm) Net_t(mm) 13.50 Offered_Net SMa(cm3) 1937.04 1 c = 1.0250 (tf/ * Lower-J ss Offered (mm) Net_t(mm) 15.50 Offered_Net SMa(cm3) 2361.36 2 c = 1.0250 (tf/ * Hopper-J ss Offered (mm) Net_t(mm) 17.00 Offered_Net SMa(cm3) 332.64	Required 1) Gross(mm) 14.80 Gross Off SM(cm3)		Offered Gross_t(mm) 15.00 Offered Gross_t(mm) 17.00 Offered Gross_t(mm) 19.00

```
_____
                                             * Inner Bottom-J
           _____
           --- PLATE ---
         --- PLATE ---
No. YP Required_Thickness Offered Required_Thickness Offered
(m) Net(mm) Round_Net(mm) Net_t(mm) Gross(mm) Round_Gross(mm) Gross_t(mm)
          1 0.000 16.37 16.50 17.00 18.37 ---- STIFFENER ----
                                                                          18.50
                                                                                              19.00
       No. YSTFP Stf.ID Required_Net Offered_Net Gross Offered_Gross
(m) SMr(cm3) SMa(cm3) SM(cm3) SM(cm3)
        1 1.950 17 1546.65 1614.65 1706.77 1781
       Cargo density in wing tank = 0.8670 (tf/m3) user input
       Cargo density in wing tank = 1.0250 (tf/m3) used in calculating pressure
      ______
          _____
           * Deck
                                             * TBDeck
          ______
           --- PLATE ---
         --- PLATE ---
No. YP Required_Thickness Offered Required_Thickness Offered
(m) Net(mm) Round_Net(mm) Net_t(mm) Gross(mm) Round_Gross(mm) Gross_t(mm)
         1 21.250 11.37 11.50 12.00 12.37 12.50 13.0
                                                                                              13.00
       No. YSTFP Stf.ID Required_Net Offered_Net Gross Offered_Gross
(m) SMr(cm3) SMa(cm3) SM(cm3) SM(cm3)
        1 24.150 17 1445.51 1682.56 1520.03
                                                                        25 MARCH 2000 23:23:17
      SUMMARY-DBFLGRD
            ABS/SAFEHULL/DBFLGRD V6.00 (2000 Rules)
            Rules 5-1-4/7.7 BOTTOM GIRDERS/FLOORS
            SHIP: Optimum Risk 168 DWT DH Tanker
       SHIP: Optimize Theorem
Description: Floors
Double bottom side girders(5-1-4/7.7.2)
44 200 (m) P = 22.
        ls = 44.200 (m) P = 22.795 (ft/m2)
Transverse Location From Center Line: 4.500 (m)
                   required
                                 offered
         Location net gross net gross
From To (mm) (mm) (mm) (mm)
         0.00 3.40 10.15 12.00 10.00 12.00 3.40 6.80 9.31 11.50 10.00 12.00 12.00 6.80 9.31 10.50 10.00 12.00
         6.80 10.20
                         8.71 10.50
                                       10.00 12.00
        10.20
               13.60
                         8.71 10.50 10.00
                                                12.00
               17.00
                         8.71 10.50
                                       10.00
                         8.71 10.50 10.00
8.71 10.50 10.00
        17.00 23.80
                                                12.00
               30.60
        23.80
                                                12.00

    23.60
    34.00
    8.71
    10.50
    10.00
    12.00

    34.00
    37.40
    8.71
    10.50
    10.00
    12.00

    37.40
    40.80
    9.31
    11.50
    10.00
    12.00

    40.80
    44.20
    10.15
    12.00
    10.00
    12.00

        Transverse Location From Center Line:
         _____
                   required
                                  offered
          Location net gross net gross
From To (mm) (mm) (mm) (mm)
         From To (
         0.00 3.40 10.15 12.00 10.00 12.00
3.40 6.80 9.31 11.50 10.00 12.00
6.80 10.20 8.71 10.50 10.00 12.00
         6.80 10.20
10.20 13.60
                         8.71 10.50 10.00 12.00
8.71 10.50 10.00 12.00
        10.20
        13.60 17.00
                         8.71 10.50 10.00
                                                12.00
                         8.71 10.50 10.00 12.00
8.71 10.50 10.00 12.00
        17.00 23.80
               30.60
        30.60 34.00
                         8.71 10.50 10.00
                                                12.00
         34.00 37.40
                         8.71 10.50 10.00 12.00
               40.80 9.31 11.50 10.00 12.00
44.20 10.15 12.00 10.00 12.00
        37.40 40.80
        Transverse Location From Center Line: 13.500 (m)
                   required
                                 offered
         Location net gross net gross
From To (mm) (mm) (mm) (mm)
         0.00 3.40 10.91 13.00 11.00 13.00
3.40 6.80 10.00 12.00 11.00 13.00
         6.80 10.20
                         8.71 10.50 11.00
                                                13.00
        10.20 13.60
                         8.71 10.50 11.00
        13.60 17.00
17.00 23.80
                         8.71 10.50 11.00 13.00
8.71 10.50 11.00 13.00
                        8.71 10.50 11.00 13.00
8.71 10.50 11.00 13.00
        23.80 30.60
        30.60 34.00
         34.00 37.40 8.71 10.50 11.00 13.00
        37.40 40.80 10.00 12.00 11.00 13.00
40.80 44.20 10.91 13.00 11.00 13.00
SUMMARY-DBFLGRD
                                                                  25 MARCH 2000 23:23:17
           ABS/SAFEHULL/DBFLGRD V6.00 (2000 Rules)
           Rules 5-1-4/7.7 BOTTOM GIRDERS/FLOORS
            SHIP: Optimum Risk 168 DWT DH Tanker
       Description: Floors
Double bottom floors (Rule 5-1-4/7.7.3)
          L = 251.390 (m) DB = 3.900 (m)
```

```
44,200 (m)
                                           22.795 (tf/m2)
         ls =
                                  P =
                   18.750 (m)
                                  s3 =
          Bs
                                            3.400 (m)
          s٥
                    4.625 (m)
                                  eta =
                                            2.546
                            required
           Location
                                             offered
          From
                  To
                          net
                                  gross
                                           net
                                                   gross
                                            (mm)
          (m)
                                   (mm)
       The floor index: 1, with distance from the AFT of the bulkhead: 3.400(m)
         0.00
                 4.50
                          9.53 11.50
                                          10.00 12.00
                          8.71
          4.50
                  9.00
                                  10.50
                                          10.00
                                                   12.00
                                                   12.00
          9.00
                 13.50
                          8.71
                                  10.50
                                           10.00
        13.50
                 18.75
                         14.98
                                  17.00
                                          15.00
                                                   17.00
     The floor
                index: 2, with distance
                                          from the AFT of the bulkhead: 6.800(m)
                  4.50
9.00
                                 11.50
10.50
         0.00
                          9.53
                                          10.00
                                                   12.00
                           8.71
                                           10.00
                                                   12.00
          4.50
          9.00
                 13.50
                           8.71
                                  10.50
                                          10.00
                                                   12.00
        13.50
                 18.75
                         14.98
                                  17.00
                                          15.00
                                                   17.00
     The floor
                index: 3, with distance
                                         from the
                                                   AFT of the bulkhead: 10.200(m)
         0.00
                  4.50
                          9.53
                                 11.50
                                          10.00
                                                   12.00
         9.00
                 13.50
                          8.71
                                  10.50
                                          10.00
                                                   12.00
         13.50
                 18.75
                         14.98
                                  17.00
                                          15.00
                                                   17.00
     The floor
               index: 4, with distance 4.50 9.53 11.50
                                         from the AFT of the bulkhead: 13.600(m)
                                          10.00
                                                   12.00
         0.00
          4.50
                  9.00
                          8.71
                                  10.50
                                          10.00
                                                   12.00
         9.00
                 13.50
                          8.71
                                  10.50
                                          10.00
                                                   12.00
         13.50
                 18.75
                         14.98
                                  17.00
                                           15.00
                                                   17.00
                index: 5, with distance 4.50 14.30 16.50
     The floor
                                         from the AFT of the bulkhead: 17.000(m)
                                          10.00
         0.00
                                                   12.00
          4.50
                  9.00
                          8.71
                                  10.50
                                          10.00
                                                   12.00
                                                                                                          Exceeding due to SafeHull
                                                                                                          Limitations (discussed in
                 13.50
                          9.89
                                          10.00
                                                   12.00
         9.00
                                  12.00
        13.50
                 18.75
                         22.47
                                  24.50
                                          15.00
                                                   17.00
                                                                                                          the design report Sec.4.2)
                                         from the AFT of the bulkhead: 23.800(m)
     The floor
                index: 6, with distance
         0.00
                        19.07
                                  21.00
          4.50
                  9.00
                          9.91
                                  12.00
                                          10.00
                                                   12.00
                                          10.00
                         13.18
                                  15.00
                                                   12.00
          9.00
                 13.50
        13.50
                 18.75
                         29.96
                                  32.00
                                          15.00
                                                   17.00
     The floor index: 7, with distance from the AFT of the bulkhead: 30.600(m)
         0.00
                  4.50
                         14.30
                                 16.50
                                          10.00
                                                   12.00
          4.50
                  9.00
                          8.71
                                  10.50
                                           10.00
                                                   12.00
                           9.89
                                  12.00
        13.50
                 18.75
                         22.47
                                  24.50
                                          15.00
                                                   17.00
                                         from the AFT of the bulkhead: 34.000(m)
      The floor
                index: 8, with distance
         0.00
                  4.50
                           9.53
                                  11.50
                                          10.00
                                                   12.00
          4.50
                  9.00
                          8.71
                                  10.50
                                          10.00
                                                   12.00
          9.00
                 13.50
                          8.71
                                  10.50
                                          10.00
        13.50
                 18.75
                         14.98
                                  17.00
                                          15.00
                                                   17.00
      The floor index: 9, with distance from the AFT of the bulkhead: 37.400(m)
         0.00
                  4.50
                          9.53
                                  11.50
                                          10.00
                                                   12.00
                          8.71
                                  10.50
                                          10.00
                                                   12.00
          4.50
                  9.00
          9.00
                 13.50
                           8.71
                                  10.50
                                          10.00
                                                   12.00
                         14.98
         13.50
                 18.75
                                  17.00
                                          15.00
                                                   17.00
                index:10, with distance
                                         from the
                                                   AFT of the bulkhead: 40.800(m)
      The floor
         0.00
                  4.50
                          9.53
                                 11.50
                                          10.00
                                                  12.00
                                          10.00
                                          10.00
10.00
         9.00
                 13.50
                          8.71
                                  10.50
                                                   12.00
        13.50
                 18.75
                         14.98
                                  17.00
                                                   17.00
       Note *** The reference of location is the center line of the vessel
Part # 3 Longitudinal Members Weight Report
     Gross Stiffeners Total 8914.674 1759.235
Gross Total 36220.469
                                                            9.957
                                                           7147.793 11.500
                                                                                   15.041
                                                           25 MARCH 2000 22:43:29
                                                                                           PAGE: 6
           ABS/SAFEHULL/_WEIGHT V6.00 (2000 Rules)
           SECTION WEIGHT CALCULATIONS FOR HULL GIRDER
           SHIP: Optimum Risk 168 DWT DH Tanker
                                                                                  FILE : LOORT3.OWD
       Gross Summary
      Optimum Risk 168 DWT DH Tanker Scantling group 1 ( x = 125.695 m from AP )
(Scantling group length = 251.390 m)
      DEPTH, MOLDED BREATM, MOLDED
                                                            27.500 m
                                                            49.780 m
                                                         72441.086 cm2
       SECTIONAL AREA
       STEEL DENSITY
                                                            7.850 tonnes/m3
       NEUTRAL AXIS ABOVE BASELINE
                                                            11.500 m
      WEIGHT OF PLATES (HALF SHIP)
WEIGHT OF STIFFENERS (HALF SHIP)
                                                         5388.559 tonnes
                                   (HALF SHIP)
                                                         1759.235 tonnes
TOTAL WEIGHT OF SCANTLINGS (FULL SHIP)
                                                 14295.618
```

Appendix A.5 Power and Propulsion Analysis

A.5.1 NavCad Analysis

A.5.1.1 Design Case

A.S.1.1 Design	Case					
Team 3		7 Mar 2000 11:	44 AM	Page 1		2000 11:44 AM Page 2
Displacement hull	Resistance	Project: TANKE		1430 1	-	: TANKER2.NC3
ORT LO Tanker		Troject minus			ORT LO Tanker	
Analysi	s parameters				Condition data	
2						
[X]Bare-hull: Holt:	rop-1984 method	[X]Appendage:	Holtrop-1	.988 method	Water type: Standard Salt	
Technique: Pred		[]Wind :			Mass density: 1025.86 kg/m3	
Cf type : ITTC		[]Seas :			Kinematic visc: 1.1883e-06 m2/s	
Align to : Rbar	e/W	[]Channel :			Hull data	
File :		[]Barge :			Huii data	
Correlation all	ow(Ca): 0.00014	[]Net :			Primary: Secondary	
[]Roughness:						
[X]3-D corr : form	factor(1+k): 1.	1381 []Speed deper	ndent corr	ection		-
						3 aft of FP: 133.570 m ext fwd FP: 7.050 m
Predict	ion Results					area at FP: 88.000 m2
						er above BL: 6.220 m
Vel Fn	Rn Cf [Cform] [Cw]	Cr	Ct		ransom area: 0.000 m2
kts					_	ent angle: 40.000 deg
						Stern shape: Normal
8.00 0.083 8.71	e8 0.001557 0.	000682 0.000004	0.000686	0.002384	Wetted surface: 17937.4 m2	Bow shape: U-shape
10.00 0.104 1.09	e9 0.001515 0.0	000664 0.000005	0.000668	0.002323	Loading: Load draft	
12.00 0.124 1.31	e9 0.001481 0.0	000649 0.000012	0.000660	0.002281	3	
14.00 0.145 1.52	e9 0.001454 0.0	000637 0.000044	0.000681	0.002275	Parameters: Holtrop-1984 method	
15.00 0.155 1.63	e9 0.001442 0.0	000632 0.000081	0.000713	0.002294	Fn(Lwl) 0.10.8 0.08 Limit	
15.78 0.163 1.72	e9 0.001433 0.0	000628 0.000124	0.000752	0.002324	Fn-high 0.10.8 0.17	
16.00 0.166 1.74	e9 0.001430 0.0	000627 0.000139	0.000765	0.002336	Cp(Lw1) 0.550.85 0.84	
					Lwl/Bwl 3.914.9 5.05	
Vel Rw/W	Rr/W Rbare/W	Rw Rr	Rbare	PEbare	Bwl/T 2.14 3.15	
kts		N N	N	kW		
					Appendages	
	0.00006 0.00022	659 106970		1528.7		
	0.00010 0.00034	1132 162699	565578	2909.6	Total wetted surface (ex. thruster):	
	0.00014 0.00048	4037 231544	799938	4938.3	Rudders: 200.000 m2 Drag co	pefficient: 1.200
	0.00020 0.00065	21133 325050		7818.6	Shaft brackets: 0.000	0.000
	0.00024 0.00076	44396 390388		9698.7	Skeg: 0.000	0.000
	0.00027 0.00085	75120 455704		11440.7	Strut bossing: 0.000	0.000
16.00 0.00005	0.00029 0.00088	86434 477054	1455948	11984.1	3	0.000
Vel Rapp	Rwind Rseas	Rchan Rother	Rtotal	PEtotal	Exposed shafts: 0.000	0.000
				kW	Stabilizer fins: 0.000	0.000
kts N	N N	N N	N	K.W		0.000
8.00 3539	0 0	0 37499		1697.6		0.000
10.00 5390	0 0	0 57097	628065	3231.0	Bow thruster diam: 0.000 m	0.000
12.00 7605	0 0	0 80754		5483.8		
14.00 10176	0 0		1205335	8681.1	Parameters: Holtrop-1988 method	
15.00 11593	0 0		1395283		None given	
15.78 12759	0 0		1564271			
16.00 13097	0 0		1615950			
10.00 10091	0 0	0 110903	1013730	15501.1		

Team 3		7 Mar 2000 11:44 AM	Page 3		esign T					2000 12:		Р	age 1
Displacement hull Resi	stance	Project: TANKER2.NC3				hull Opt	imum pro	peller	Projec	t: TANKE	ER2.NC3		
ORT LO Tanker				ORT L	0 Tanke	er							
Environment	data				S	System 1 -							
Wind:		Seas:			Descri	ption: B-	series F	PP - 4 k	olades				
Wind speed:	0.000 kts	Sig. wave height:	0.000 m			- Series: B-				cale cor	r: B-ser	ies	
Angle off bow:	0.000 deg	Modal wave period:	0.000 sec		Е	Blades: 4				Kt mul	t: []St	d 0.97	0
Tran hull area:	0.000 m2	_		Ex	p area	ratio: []Opt 0	.6500		Kq mul	t: []St	d 1.03	0
VCE above WL:	0.000 m	Channel:				meter: [.7200 m		Blade t/	c: [X]St	d 0.00	0
Tran superst area:	0.000 m2	Channel width:	0.000 m			Pitch: [X		.0402 m			ss: [X]St		0 mm
VCE above WL:	0.000 m	Channel depth:	0.000 m				_		Cav	breakdow	m: []Ap	ply	
Total longl area:	0.000 m2	Side slope:	0.000 deg						Prop	eller cu	ıp:	0.0	mm
VCE above WL:	0.000 m	Wetted hull girth:	0.000 m										
Wind speed:	Free stream				Engine	file: A:	\ENGINE2	.ENG					
Arrangement:	Cargo ship				Rated F	RPM/kW: 91	.0 / 214	80.0					
					Gear	ratio: 1.	000						
Symbols and	Values			Gea	r effic	ciency: 1.	000						
Vel = Ship speed					S	Selection	paramete:	rs					
Fn = Froude numbe	r												
Rn = Reynolds num	ber			L	oad ide	entity: Sh	aft powe	r					
Cf = Frictional r	esistance coe	fficient			Design	speed: 15	.00 kt	В	Cav	criteri	a: Kelle	r eqn	
[Cform] = Viscous form	resistance c	oefficient		Re	ference	e load: 21	480.0	kW I	Load des	ign poir	nt: 100.0	%	
[Cw] = Wave-making	resistance co	efficient		R	eferenc	ce RPM: 91	.0		RPM des	ign poir	nt: 90.0	%	
Cr = Residuary re													
Ct = Bare-hull re	sistance coef	ficient			P	Analysis r	esults -						
Rw/W = Wave-making	resist-displ :	merit ratio		Sys	Vel	Rtotal	WakeFr	ThrDed	RelRot	. EngRPM	1 PropRPM	ſ	
Rr/W = Residuary re				-	kts	N				RPM	_		
Rbare/W = Bare-hull re													
Rw = Wave-making	resistance com	mponent			8.00	412487	0.0000	0.0000	1.0000	41.5	41.5	i	
Rr = Residuary re	sistance comp	onent		1	15.00	1395284	0.0000	0.0000	1.0000	77.1	77.1		
Rbare = Bare-hull re	sistance				16.00	1615951	0.0000	0.0000	1.0000	82.6	82.6	;	
PEbare = Bare-hull ef	fective power												
				Sys	Vel	J	Kt	Kq	PropEff	HullEff	QPC	OPC	
Rapp = Additional a	ppendage resi	stance			kts								
Rwind = Additional w	ind resistance	e											
Rseas = Additional s	ea-state resi	stance			8.00	0.6817	0.1451	0.0240	0.6550	1.0000	0.6550	0.6517	
Rchan = Additional c	hannel resist	ance		1	15.00	0.6884	0.1424	0.0234	0.6655	1.0000	0.6655	0.6621	
Rother = Other added	resistance				16.00	0.6855	0.1437	0.0236	0.6644	1.0000	0.6644	0.6611	
Rtotal = Total vessel	resistance												
PEtotal = Total effect	ive power			Sys	Vel	Thrust	Delth	r PD/pr	op PS/	prop PE	3/prop		
					kts	N	i i	N	kW	kW	kW		
* = Exceeds spee	d parameter												
					8.00	412574	41257	4 25	592	2605	2605		
				1	15.00	1395542	139554	2 161	182 1	6264	16264		
					16.00	1616268	161626	8 200	023 2	0124	20124		
				Sys	Vel	Fuel	MinP/	D TipS	Spd	%Cav	Press	MinBAR	
					kts	lph			nps		kPa		
					8.00	132.897			9.0	0.0		0.2794	
				1	15.00	3414.48			5.2	0.0		0.4685	
					16.00	4172.42	0.80	0 37	7.7	0.0	41.6	0.5110	

Displ	0 Tanke	hull Opt	imum propell	ler Pro		KER2.NC3	Page 2	ORT Design Team 3 Displacement hull Optimum propeller ORT LO Tanker	
	S	System 2 -						Condition data	
	Descri	ption: B-	series FPP -	- 5 blade	es			Water type: Standard Salt	
	S	Series: B-	series		Scale c	orr: B-se	ries	Mass density: 1025.86 kg/m3	
		Blades: 5			Kt m	ult: []S	td 0.970	Kinematic visc: 1.1883e-06 m2/s	
Ex	_]Opt 0.650	00	Kq m	ult: []S	td 1.030		
		meter: [t/c: [X]S		Analysis parameters	
		Pitch: [X]Opt 7.850			ess: [X]S			
					av breakd			Pitch type: FPP	Low speed: 8.00 kts
				E	ropeller	cup:	0.0 mm	Number of props: 1	High speed: 16.00 kts
		513		_				Shaft efficiency: 0.995	
			\ENGINE2.ENG					Prop immersion: 7.0800 m	
			.0 / 21480.0	J				Analysis type: Run	
Gea		ratio: 1. :iency: 1.						Symbols and Values	
								Tr-1 - Chind	
	S	erection ;	parameters -					Vel = Ship speed Rtotal = Total vessel resistance	
т	004 440	mtitur Ch	aft nower						idiont
		entity: Sh speed: 15			Cav crite	ria: Kall	er em	WakeFr = Taylor wake fraction coeff ThrDed = Thrust deduction coefficie	
			480.0 kW		design po			RelRot = Relative rotative efficien	
		e RPM: 91			design po			EngRPM = Engine RPM	ic,
								PropRPM = Propeller RPM	
	A	malysis r	esults					J = Advance coefficinet	
Sys	Vel	Rtotal	WakeFr Thr	Ded Rel	.Rot EngR	PM PropRP	M	Kt = Thrust coefficinet	
	kts	N			R	PM RP	M	Kq = Torque coefficinet	
							_	PropEff = Propeller open-water effic	eiency
	8.00	412487	0.0000 0.0	0000 1.0	0000 41	.6 41.	6	HullEff = Hull efficiency = (1 - Thr	Ded)/(1-WakeFr)
2	15.00	1395284	0.0000 0.0	0000 1.0	0000 77	.3 77.	3	QPC = Quasi-propulsive coefficie	ent
	16.00	1615951	0.0000 0.0	0000 1.0	0000 82	.8 82.	8	OPC = Overall propulsive coeffic	eient
Sys	Vel	J	Kt	Kq Prop	Eff HullE	ff QP	C OPC	Thrust = Open water thrust per prop	peller
	kts							Delthr = Total delivered thrust per	propeller
								PD/prop = Delivered power per propel	ler
	8.00	0.6804	0.1445 0.0	0.6	486 1.00	00 0.648	6 0.6454	PS/prop = Shaft power per propeller	
2	15.00		0.1417 0.0					PB/prop = Brake power per propeller	
	16.00	0.6840	0.1431 0.0	0.6	5576 1.00	00 0.657	6 0.6543		
								Fuel = Fuel consumption per engin	
Sys	Vel	Thrust			PS/prop			MinP/D = Minimum P/D ratio to avoid	
	kts	N	N	kW	kW	kW		TipSpd = Linear velocity of the pro	ppeller tips
	0.05	42.055-	410500		0607	0633		%Cav = Percent back cavitation	
_	8.00	412533		2618	2631	2631		Press = Propeller blade pressure	
2	15.00		1395419	16358	16440	16440		MinBAR = Minimum expanded area rati	.0
	16.00	1616118	1616118	20228	20330	20330		* - **********************************	
6	*** 7		Miles (D	mi-c :	8.0	D	Mi-DAD	* = Warning of possible cavita	icion problems
Sys	Vel	Fuel		TipSpd	%Cav	Press	MinBAR		
	kts	lph		mps		kPa			
	0 00			10.0	0.0				
2	8.00	145.635	0.796	19.0	0.0	10.6	0.2889		
2	15.00	3450.03	0.800	35.3	0.0	35.9	0.5007		
	16.00	4213.47	0.798	37.8	0.0	41.6	0.5483		

ORT Design Team 3 1 Apr 2000 12:47 PM Page 1 ORT Design Team 3 1 Apr 2000 12:47 PM Page 2 Displacement hull Optimum propeller Project: TANKER2.NC3 Displacement hull Optimum propeller Project: TANKER2.NC3 ORT LO Tanker ORT LO Tanker ------ System 3 ------- Condition data -----------Description: B-series CPP - 4 blades Water type: Standard Salt Mass density: 1025.86 kg/m3 Series: B-series Scale corr: B-series Kt mult: []Std 0.970 Blades: 4 Kinematic visc: 1.1883e-06 m2/s Kq mult: []Std 1.030 Exp area ratio: []Opt 0.6500 Blade t/c: [X]Std 0.000 Diameter: []Opt 8.7200 m ----- Analysis parameters -----Pitch: [X]Opt 8.0402 m Roughness: [X]Std 0.000 mm Cav breakdown: []Apply Pitch type: CPP Low speed: 8.00 kts 0.0 mm Propeller cup: Number of props: 1 High speed: 16.00 kts Shaft efficiency: 0.995 Prop immersion: 7.0800 m Engine file: A:\ENGINE2.ENG Rated RPM/kW: 91.0 / 21480.0 Analysis type: Run Gear ratio: 1.000 Gear efficiency: 1.000 ----- Symbols and Values ---------- Selection parameters -----Vel = Ship speed Rtotal = Total vessel resistance Load identity: Shaft power WakeFr = Taylor wake fraction coefficient Design speed: 15.00 kts Cav criteria: Keller eqn ThrDed = Thrust deduction coefficient Reference load: 21480.0 kW Load design point: 100.0 % RelRot = Relative rotative efficiency RPM design point: 90.0 % Reference RPM: 91.0 EngRPM = Engine RPM PropRPM = Propeller RPM ----- Analysis results -----Pitch = Propeller pitch Vel Rtotal WakeFr ThrDed RelRot EngRPM PropRPM Pitch J = Advance coefficinet RPM RPM Kt = Thrust coefficinet m kts Kq = Torque coefficinet 8.00 412487 0.0000 0.0000 1.0000 41.2 41.2 8.1405 PropEff = Propeller open-water efficiency 15.00 1395284 0.0000 0.0000 1.0000 77.0 77.0 8.0569 HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr) 16.00 1615951 0.0000 0.0000 1.0000 82.9 82.9 8.0014 QPC = Quasi-propulsive coefficient OPC = Overall propulsive coefficient Vel Kt Kq PropEff HullEff QPC Thrust = Open water thrust per propeller ---- ---- ----- ----- ------ ------Delthr = Total delivered thrust per propeller 8.00 0.6881 0.1479 0.0247 0.6550 1.0000 0.6550 0.6517 PD/prop = Delivered power per propeller 15.00 0.6894 0.1428 0.0235 0.6655 1.0000 0.6655 0.6621 PS/prop = Shaft power per propeller 16.00 0.6830 0.1427 0.0233 0.6644 1.0000 0.6644 0.6611 PB/prop = Brake power per propeller Sys Vel Thrust Delthr PD/prop PS/prop PB/prop Fuel = Fuel consumption per engine n n kw MinP/D = Minimum P/D ratio to avoid face cavitation kts kW kW TipSpd = Linear velocity of the propeller tips 412579 412579 8.00 2592 2605 %Cav = Percent back cavitation 3 15.00 1395545 1395545 16182 16264 16264 Press = Propeller blade pressure 16.00 1616262 1616262 20023 20124 20124 MinBAR = Minimum expanded area ratio Svs Vel Fuel MinP/D TipSpd %Cav Press MinBAR * = Warning of possible cavitation problems kts lph mps kPa ----_____ 8.00 71.7421 0.805 18.8 0.0 10.6 0.2794 15.00 3415.47 0.803 35.2 0.0 36.0 0.4685

16.00 4169.66 0.797

37.9

0.0

Team 3 7 Mar 2000 11:41 AM Page 1 Team 3 7 Mar 2000 11:41 AM Page 2 Displacement hull System analysis Project: TANKER2.NC3 Displacement hull System analysis Project: TANKER2.NC3 ORT LO Tanker ORT LO Tanker ----- Analysis results - part 1 ---------- Analysis results - part 2 -----Rtotal WakeFr ThrDed RelRot VelAdv EngRPM PropRPM Vel Vel Thrust Delthr Torque PD/prop PS/prop PB/prop kts RPM RPM kts N N Nm kW kW 8 00 412487 0.0000 0.0000 1.0000 8.00 41.5 41.5 8.00 412574 412574 595986 2592 2605 51.6 10.00 628065 0.0000 0.0000 1.0000 10.00 51.6 4897 10.00 628187 628187 906429 4922 4922 888297 0.0000 0.0000 1.0000 12.00 12.00 61.6 61.6 8307 12.00 888460 888460 1280471 8265 8307 14.00 14.00 1205335 0.0000 0.0000 1.0000 71.9 71.9 14.00 1205552 1205552 1733800 13046 13112 13112 77.1 77.1 15.00 1395283 0.0000 0.0000 1.0000 15.00 15.00 1395542 1395542 2003342 16182 16264 16264 15.78 1564271 0.0000 0.0000 1.0000 15.78 81.4 81.4 15.78 1564574 1564574 2241577 19107 19203 19203 16.00 1615950 0.0000 0.0000 1.0000 16.00 82.6 82.6 16.00 1616268 1616268 2314134 20023 20124 20124 Kt Kq PropEff HullEff QPC Vel Fuel Sigma MinP/D TipSpd %Cav Press MinBAR kts kts lph _____ 3.66e7 0.6817 0.1451 0.0240 0.6550 1.0000 0.6550 0.6517 8.00 8.00 133.02 19.67 0.798 19.0 2.8 10.6 0.2794 4.55e7 0.6861 0.1432 0.0237 0.6599 1.0000 0.6599 0.6566 10.00 937.06 12.59 0.800 23.6 2.1 16.2 0.3209 5.44e7 0.6891 0.1419 0.0235 0.6636 1.0000 0.6636 0.6603 12.00 1733.37 8.74 0.802 28.1 1.5 22.9 0.3710 14.00 6.34e7 0.6897 0.1417 0.0234 0.6655 1.0000 0.6655 0.6622 14.00 2741.22 6.42 0.802 32.8 1.1 31.1 0.4320 15.00 6.80e7 0.6883 0.1424 0.0234 0.6655 1.0000 0.6655 0.6621 15.00 3414.47 5.59 0.801 35.2 1.1 36.0 0.4685 15.78 7.18e7 0.6862 0.1433 0.0235 0.6647 1.0000 0.6647 0.6614 5.05 0.800 15.78 3992.13 37.2 1.2 40.3 0.5011 16.00 7.28e7 0.6854 0.1437 0.0236 0.6644 1.0000 0.6644 0.6611 16.00 4172.41 4.92 0.800 37.7 41.6 0.5110 1.2 ----- Symbols and Values ---------- Symbols and Values -----Vel = Ship speed Vel = Ship speed Rtotal = Total vessel resistance Thrust = Open water thrust per propeller WakeFr = Taylor wake fraction coefficient Delthr = Total delivered thrust per propeller ThrDed = Thrust deduction coefficient Torque = Propeller open_water torque RelRot = Relative rotative efficiency PD/prop = Delivered power per propeller VelAdv = Advance velocity = (1-WakeFr)* Vel PS/prop = Shaft power per propeller EngRPM = Engine RPM PB/prop = Brake power per propeller PropRPM = Propeller RPM Tow = Total tow pull PropRn = Propeller Revnold's number Fuel = Fuel consumption per engine J = Advance coefficient Sigma = Cavitation number based on advance velocity Kt = Thrust coefficient MinP/D = Minimum P/D ratio to avoid face cavitation Kq = Torque coefficient TipSpd = Linear velocity of the propeller tips PropEff = Propeller open-water efficiency %Cav = Percent back cavitation HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr) Press = Propeller blade pressure

MinBAR = Minimum expanded area ratio

QPC = Quasi-propulsive coefficient

OPC = Overall propulsive coefficient

Team 3	7 Mar 2000 11:41 AM Page 3	A.5.1.2 V	Wave Case						
Displacement hull System analysis	Project: TANKER2.NC3	OPT Do	sign Team 3			1 700	2000 02:2	27 DM	Page 1
ORT LO Tanker			cement hull			-	2000 02.2 t: TANKEF		Page 1
		_	Tanker	Resistai	ice	Project	C. IMME	K2.NC3	
Condition data		OKI DO	Tuinci						
			Analys	is parame	eters				
Water type: Standard Salt									
Mass density: 1025.86 kg/m3		[X]Bar	e-hull: Hol	trop-1984	l method	[X]Ap	pendage:	Holtrop-1	1988 method
Kinematic visc: 1.1883e-06 m2/s		Tec	hnique: Pre	diction		[]Wi:	nd :		
		Cf	type : ITT	С		[X]Sea	as :	NavSea sr	nall naval
Analysis parameters		Ali	gn to : Rba:	re/W		[]Cha	annel :		
		Fil	e :			[]Ba:	rge :		
Engine file: A:\ENGINE2.ENG		Cor	relation al	low(Ca):	0.00014	[]Ne	t :		
Gear efficiency: 1.000	Analysis type: Run	[]Rou	ghness:						
Gear ratio: 1	Cav criteria: Keller eqn	[X]3-D	corr : for	m factor(1+k): 1.43	81 []Sp	eed deper	ndent cori	rection
Number of props: 1									
Prop immersion: 7.0800 m			Predic	tion Resu	alts				
Shaft efficiency: 0.995									
Propulsor data		Vel	Fn	Rn	Cf [Cf	orm]	[Cw]	Cr	Ct
Flopuisor data		kts							
Description: B-series FPP - 4	hlades								
Series: B-series	Scale corr: B-series	8.00	0.083 8.7		0.00				
Blades: 4	Kt mult: []Std 0.970	10.00	0.104 1.0					0.000668	
Exp area ratio: 0.6500	Kq mult: []Std 1.030	12.00	0.124 1.3		0.00				0.002281
Diameter: 8.7200	Blade t/c: [X]Std 0.000	14.00	0.145 1.5		0.00			0.000681	
Pitch: 8.0400	Roughness: [X]Std 0.000 mm	15.00	0.155 1.6		01442 0.00			0.000713	
Pitch type: FPP	Cav breakdown: []Apply	15.78	0.163 1.7		0.00				0.002324
	Propeller cup: 0.0 mm	16.00	0.166 1.7	4e9 0.00	01430 0.00	0627 0.	000139 (0.000765	0.002336
		Vel	D /17	D /77	D1	_	Rr	71	PEbare
Engine data		vei kts	Rw/W	Rr/W	Rbare/W	Rw N	Rr N	Rbare N	PEDare kW
						IN	IN	IN	
Model: ORT Engine #2		8.00		0.00006		659	106970		1528.7
Rated RPM: 91.0		10.00			0.00022	1132	162699	565578	2909.6
Rated power: 21480.0 kW		12.00		0.00014		4037	231545	799938	4938.3
		14.00		0.00020		21133	325050		7818.6
Performance envelope:	Min fuel/combinator line:	15.00		0.00024		44396	390388		9698.7
RPM Power Fuel	RPM Power Fuel	15.78		0.00027		75120	455704	1409306	11440.7
kW lph	kW lph	16.00		0.00029		86434			11984.1
1. 93.0 0.0 0.0		Vel	Rapp	Rwind	Rseas	Rchan	Rother	Rtotal	PEtotal
2. 91.0 21480.0 4407.0		kts	N	N	N	N	N	N	kW
3. 88.0 21200.0 4400.0									
4. 84.0 20800.0 4300.0		8.00	3539	0	236546	0	37499	649033	2671.1
5. 76.0 19000.0 4000.0		10.00	5390	0	226414	0	57097	854479	4395.8
6. 70.0 16800.0 3500.0		12.00	7605	0	216282	0	80754	1104579	6818.9
7. 68.0 15880.0 3309.0		14.00	10176	0	206150	0	109576	1411485	10165.8
8. 64.0 13900.0 2900.0		15.00	11593	0	201084	0	126844	1596367	12318.6
9. 60.0 11500.0 2400.0		15.78	12759	0	197132	0	142207	1761404	14299.0
10. 56.0 9400.0 1900.0		16.00	13097	0	196018	0	146905	1811969	14914.5

ORT Design Team 3 Displacement hull Resis	stance	1 Apr 2000 02:27 PM Project: TANKER2.NC	_	ORT Design Team 3 Displacement hull Res ORT LO Tanker	sistance	1 Apr 2000 02:27 PM Project: TANKER2.NC3	Page 3
Condition da	ata			Environmer	ıt data		
Water type: Star	ndard Salt			Wind:		Seas:	
Mass density: 1025	5.86 kg/m3			Wind speed:	19.000 kts	Sig. wave height:	1.880 m
Kinematic visc: 1.18	883e-06 m2/s			Angle off bow:	0.000 deg	Modal wave period:	8.800 sec
				Tran hull area:	0.000 m2		
Hull data				VCE above WL:	0.000 m	Channel:	
				Tran superst area:	0.000 m2	Channel width:	0.000 m
Primary:		Secondary:		VCE above WL:	0.000 m	Channel depth:	0.000 m
Length between PP: 2	251.540 m	Trim by stern:	0.000 m	Total longl area:	0.000 m2	Side slope:	0.000 deg
Wl aft of FP:	0.000 m	LCB aft of FP:	133.570 m	VCE above WL:	0.000 m	Wetted hull girth:	0.000 m
Length WL: 2	251.540 m	Bulb ext fwd FP:	7.050 m	Wind speed:	Free stream		
Max beam WL:	49.780 m	Bulb area at FP:	88.000 m2	Arrangement:	Cargo ship		
Draft at mid WL:	15.800 m	Bulb ctr above BL:	6.220 m				
Displacement Bare: 16	69055.0 t	Transom area:	0.000 m2	Symbols ar	nd Values		
Max area coef(Cx):	0.995	Half ent angle:	40.000 deg				
Waterplane coef:	0.913	Stern shape:	Normal	Vel = Ship speed			
Wetted surface: 1	17937.4 m2	Bow shape:	U-shape	Fn = Froude numb	per		
Loading:	Load draft			Rn = Reynolds nu	umber		
				Cf = Frictional	resistance coe	fficient	
Parameters: Holtrop-198	84 method			[Cform] = Viscous for	rm resistance c	oefficient	
Fn(Lw1) 0.10.8	0.08 Limi	it		[Cw] = Wave-making	g resistance co	efficient	
Fn-high 0.10.8	0.17			Cr = Residuary r	resistance coef	ficient	
Cp(Lw1) 0.550.85	0.84			Ct = Bare-hull r	resistance coef	ficient	
Lwl/Bwl 3.914.9	5.05						
Bw1/T 2.14	3.15			Rw/W = Wave-making	g resist-displ	merit ratio	
				Rr/W = Residuary r	resist-displ me	rit ratio	
Appendages -				Rbare/W = Bare-hull r	resist-displ me	rit ratio	
				Rw = Wave-making	g resistance co	mponent	
Total wetted surface (Rr = Residuary r		onent	
Rudders: 2	200.000 m2	Drag coefficient: 1		Rbare = Bare-hull r	resistance		
Shaft brackets:	0.000	C		PEbare = Bare-hull e	effective power		
Skeg:	0.000	C					
Strut bossing:	0.000	C		Rapp = Additional			
Hull bossing:	0.000	C		Rwind = Additional			
Exposed shafts:	0.000	C		Rseas = Additional			
Stabilizer fins:	0.000	C		Rchan = Additional		ance	
Dome:	0.000	0		Rother = Other added			
Bilge keel:	0.000	C		Rtotal = Total vesse			
Bow thruster diam:	0.000 m	C	.000	PEtotal = Total effec	ctive power		

* = Exceeds speed parameter

Parameters: Holtrop-1988 method

None given

ORT Design Team 3 1 Apr 2000 02:23 PM Page 1 ORT Design Team 3 1 Apr 2000 02:23 PM Page 2 Project: TANKER2.NC3 Displacement hull System analysis Project: TANKER2.NC3 Displacement hull System analysis ORT LO Tanker ORT LO Tanker ----- Analysis results - part 1 ---------- Analysis results - part 2 -----Rtotal WakeFr ThrDed RelRot VelAdv EngRPM PropRPM Vel Thrust Delthr Torque PD/prop PS/prop PB/prop Vel kts RPM RPM kts N N Nm kW kW kts N 8.00 649033 0.0000 0.0000 1.0000 8.00 46.8 46.8 8.00 648899 648899 902438 4426 4448 4448 55.8 10.00 7014 7049 854479 0.0000 0.0000 1.0000 10.00 55.8 10.00 854370 854370 1200146 7049 12.00 1104579 0.0000 0.0000 1.0000 12.00 65.1 65.1 12.00 1104479 1104479 1561178 10639 10692 10692 14.00 1411485 0.0000 0.0000 1.0000 14.00 74.7 74.7 14.00 1411382 1411382 2001267 15654 15732 15732 15.00 1596367 0.0000 0.0000 1.0000 15.00 79.7 79.7 15.00 1596258 1596258 2264078 18902 18997 18997 15.78 1761404 0.0000 0.0000 1.0000 15.78 83.8 83.8 15.78 1761285 1761285 2496997 21914 22024* 22024 16.00 1811969 0.0000 0.0000 1.0000 16.00 85.0 85.0 16.00 1811846 1811846 2568041 22855 22969* 22969 J Kt Kq PropEff HullEff QPC OPC Vel Sigma MinP/D TipSpd Vel PropRn Fuel %Cav Press MinBAR kts lph _____ _____ 8.00 731.45 19.67 0.756 21.4 8.00 4.09e7 0.6046 0.1795 0.0286 0.6034 1.0000 0.6034 0.6003 1.9 16.7 0.3249 10.00 4.89e7 0.6343 0.1665 0.0268 0.6266 1.0000 0.6266 0.6235 10.00 1422.14 12.59 0.772 25.5 1.7 22.0 0.3644 12.00 5.72e7 0.6527 0.1583 0.0257 0.6409 1.0000 0.6409 0.6377 12.00 2229.96 8.74 0.782 29.7 1.4 28.5 0.4125 14.00 6.57e7 0.6635 0.1535 0.0250 0.6494 1.0000 0.6494 0.6461 14.00 3305.25 6.42 0.788 34.1 1.3 36.4 0.4716 15.00 7.01e7 0.6660 0.1524 0.0248 0.6517 1.0000 0.6517 0.6484 15.00 3964.21 5.59 0.789 36.4 1.4 41.1 0.5072 15.78 7.37e7 0.6665 0.1522 0.0247 0.6525 1.0000 0.6525 0.6492 15.78 4554.85 5.05 0.789 38.3 1.6 45.4* 0.5389 7.48e7 0.6664 0.1523 0.0247 0.6525 1.0000 0.6525 0.6493 16.00 4753.18 4.92 0.789 38.8 46.7* 0.5487 16.00 1.7 ----- Symbols and Values ---------- Symbols and Values -----

Vel = Ship speed

Rtotal = Total vessel resistance

WakeFr = Taylor wake fraction coefficient

ThrDed = Thrust deduction coefficient

RelRot = Relative rotative efficiency

VelAdv = Advance velocity = (1-WakeFr)* Vel

EngRPM = Engine RPM

PropRPM = Propeller RPM

PropRn = Propeller Reynold's number

J = Advance coefficinet

Kt = Thrust coefficinet

Kq = Torque coefficinet

PropEff = Propeller open-water efficiency

HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr)

QPC = Quasi-propulsive coefficient

OPC = Overall propulsive coefficient

Vel = Ship speed

Thrust = Open water thrust per propeller

Delthr = Total delivered thrust per propeller

Torque = Propeller open_water torque

PD/prop = Delivered power per propeller

PS/prop = Shaft power per propeller

PB/prop = Brake power per propeller

Tow = Total tow pull

Fuel = Fuel consumption per engine

Sigma = Cavitation number based on advance velocity

MinP/D = Minimum P/D ratio to avoid face cavitation

TipSpd = Linear velocity of the propeller tips

%Cav = Percent back cavitation

Press = Propeller blade pressure

MinBAR = Minimum expanded area ratio

A.5.1.3 Arrival Ballast Case ORT Design Team 3 1 Apr 2000 02:23 PM Page 3 Project: TANKER2.NC3 Displacement hull System analysis ORT Design Team 3 1 Apr 2000 01:20 PM Page 1 ORT LO Tanker Displacement hull System analysis Project: TANKER2.NC3 ORT LO Tanker ----- Condition data ----- Analysis results - part 1 -----Water type: Standard Salt Mass density: 1025.86 kg/m3 Vel Rtotal WakeFr ThrDed RelRot VelAdv EngRPM PropRPM Kinematic visc: 1.1883e-06 m2/s kts N kts RPM ----- Analysis parameters -----8.00 345386 0.0000 0.0000 1.0000 8.00 39.9 39.9 10.00 525795 0.0000 0.0000 1.0000 10.00 49.5 49.5 Engine file: A:\ENGINE2.ENG 12.00 741655 0.0000 0.0000 1.0000 12.00 59.1 59 1 Gear efficiency: 1.000 Analysis type: Run 993487 0.0000 0.0000 1.0000 14.00 14.00 68.8 68.8 Gear ratio: 1 Cav criteria: Keller eqn 15.00 1133659 0.0000 0.0000 1.0000 15.00 73.6 Number of props: 1 15.78 1250116 0.0000 0.0000 1.0000 15.78 77.3 77.3 Prop immersion: 7.0800 m 16.00 1284152 0.0000 0.0000 1.0000 16.00 78.4 78.4 Shaft efficiency: 0.995 Vel PropRn J Kt Kq PropEff HullEff OPC OPC ----- Propulsor data ----kts ---- ----- ----- ------Description: B-series FPP - 4 blades 8.00 3.52e7 0.7106 0.1320 0.0223 0.6705 1.0000 0.6705 0.6671 Series: B-series Scale corr: B-series 10.00 4.38e7 0.7149 0.1302 0.0219 0.6753 1.0000 0.6753 0.6719 Kt mult: []Std 0.970 Blades: 4 12.00 5.23e7 0.7182 0.1287 0.0217 0.6791 1.0000 0.6791 0.6757 Kq mult: []Std 1.030 Exp area ratio: 0.6500 14.00 6.09e7 0.7208 0.1276 0.0215 0.6822 1.0000 0.6822 0.6788 Blade t/c: [X]Std 0.000 Diameter: 8.7200 15.00 6.51e7 0.7218 0.1272 0.0214 0.6835 1.0000 0.6835 0.6801 Pitch: 8.0400 Roughness: [X]Std 0.000 mm 15.78 6.85e7 0.7224 0.1269 0.0213 0.6844 1.0000 0.6844 0.6810 Pitch type: FPP Cav breakdown: []Apply 16.00 6.94e7 0.7225 0.1268 0.0213 0.6846 1.0000 0.6846 0.6812 Propeller cup: 0.0 mm ----- Symbols and Values ----------- Engine data ------Vel = Ship speed Model: ORT Engine #2 Rtotal = Total vessel resistance Rated RPM: 91.0 WakeFr = Taylor wake fraction coefficient Rated power: 21480.0 kW ThrDed = Thrust deduction coefficient RelRot = Relative rotative efficiency Performance envelope: Min fuel/combinator line: VelAdv = Advance velocity = (1-WakeFr)* Vel RPM Power RPM Power Fuel EngRPM = Engine RPM kW lph kW lph PropRPM = Propeller RPM _____ _____ 1. 93.0 0.0 0.0 PropRn = Propeller Reynold's number 91.0 21480.0 4407.0 J = Advance coefficinet 3. 88.0 21200.0 4400.0 Kt = Thrust coefficinet 4. 84.0 20800.0 4300.0 Kq = Torque coefficinet 76.0 19000.0 4000.0 5. PropEff = Propeller open-water efficiency 70.0 16800.0 3500.0 6. HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr) 68.0 15880.0 OPC = Quasi-propulsive coefficient 64.0 13900.0 2900.0 8. OPC = Overall propulsive coefficient 9. 60.0 11500.0 2400.0 10. 56.0 9400.0 1900.0

Displa	sign Team cement hul Tanker		analysis	_	2000 01:		Page 2	ORT De Displa ORT LO	cement	hull Sys	tem analysis	1 Apr 2000 01 Project: TANK		Page 3
	Analy	sis resul	ts - part	2					C	Condition (data			
Vel	Thrust	Delthr	Torque	PD/prop	PS/prop	PB/prop			Water	type: Sta	andard Salt			
kts	N	N	Nm	kW	kW	kW		М	ass de	ensity: 10	25.86 kg/m3			
								Kin	ematic	visc: 1.	1883e-06 m2/	5		
8.00	345426	345426	508094	2120	2131	2131								
10.00	525850	525850	772582	4006	4026	4026			A	malysis pa	arameters			
12.00	741727	741727	1088685	6743	6777	6777								
14.00	993578	993578	1456943	10490	10542	10542			Engine	file: A:	\ENGINE2.ENG			
15.00	1133760	1133760	1661599	12800	12865	12865		Gear	effic	eiency: 1.	000	Analysis	type: Ru	n
15.78	1250226	1250226	1831406	14830	14904	14904			Gear	ratio: 1		Cav cri	teria: Ke	ller eqn
16.00	1284265	1284265	1880991	15441	15518	15518		Numb	er of	props: 1				
								Pro	p imme	ersion: 1.	7400 m			
Vel	Fuel	Sigma	MinP/D	TipSpd	%Cav	Press	MinBAR	Shaft	effic	eiency: 0.	995			
kts	lph			mps		kPa								
									F	ropulsor	data			
8.00	***	13.48	0.814	18.2	2.6	8.9	0.2970							
10.00	731.64	8.63	0.816	22.6	1.7	13.5	0.3476		Descri	ption: B-	series FPP -	4 blades		
12.00	1406.14	5.99	0.818	27.0	1.0	19.1	0.4082		S	Series: B-	series	Scale co	rr: B-ser	ies
14.00	2196.59	4.40	0.820	31.4	0.7	25.6	0.4789		Е	Blades: 4		Kt mu	ılt: []St	d 0.970
15.00	2697.71	3.84	0.820	33.6	0.8	29.2	0.5182	Exp	area	ratio: 0.	6500	Kq mu	ılt: []St	d 1.030
15.78	3127.67	3.47	0.821	35.3	1.0	32.2	0.5509		Dia	meter: 8.	7200	Blade t	/c: [X]St	0.000
16.00	3248.32	3.37	0.821	35.8	1.1	33.1	0.5605			Pitch: 8.	0400	Roughne	ess: [X]St	d 0.000 mm
									Pitch	type: FP	P	Cav breakdo	wn: []Ap	ply
	Symbo	ols and Va	lues									Propeller o	eup:	0.0 mm
Ve:	l = Ship s	peed							E	ingine data	a			
Thrus	t = Open w	ater thru	ıst per pr	opeller										
Delth	r = Total	delivered	l thrust p	er propel	ler						T Engine #2			
	e = Propel								Rate	ed RPM: 91	.0			
	p = Delive								Rated	power: 21	480.0 kW			
	p = Shaft													
	p = Brake		propelle	er				Perfor		envelope:	_	Min fuel/comb		
Tot	w = Total	tow pull							RPM	Power	Fuel	RPM	Power	Fuel
										kW	lph		kW	lph
	l = Fuel c										0.0			
_	a = Cavita					-		1.	93.0	0.0	0.0			
	D = Minimu							3.		21480.0 21200.0	4407.0 4400.0			
	d = Linear			roberrer	cibs									
	v = Percen							4.		20800.0	4300.0			
	s = Propel							5. 6.		19000.0 16800.0	4000.0 3500.0			
MIIIBAI	R = Minimu	uu expande	u area ra	LLIU				6. 7.		15880.0	3309.0			
								8.		13900.0	2900.0			
								8. 9.		11500.0	2400.0			
								J.	50.0	11500.0	2400.0			

10. 56.0 9400.0 1900.0

Page 1

A.5.1.4 TAPS Load Case

ORT Design Team 3 Displacement hull System analysis 1 Apr 2000 01:34 PM

Displacement hull System analysis

1 Apr 2000 01:34 PM Project: TANKER2.NC3 Page 2

ORT LO Tanker

Project: TANKER2.NC3

ORT LO Tanker

ORT Design Team 3

----- Analysis results - part 1 -----

		•	-					
Vel	Rtotal	WakeFr	ThrDed	RelRot	VelAdv	EngRPM	PropRPM	
kts	N				kts	RPM	RPM	
8.00	391916	0.0000	0.0000	1.0000	8.00	41.0	41.0	
10.00	596627	0.0000	0.0000	1.0000	10.00	51.0	51.0	
12.00	841534	0.0000	0.0000	1.0000	12.00	60.9	60.9	
14.00	1127068	0.0000	0.0000	1.0000	14.00	70.7	70.7	
15.00	1285813	0.0000	0.0000	1.0000	15.00	75.7	75.7	
15.78	1417547	0.0000	0.0000	1.0000	15.78	79.5	79.5	
16.00	1456017	0.0000	0.0000	1.0000	16.00	80.6	80.6	
Vel	PropRn	J	Kt	Kq	PropEff	HullEff	QPC	OPC
kts								
8.00	3.62e7	0.6902	0.1413	0.0235	0.6597	1.0000	0.6597	0.6564
10.00	4.50e7	0.6945	0.1394	0.0232	0.6647	1.0000	0.6647	0.6613
12.00	5.37e7	0.6980	0.1379	0.0229	0.6686	1.0000	0.6686	0.6652
14.00	6.25e7	0.7006	0.1368	0.0227	0.6717	1.0000	0.6717	0.6684
15.00	6.68e7	0.7017	0.1363	0.0226	0.6731	1.0000	0.6731	0.6697
15.78	7.03e7	0.7023	0.1360	0.0226	0.6740	1.0000	0.6740	0.6706
16.00	7.12e7	0.7025	0.1360	0.0225	0.6742	1.0000	0.6742	0.6708

----- Symbols and Values -----

Vel = Ship speed

Rtotal = Total vessel resistance

WakeFr = Taylor wake fraction coefficient

ThrDed = Thrust deduction coefficient

RelRot = Relative rotative efficiency

VelAdv = Advance velocity = (1-WakeFr)* Vel

EngRPM = Engine RPM

PropRPM = Propeller RPM

PropRn = Propeller Reynold's number

J = Advance coefficinet

Kt = Thrust coefficinet

Kq = Torque coefficinet

PropEff = Propeller open-water efficiency

HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr)

OPC = Quasi-propulsive coefficient

OPC = Overall propulsive coefficient

	Analy	sis resul	ts - part	2				
Vel	Thrust	Delthr	Torque	PD/prop	PS/prop	PB/prop		
kts	N	N	Nm	kW	kW	kW		
8.00	391986	391986	569087	2445	2458	2458		
10.00	596725	596725	865354	4619	4642	4642		
12.00	841662	841662	1219415	7772	7811	7811		
14.00	1127230	1127230	1631688	12086	12146	12146		
15.00	1285994	1285994	1860587	14744	14818	14818		
15.78	1417744	1417744	2050327	17076	17162	17162		
16.00	1456219	1456219	2105695	17778	17868	17868		
Vel	Fuel	Sigma	MinP/D	TipSpd	%Cav	Press	MinBAR	
kts	lph			mps		kPa		
8.00	46.08	18.10	0.802	18.7	2.8	10.1	0.2819	
10.00	872.99	11.59	0.805	23.3	2.1	15.4	0.3247	
12.00	1629.92	8.05	0.807	27.8	1.4	21.7	0.3759	
14.00	2534.12	5.91	0.808	32.3	1.0	29.0	0.4356	
15.00	3117.95	5.15	0.809	34.5	0.9	33.1	0.4688	

----- Symbols and Values -----

36.8

36.3 1.0

1.0

36.5 0.4964

37.5 0.5044

Vel = Ship speed

15.78 3582.88

16.00 3720.90

Thrust = Open water thrust per propeller

4.53

Delthr = Total delivered thrust per propeller

4.65 0.809

0.809

Torque = Propeller open_water torque

PD/prop = Delivered power per propeller

PS/prop = Shaft power per propeller

PB/prop = Brake power per propeller

Tow = Total tow pull

Fuel = Fuel consumption per engine

Sigma = Cavitation number based on advance velocity

MinP/D = Minimum P/D ratio to avoid face cavitation

TipSpd = Linear velocity of the propeller tips

%Cav = Percent back cavitation

Press = Propeller blade pressure

MinBAR = Minimum expanded area ratio

A.5.1.5 Full Load Case ORT Design Team 3 1 Apr 2000 01:34 PM Page 3 Project: TANKER2.NC3 Displacement hull System analysis 1 Apr 2000 01:26 PM ORT Design Team 3 Page 1 ORT LO Tanker Displacement hull System analysis Project: TANKER2.NC3 ORT LO Tanker ----- Condition data ----- Analysis results - part 1 -----Water type: Standard Salt Mass density: 1025.86 kg/m3 Vel Rtotal WakeFr ThrDed RelRot VelAdv EngRPM PropRPM Kinematic visc: 1.1883e-06 m2/s kts N kts RPM ----- Analysis parameters ------8.00 410011 0.0000 0.0000 1.0000 8.00 41.5 41.5 10.00 624173 0.0000 0.0000 1.0000 10.00 51.5 51.5 Engine file: A:\ENGINE2.ENG 12.00 880376 0.0000 0.0000 1.0000 12.00 61.5 61 5 Gear efficiency: 1.000 Analysis type: Run 14.00 1179016 0.0000 0.0000 1.0000 14.00 71.5 71.5 Gear ratio: 1 Cav criteria: Keller eqn 76.5 15.00 1344984 0.0000 0.0000 1.0000 15.00 76.5 Number of props: 1 15.78 1482659 0.0000 0.0000 1.0000 15.78 80.4 Prop immersion: 5.7300 m 16.00 1525291 0.0000 0.0000 1.0000 16.00 81.5 81.5 Shaft efficiency: 0.995 Vel PropRn J Kt Kg PropEff HullEff OPC OPC ----- Propulsor data ----kts ----Description: B-series FPP - 4 blades 8.00 3.66e7 0.6827 0.1447 0.0240 0.6555 1.0000 0.6555 0.6523 Series: B-series Scale corr: B-series 10.00 4.54e7 0.6871 0.1428 0.0236 0.6605 1.0000 0.6605 0.6572 Kt mult: []Std 0.970 Blades: 4 12.00 5.43e7 0.6906 0.1413 0.0234 0.6644 1.0000 0.6644 0.6611 Kq mult: []Std 1.030 Exp area ratio: 0.6500 14.00 6.31e7 0.6933 0.1401 0.0232 0.6676 1.0000 0.6676 0.6643 Blade t/c: [X]Std 0.000 Diameter: 8.7200 15.00 6.75e7 0.6944 0.1396 0.0231 0.6690 1.0000 0.6690 0.6656 Pitch: 8.0400 Roughness: [X]Std 0.000 mm 15.78 7.09e7 0.6950 0.1393 0.0230 0.6699 1.0000 0.6699 0.6665 Pitch type: FPP Cav breakdown: []Apply 16.00 7.19e7 0.6949 0.1394 0.0230 0.6700 1.0000 0.6700 0.6666 Propeller cup: 0.0 mm ----- Symbols and Values ---------- Engine data ------Vel = Ship speed Model: ORT Engine #2 Rtotal = Total vessel resistance Rated RPM: 91.0 WakeFr = Taylor wake fraction coefficient Rated power: 21480.0 kW ThrDed = Thrust deduction coefficient RelRot = Relative rotative efficiency Performance envelope: Min fuel/combinator line: VelAdv = Advance velocity = (1-WakeFr)* Vel RPM Power Fuel RPM Power Fuel EngRPM = Engine RPM kW lph kW lph PropRPM = Propeller RPM _____ -----1. 93.0 0.0 0.0 PropRn = Propeller Reynold's number 2. 91.0 21480.0 4407.0 J = Advance coefficinet 3. 88.0 21200.0 4400.0 Kt = Thrust coefficinet 84.0 20800.0 4300.0 4. Kq = Torque coefficinet 76.0 19000.0 4000.0 5. PropEff = Propeller open-water efficiency 70.0 16800.0 3500.0 6. HullEff = Hull efficiency = (1 - ThrDed)/(1-WakeFr) 68.0 15880.0 OPC = Quasi-propulsive coefficient 64.0 13900.0 2900.0 8. OPC = Overall propulsive coefficient 9. 60.0 11500.0 2400.0 10. 56.0 9400.0 1900.0

	sign Team cement hul Tanker		analysis		2000 01:		Page 2	ORT De Displa ORT LO	cement	hull Sys	tem analysis	1 Apr 2000 01 Project: TANK		Page 3
	Analy	sis resul	ts - part	2					C	Condition	data			
Vel	Thrust	Delthr	Torque	PD/prop	PS/prop	PB/prop			Water	type: St	andard Salt			
kts	N	N	Nm	kW	kW	kW		M	lass de	ensity: 10	25.86 kg/m3			
								Kin	ematic	visc: 1.	1883e-06 m2/s			
8.00	410096	410096	592751	2575	2588	2588								
10.00	624292	624292	901347	4863	4887	4887			A	Analysis p	arameters			
12.00	880532	880532	1270135	8181	8222	8222								
14.00	1179213	1179213	1699484	12721	12785	12785			Engine	e file: A:	\ENGINE2.ENG			
15.00	1345205	1345205	1937789	15517	15595	15595		Gear	effic	ciency: 1.	000	Analysis	type: Run	
15.78	1482900	1482900	2135262	17971	18061	18061			Gear	ratio: 1		Cav cri	teria: Kell	ler eqn
16.00	1525538	1525538	2196051	18743	18837	18837		Numb	er of	props: 1				
								Pro	p imme	ersion: 7.	3000 m			
Vel	Fuel	Sigma	MinP/D	TipSpd	%Cav	Press	MinBAR	Shaft	effic	ciency: 0.	995			
kts	lph			mps		kPa								
									P	ropulsor	data			
8.00	123.44	19.92	0.798	18.9	2.9	10.6	0.2779							
10.00	929.08	12.75	0.801	23.5	2.2	16.1	0.3186		Descri	ption: B-	series FPP - 4	blades		
12.00	1715.73	8.85	0.803	28.1	1.6	22.7	0.3673		S	Series: B-	series	Scale co	rr: B-serie	es
14.00	2671.10	6.50	0.804	32.6	1.1	30.4	0.4240			Blades: 4		Kt mu	lt: []Std	0.970
15.00	3279.43	5.67	0.805	34.9	1.0	34.7	0.4556	Exp	area	ratio: 0.	6500	Kq mu	lt: []Std	1.030
15.78	3763.32	5.12	0.805	36.7	1.0	38.2	0.4817			meter: 8.			/c: [X]Std	0.000
16.00	3915.10	4.98	0.805	37.2	1.0	39.3	0.4898			Pitch: 8.			ss: [X]Std	0.000 mm
									Pitch	type: FP	P	Cav breakdo		-
	Symbo	ls and Va	lues									Propeller c	up:	0.0 mm
	l = Ship s	_							E	Ingine dat	a			
	= Open w				_									
	r = Total		_		ler						T Engine #2			
	e = Propel									ed RPM: 91				
	p = Delive								Rated	power: 21	480.0 KW			
	s = Shaft							D		1		16in E 1 / 1	13	
	= Brake		properre	i.				Perior		envelope:	Pr 1	Min fuel/comb		
101	v = Total	cow pull							RPM	Power	Fuel	RPM	Power	Fuel
Puo.	l = Fuel c	ongumptic	n ner ere	tine						kW	lph		kW	lph
	ı = Fuel c a = Cavita				e veloai+	v		1.	93.0	0.0	0.0			
_	a = Cavita D = Minimu					-		2.		21480.0	4407.0			
	d = Linear							3.		21200.0	4400.0			
	/ = Dinear / = Percen	_	_	_ OPCIICI				4.		20800.0	4300.0			
	= Propel							5.		19000.0	4000.0			
	R = Minimu							6.		16800.0	3500.0			
				-				7.		15880.0	3309.0			
								8.		13900.0	2900.0			
								9.		11500.0	2400.0			

10. 56.0 9400.0 1900.0

A.5.2 Electrical Load and Endurance Fuel Analyses

Units definition hp = 33000 ft · lbf knt≡1.69—ft mile≡knt-hr Physical Parameters $v_{SW} := 1.281710^{-5} \cdot \frac{ft^2}{}$ Sea water properties: Air properties: $\rho_A := 0.0023817 \frac{\text{slug}}{2}$ $\gamma_F := 42.3 \cdot \frac{\text{ft}^3}{1}$ Liquids specific volumes: Input - Owner's Requirements (All Designs) Endurance speed: V := 15-knt MCR := .9 $m V_S$ is calculated to balance the resistance and installed propulsion power. $m V_e$ is specified and determines the required fuel capacity for specified range. Range and stores period: E := 10000 mile $T_S := \frac{E}{V_e}$ T _S = 27.778 day γ CARGO:=.8674 $\frac{MT}{}$ Deadweight Tonnage: DWT := 140321-MT Cargo Pumps: N COP := 4 Ballast Pumps: N BP := 2 Bow Thruster: N_{BT} := 1 Max Section Coefficient: $C_X := .995$ Input - Design Parameters NCb:=41 NCbt := 41 NClb:=41 NCD:=41 Nhdb := 21 Cbtmin := 2.0 Clbmin:=5. Cbmin := .7 CDmin:=1.2 hdbmin := 2.0 Cbtmax:=4.0 Cbmax:=.9 CDmax:= 3.0 hdbmax := 4.0 Clbmax:=7. Nwds := 21 Nmanfac := 11 Nsmf:=6 NHDK := 11 NNcargo := 5 wdsmin := 2.0 manfacmin := .5 smfmin:= 1.0 HDKmin:= 3.0 Neargomin := 4 manfacmax:= 1.0 smfmax:=1.5 Ncargomax := 8 NCbt - 1 C_B:=Cbmin+DP₃·(Cbmax-Cbmin) $\text{h}_{DB} := \text{hdbmin} \cdot \text{m} + \text{DP}_{5} \cdot \frac{(\text{hdbmax} - \text{hdbmin}) \cdot \text{m}}{\text{Nldb} - 1} \\ \text{w} := \text{wdsmin} \cdot \text{m} + \text{DP}_{6} \cdot \frac{(\text{wdsmax} - \text{wdsmin}) \cdot \text{m}}{\text{Nwds} - 1}$ $ManFac := manfacmin + DP_{7} \cdot \frac{(manfacmax - manfacmin)}{Nmanfac - 1} \\ SMF := smfmin + DP_{8} \cdot \frac{(smfmax - smfmin)}{Nsmf - 1}$ $\text{H}_{DK} := \text{HDKminm} + \text{DP}_9 \cdot \frac{(\text{HDKmax} - \text{HDKmin}) \text{ m}}{\text{NHDK} - 1} \quad \text{N}_{CARGO} := \text{Ncargomin} + \text{DP}_{10} \cdot \frac{(\text{Ncargomax} - \text{Ncargomin})}{\text{NNcargo} - 1}$ $PSYS_{TYP} := Psystypemin + DP_{11} \frac{(Psystypemax - Psystypemin)}{NPsystype - 1} \\ N_{KW} := DP_{12} \\ N_{stern} := DP_{13}$ $C_{BT} = 3.15$ $C_{LB} = 5.05$ $C_{B} = 0.83$ $C_{D} = 1.74$ (Hull coefficients) N CARGO = 4 h D B = 3.9 m w = 4 m (Double Hull Dimensions and Cargo Block Subdivision) ManFac = 0.7 (Reduction from standard crew size due to automation) (Structural Margin Factor, 1.0 satisfies ABS corrosion allowance) $H_{DK} = 4 \text{ m}$ Average deck height (deckhouse) (Propulsion System and Power Redundancy Options) $PSYS_{TYP} = 2$ $N_{KW} = 1$ Stern Design: $N_{stern} = 2$ $C_{stern} := if(N_{stern} = 2, -25, -11)$ $PC := if(N_{stern} = 2, .75, .7)$

Principal Characteristics and Coefficients on DWL

$$\begin{split} & w_{FL} := 168400 MT \\ & v_{FL} := \frac{W_{FL}}{\gamma_{SW}} & c_{M} := c_{X} & c_{P} := \frac{c_{B}}{c_{M}} \\ & LWL := \left(\frac{v_{FL}c_{BT}c_{LB}^{2}}{c_{P}c_{M}}\right)^{\frac{1}{3}} & B := \frac{LWL}{c_{LB}} & T := \frac{B}{c_{BT}} \\ & LWL := 251.395 m & B = 49.781 m & D = 27.498 m & T = 15.804 m & W_{FL} = 1.68810^{5} MT \\ & c_{M} := 0.995 & c_{P} = 0.834 & c_{W} = 0.894 & A_{W} = 1.11910^{4} m^{2} & v_{FL} = 1.64210^{5} m^{3} \\ & N_{P} := 1 & v_{D} := 4.243710^{5} \cdot n^{3} & N_{T} := 20 & v_{T} := 297646.01 m^{3} & N_{A} := 3 \end{split}$$

Input from NAVCAD

Values taken at endurance speed lph is fuel rate in ballast condition $SHP_e := 16263 kW$ $lph := 2697.71 \frac{liter}{k_B}$ $P_{eB} := 16182 kW$ $P_{I} := 22480 kW$ rated power

Electrical Load

Based on DDS 310-1. Estimate maximum functional load for winter cruise condition:

 $KW|_{PTO} := if \left(N|_{p} = 2, N|_{KW} \cdot ceil \left(\frac{KW|_{PTOMFLM}}{500 kW}\right) \cdot 500 kW, N|_{KW} \cdot ceil \left(\frac{KW|_{PTOMFLM}}{500 kW}\right) \cdot 500 kW\right)$

Including design margin: KW_{24AVG} := E24MF·KW $_{24}$ KW_{24AVG} = 877.719kW

 $KW_{24} := [0.75 (KW_{SSMFL} - KW_{P} - KW_{S}) + 1 \cdot (KW_{P} + KW_{S})]$

 $KW_{DG} = 1.75 \cdot 10^3 \text{ ekW}$

KW 24 = 731.439kW

Space

Tankage

Propulsion power at endurance speed: $P_{eBAVG} = P_{eB} \qquad \qquad P_{eBAVG} = 1.61810^4 \text{ eW}$

Propulsion endurance SFC: $SFC_{ePE} := \frac{lph}{P_{eBAVG}{}^{\gamma}F} \quad SFC_{ePE} = 0.232 \frac{lbf}{hp \cdot hr}$

 $\begin{tabular}{ll} Electric power SFC with PTO: & SFC $_{eG}$:= SFC $_{ePE}$ & SFC $_{eG}$ = 0.232 $$$ $$ $$ $$ hp-hr \\ \hline \end{tabular}$

Correction for instrumentation inaccuracy and machinery design changes:

Specified fuel rate: $FR_{SP} := f_1 \cdot SFC_{ePE}$

 $\label{eq:control_equation} \text{Average fuel rate allowing for plant deterioration:} \quad \text{FR}_{AVG} \coloneqq 1.05 \text{FR}_{SP} \\ \qquad \quad \text{FR}_{AVG} \equiv 0.251 \frac{\text{lbf}}{\text{hp hr}} \\ \text{Tr} \\ \text$ Burnable propulsion endurance fuel weight: $W_{BP} := \frac{E}{V_e} \cdot P_{eBAVG}FR_{AVG}$ $W_{BP} = 1.624 \cdot 10^3 \cdot elton$

Required propulsion fuel weight: $W_{FP} \coloneqq \frac{W_{BP}}{TPA}$ W $_{\text{FP}} = 1.709 \cdot 10^3 \text{ olton}$

Required propulsion fuel tank volume (including allowance for expansion and tank internal structure):

 $V_{FP} := 1.02 \cdot 1.05 \cdot \gamma_{F} \cdot W_{FP}$ $V_{FP} = 2.193 \cdot 10^3 \text{ m}^3$

 ${\rm SFC}_G := 0.4727 \frac{lbf}{hp.hr} \qquad {\rm SFC}_{eG} := {\rm SFC}_{ePE} \qquad \text{(assumes PTO)}$ Margin for instrumentation inaccuracy and machinery design changes: } f_{1e} := 1.04

Specified fuel rate: $FR_{GSP} := f_{1e} : SFC_{eG}$

 $\text{Average fuel rate, allowing for plant deterioration: } FR_{GAVG} = 1.05 \cdot FR_{GSP} \qquad FR_{GAVG} = 0.34 \circ \frac{lbf}{kW \cdot hr}$

Burnable electrical endurance fuel weight:

$$W_{Be} := \frac{E}{V_e} \cdot KW_{24AVG} + R_{GAVG} \qquad W_{Be} = 90.36 \text{ loMT}$$
Required electrical final variable, $W_{Be} = W_{Be} = W$

Required electrical fuel weight: $W_{Fe} := \frac{W_{Be}}{TPA}$ $W_{Fe} = 93.61$ Φ

Required electrical fuel volume: $V_{Fe} := 1.02 \cdot 1.05 \cdot \gamma_{Fe} \cdot W_{Fe}$ $V_{Fe} = 120.093 \text{ m}^3$

Total fuel weight and tanks volume: W_{F41} := W_{FP} + W_{Fe} W_{F41} = 1.803 10^3 elton

 $V_F := V_{FP} + V_{Fe}$

Other Tanks

 $\label{eq:vlossymmetric} \text{Lubrication oil:} \qquad \text{W}_{F46} \coloneqq 17.6 \cdot \text{lton} \qquad \text{V}_{LO} \coloneqq 1.02 \cdot 1.05 \cdot \text{W}_{F46} \cdot \gamma_{LO} \qquad \text{V}_{LO} \equiv 20.817 \, \text{m}^3$ Potable water: $W_{F52} := N_{T} \cdot 7.3 \cdot lton$ $W_{F52} = 146 \cdot lton$ $N_{T} = 20$

 $V_W := 1.02 \cdot W_{F52} \cdot \gamma_W \qquad V_W = 151.81 \,\text{m}^3$

 $V_{SEW} := (N_T + N_A) \cdot 2.005 \, \text{ft}^3$ $V_{SEW} = 1.306 \, \text{m}^3$

 $V_{\text{WASTE}} := 0.02 \cdot V_{\text{F}}$ $V_{\text{WASTE}} = 46.258 \,\text{m}^3$ Total ship tankage volume required:

 $V_{TK} := V_F + V_{LO} + V_W + V_{SEW} + V_{WASTE}$ $V_{TK} = 2.533 \cdot 10^3 \text{ m}^3$

Appendix A.6 Weight Report

SWBS	Equipment	Capacity	Gross Dimensions (m) lxwxh	Weight (MT)	VCG (m)	LCG (m)	TCG (m)	VMOM (MT*m)	LMOM (MT*m)	TMOM (MT*m)
100	Hull Structures:									
	Longitudinal Structures			13415.0	13.20	126.00	0.00	177,078	1,690,290	0
	Tans. Structural Bulkheads			1254.0	12.65	114.65	0.00	15,863	143,771	0
	Webs and Frames			5532.0	12.93	126.00	0.00	71,529	697,032	0
	Deckhouse, Stacks, Masts			474.0	37.50	215.00	0.00	17,775	101,910	0
	Foundations			353.0	12.38	215.00	0.00	4,370	75,895	0
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	-
	TOTAL (SWBS 100)			21028.0						
200	Propulsion:									
233	main engine	30560 hp	12.2x8.5x12.2	722.0	8.42	212.30	0.00	6,079	153,281	0
237	bow thruster	2000 kW	1x1x2					0	0	0
252	propulsion control console		3x1x2	6.8	22.37	204.10	6.96	152	1,388	47
202	fuel oil purifiers S		1.5x1x1	3.5	15.87	201.90	4.50	56	713	16
004	fuel oil purifiers P		1.5x1x1	3.5	15.87	201.90	-4.50	56	713	-16
261	diesel oil purifiers S		1.5x1x2	3.5	16.37	201.90	10.50	57	707	37
	diesel oil purifiers P		1.5x1x2	3.5	16.37	201.90	-10.50	57	707	-37
262	lube oil purifiers S		1.5x1x3	25.0	3.81	217.60	6.50	95	5,440	163
	lube oil purifiers P		1.5x1x3	25.0	3.81	217.60	-6.50	95	5,440	-163
	TOTAL (CMPC 200)			700.0						
	TOTAL (SWBS 200)			792.9				0	0	0
300	Electrical:							0	0	0
	pto generator	8000 kW	3x1.5x1.5		5.72	219.90	0.00	0	0	0
311	diesel generator	2000 kW	4.67x1.7x2.06	7.1	22.37	221.90	13.33	159	1,582	95
312	emergency generator	750 kW	4.67x1.7x2.07	7.1	34.50	220.60	-14.00	246	1,573	-100
314	pcu		3x1x1	48.7	21.87	204.10	-7.06	1,065	9,940	-344
	high voltage switchboard		3x1x2	29.2	22.37	204.10	-1.98	653	5,960	-58
324	low voltage switchboard		3x1x2	29.2	22.37	204.10	1.98	653	5,960	58
	emergency switchboard		2x1x2	29.2	34.50	219.10	-12.65	1,007	6,398	-369
	TOTAL (SWBS 300)			150.6						
400	CC&C									
400	bridge control consol 1		4x1x1	2.6	46.00	200.90	0.00	120	522	0
438	bridge control consol 2		2x1x1	2.6	46.00	200.90	3.50	120	522	9
	bridge control consol 3		2x1x1	2.6	46.00	200.90	-3.50	120	522	-9
	TOTAL (SWBS 400)			7.8						
500	Auxiliary:									
	a/c unit 1		1x2x1	42.4	21.87	216.10	-11.88	927	9,163	-504
514	a/c unit 2		1x2x1	42.4	21.87	216.10	-14.38	927	9,163	-610
540	refer unit 1		1x2x1	1.4	21.87	220.10	-17.48	31	308	-24
516	refer unit 2		1x2x1	1.4	21.87	222.10	-17.48	31	311	-24
	aux boiler S		3x3x3	5.3	10.37	227.70	7.54	55	1,207	40
517	aux boiler P		3x3x3	5.3	10.37	227.70	-7.54	55	1,207	-40
	heat recovery boiler S		3x3x3	5.4	10.37	223.40	7.54	56	1,206	41
	heat recovery boiler P fire pump 1	 	3x3x3	5.4	10.37	223.40	-7.54	56	1,206	-41
521	fire pump 1		1x2x1 1x2x1	29.9 29.9	2.82 2.82	212.90 212.90	7.00 -7.00	84 84	6,366 6,366	209 -209
- JE!	fire pump 3		1x2x1	29.9	21.37	201.00	-16.95	639	6,010	-507
	ballast pump S		4.87x1.69x1.00	2.6	7.09	201.70	1.84	18	514	5
529	ballast pump P		4.87x1.69x1.00	2.6	7.09	201.70	-1.84	18	514	-5
E04	distiller S		3x3x3	2.8	3.81	207.70	7.50	11	582	21
531	distiller P		3x3x3	2.8	3.81	207.70	-7.50	11	582	-21
533	potable water pump S		1x1x1	13.5	2.82	206.70	10.50	38	2,790	142
	potable water pump P		1x1x1	13.5	2.82	206.70	-10.50	38	2,790	-142
536	central SW/FW heat exchanger		2x2x2	71.2	1.32	222.80	3.95	94	15,863	281

			•							
	cargo pump S1		6.07x2.28x1.40	6.9	7.09	201.70	7.60	49	1,392	52
	cargo pump P1		6.07x2.28x1.40	6.9	7.09	201.70	-7.60	49	1,392	-52
544	cargo pump S2		6.07x2.28x1.40	6.9	7.09	201.70	11.09	49	1,392	77
544	cargo pump P2		6.07x2.28x1.40	6.9	7.09	201.70	-11.09	49	1,392	-77
	crude oil washing pump		1x1x1	2.5	2.82	202.10	4.82	7	505	12
	cargo stripping pump		1.76x1.25x0.975	2.3	2.82	202.10	-4.82	6	465	-11
	fuel oil heater S		1x1x1		15.87	201.70	6.45	0	0	0
545	fuel oil heater P		1x1x1		15.87	201.70	-6.45	0	0	0
	L/P air compressor S		2x2x2		9.87	219.30	7.00	0	0	0
551										
	L/P air compressor P		2x2x2		9.87	219.30	-7.00	0	0	0
561	steering gear		2x2x2	30.2				0	0	0
	an abas windless as (massing									
581	anchor windlasses/mooring winch		2x2x2	126.9				0	0	0
582	mooring winches		2x2x2					0	0	0
302	mooning winches		ZXZXZ	63.1				U	U	U
583	lifeboats and davits, liferafts			70.7				0	0	0
303	hose crane			30.0				0	0	0
589										
	stores crane			30.0	40.07	000.00	4.00	0	0	0
593	sewage treatment plant		2x2x2	9.2	16.37	228.20	-4.96	151	2,099	-46
	incinerator		3x3x3	9.2	35.00	217.20	5.55	322	1,998	51
	TOTAL (SWBS 500)			709.3						
	weight margin			5294.0	14.50	130.00	0.00	76,763	688,220	0
				Weight (MT)	VCG (m)	LCG (m)	TCG (m)	VMOM (MT*m)	LMOM (MT*m)	TMOM (MT*m)
	TOTALS (Lightship)			27,983	13.51	131.34	-0.07	378,024	3,675,267	-2,052
	. o mes (eightemp)			21,000	10.01	101.01	0.01	070,024	0,070,207	2,002
	1									
	T1									
	Tanks:									
	140K DWT									
	Cargo No.1 S	15,639 MT		11,260	15.87	35.13	9.60	178,696	395,564	108,096
	Cargo No.1 P	15,639 MT		11,260	15.87	35.13	9.60	178,696	395,564	-108,096
	Cargo No.2 S	18,556 MT		18,185	15.80	76.30	10.41	287,323	1,387,516	189,306
	Cargo No.2 P	18,556 MT		18,185	15.80	76.30	10.41	287,323	1,387,516	-189,306
	Cargo No.3 S	18,556 MT		18,185	15.80	120.50	10.41	287,323	2,191,293	189,306
	Cargo No.3 P	18,556 MT		18,185	15.80	120.50	10.41	287,323	2,191,293	-189,306
	Cargo No.4 S	18,495 MT		18,125	15.83	164.68	10.37	286,919	2,984,825	187,956
	Cargo No.4 P	18,495 MT		18,125	15.83	164.68	10.37	286,919	2,984,825	-187,956
	Slop Tank S			2,654	16.02	190.08	10.37	·		
		2,708 MT						42,517	504,472	27,097
	Slop Tank P	2,708 MT		2,654	16.02	190.08	10.21	42,517	504,472	-27,097
	Fuel Oil S	1,498 MT		1,468	16.26	195.40	10.36	23,870	286,847	15,208
	Fuel Oil P	1,498 MT		1,468	16.26	195.40	10.36	23,870	286,847	-15,208
	Generator Fuel	115 MT		113	21.00	195.40	0.00	2,373	22,080	0
	Lube Oil	24 MT		23	13.25	195.40	0.00	305	4,494	0
	Waste Oil	71 MT		69	8.00	195.40	0.00	552	13,483	0
	Sewage	98 MT		96	24.00	230.50	0.00	2,304	22,128	0
	Fresh Water S	118 MT		118	24.03	230.50	15.58	2,836	27,199	1,838
	Fresh Water P	118 MT		118	24.03	230.50	15.58	2,836	27,199	-1,838
	Ballast No.1 S	7,167 MT		0	9.58	34.36	15.83	0	0	0
	Ballast No.1 P	7,167 MT		0	9.58	34.36	15.83	0	0	0
	Ballast No.2 S	8,577 MT		0	8.72	76.30	17.47	0	0	0
	Ballast No.2 P	8,577 MT		0	8.72	76.30	17.47	0	0	0
	Ballast No.3 S	8,578 MT		0	8.72	120.50	17.47	0	0	0
	Ballast No.3 P	8,578 MT		0	8.72	120.50	17.47	0	0	0
	Ballast No.4 S	8,136 MT		0	9.08	163.98	17.22	0	0	0
	Ballast No.4 P	8,136 MT		0	9.08	163.98	17.22	0	0	0
	Ballast No.5 S	1,627 MT		0	10.47	192.08	16.35	0	0	0
	Ballast No.5 P	1,627 MT		0	10.47	192.08	16.35	0	0	0
	Aft Peak	6,597 MT		3,958	14.32	236.96	0.00	56,679	937,888	0
	Forepeak	6,597 MT		0	15.15	6.82	0.00	0	0	0
	T .	-,						-		
				Weight (MT)	VCG (m)	LCG (m)	TCG (m)	VMOM (MT*m)	LMOM (MT*m)	TMOM (MT*m)
	TOTALS (Full Load)			144,249	700 (III)	200 (III)	100 (111)			` ,
	TOTALS (Full Load)			144,249				2,281,179	16,555,503	0
	Load+Lightship)			172,232	15	117	-0.01	2,659,203	20,230,770	-2,052
	_cour Eightonip)									
					 	ļ	ļ			
	Arrival Ballast									
	Cargo No.1 S	15,639 MT		0	15.87	35.13	9.60	0	0	0
	Cargo No.1 P	15,639 MT		0	15.87	35.13	9.60	0	0	0

		1	0		35.13	9.60	0	0	_
Cargo No.1 P	15,639 MT		-	15.87			0	0	0
Cargo No.2 S	18,556 MT		0	15.80	76.30	10.41	0	0	0
Cargo No.2 P	18,556 MT		0	15.80	76.30	10.41	0	0	0
Cargo No.3 S	18,556 MT		0	15.80	120.50	10.41	0	0	0
Cargo No.3 P	18,556 MT		0	15.80	120.50	10.41	0	0	0
Cargo No.4 S	18,495 MT		0	15.83	164.68	10.37	0	0	0
Cargo No.4 P	18,495 MT		0	15.83	164.68	10.37	0	0	0
Slop Tank S	2,708 MT		0	16.02	190.08	10.21	0	0	0
Slop Tank P	2,708 MT		0	16.02	190.08	10.21	0	0	0
Fuel Oil S	1,498 MT		150	16.26	195.40	10.36	2,439	29,310	1,554
Fuel Oil P	1,498 MT		150	16.26	195.40	10.36	2,439	29,310	-1,554
Generator Fuel	115 MT		12	21.00	195.40	0.00	242	2,247	0
Lube Oil	24 MT		23	13.25	195.40	0.00			0
							305	4,494	
Waste Oil	71 MT		69	8.00	195.40	0.00	552	13,483	0
Sewage	98 MT		96	24.00	230.50	0.00	2,304	22,128	0
Fresh Water S	118 MT		59	24.03	230.50	15.58	1,418	13,600	919
Fresh Water P	118 MT		59	24.03	230.50	15.58	1,418	13,600	-919
Ballast No.1 S	7,167 MT		7,024	9.58	34.36	15.83	67,290	241,345	111,190
Ballast No.1 P	7,167 MT		7,024	9.58	34.36	15.83	67,290	241,345	-111,190
Ballast No.2 S	8,577 MT		8,406	8.72	76.30	17.47	73,300	641,378	146,853
Ballast No.2 P	8,577 MT		8,406	8.72	76.30	17.47	73,300	641,378	-146,853
Ballast No.3 S	8,578 MT		8,406	8.72	120.50	17.47	73,300	1,012,923	146,853
Ballast No.3 P	8,578 MT		8,406	8.72	120.50	17.47	73,300	1,012,923	-146,853
					163.98	17.47			
Ballast No.4 S	8,136 MT		7,973	9.08			72,395	1,307,413	137,295
Ballast No.4 P	8,136 MT		7,973	9.08	163.98	17.22	72,395	1,307,413	-137,295
Ballast No.5 S	1,627 MT		1,594	10.47	192.08	16.35	16,689	306,176	26,062
Ballast No.5 P	1,627 MT		1,594	10.47	192.08	16.35	16,689	306,176	-26,062
Aft Peak	6,597 MT		6,135	14.32	236.96	0.00	87,853	1,453,750	0
Forepeak	6,597 MT		6,731	15.15	6.82	0.00	101,975	45,905	0
			Weight (MT)	VCG (m)	LCG (m)	TCG (m)	VMOM (MT*m)	LMOM (MT*m)	TMOM (MT*m)
TOTALS (Ballast)			80,290	- ()	- ()	- ()	806,893	8,646,293	0
TOTALS									
(Ballast+Lightship)			108,272	11	114	-0.02	1,184,917	12,321,560	-2,052
(Dallast Lightship)									
Summer Load Line	15 630 MT		15 279	15.87	35.13	9.60	242 478	536 751	146 678
Summer Load Line Cargo No.1 S	15,639 MT		15,279	15.87	35.13	9.60	242,478	536,751	146,678
Summer Load Line Cargo No.1 S Cargo No.1 P	15,639 MT		15,279	15.87	35.13	9.60	242,478	536,751	-146,678
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S	15,639 MT 18,556 MT		15,279 24,675	15.87 15.80	35.13 76.30	9.60 10.41	242,478 389,865	536,751 1,882,703	-146,678 256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P	15,639 MT 18,556 MT 18,556 MT		15,279 24,675 24,675	15.87 15.80 15.80	35.13 76.30 76.30	9.60 10.41 10.41	242,478 389,865 389,865	536,751 1,882,703 1,882,703	-146,678 256,867 -256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT		15,279 24,675 24,675 24,675	15.87 15.80 15.80 15.80	35.13 76.30 76.30 120.50	9.60 10.41 10.41 10.41	242,478 389,865 389,865 389,865	536,751 1,882,703 1,882,703 2,973,338	-146,678 256,867 -256,867 256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P	15,639 MT 18,556 MT 18,556 MT		15,279 24,675 24,675	15.87 15.80 15.80	35.13 76.30 76.30	9.60 10.41 10.41	242,478 389,865 389,865	536,751 1,882,703 1,882,703	-146,678 256,867 -256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT		15,279 24,675 24,675 24,675	15.87 15.80 15.80 15.80	35.13 76.30 76.30 120.50	9.60 10.41 10.41 10.41	242,478 389,865 389,865 389,865	536,751 1,882,703 1,882,703 2,973,338	-146,678 256,867 -256,867 256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 P Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.3 P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT		15,279 24,675 24,675 24,675 24,675	15.87 15.80 15.80 15.80 15.80	35.13 76.30 76.30 120.50	9.60 10.41 10.41 10.41 10.41	242,478 389,865 389,865 389,865 389,865	536,751 1,882,703 1,882,703 2,973,338 2,973,338	-146,678 256,867 -256,867 256,867 -256,867
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.3 P Cargo No.4 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594	15.87 15.80 15.80 15.80 15.80 15.83	35.13 76.30 76.30 120.50 120.50 164.68	9.60 10.41 10.41 10.41 10.41 10.37	242,478 389,865 389,865 389,865 389,865 389,323 389,323	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140	-146,678 256,867 -256,867 256,867 -256,867 255,040 -255,040
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594	15.87 15.80 15.80 15.80 15.80 15.83	35.13 76.30 76.30 120.50 120.50 164.68	9.60 10.41 10.41 10.41 10.41 10.37 10.37	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478	-146,678 256,867 -256,867 256,867 -256,867 255,040 -255,040 36,766
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478	-146,678 256,867 -256,867 256,867 -256,867 -255,040 -255,040 36,766 -36,766
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847	-146,678 256,867 -256,867 256,867 -256,867 -255,040 -255,040 36,766 -36,766 15,208
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 1,468	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08 195.40	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 23,870	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847	-146,678 256,867 -256,867 -256,867 -256,867 -255,040 -255,040 36,766 -36,766 15,208 -15,208
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 113	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08 195.40 195.40	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 23,870 24,357	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847	-146,678 256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 24 MT		15,279 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 11,468 113 23	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 195.40 195.40 195.40	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT 24 MT 71 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 113 23 69	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 16.26 21.00 13.25 8.00	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 195.40	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 -15,208 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 3,601 3,601 1,468 1,468 113 23 69 96	15.87 15.80 15.80 15.80 15.80 15.83 16.02 16.02 16.02 16.26 21.00 13.25 8.00 24.00	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 195.40 230.50	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.26 10.36 10.36 0.00 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847 286,847 292,709 20,126 3,713 22,128	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 0 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT 24 MT 71 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 113 23 69	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 16.26 21.00 13.25 8.00	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 195.40	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 -15,208 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT 1,498 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 3,601 3,601 1,468 1,468 113 23 69 96	15.87 15.80 15.80 15.80 15.80 15.83 16.02 16.02 16.02 16.26 21.00 13.25 8.00 24.00	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 195.40 230.50	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.26 10.36 10.36 0.00 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847 286,847 292,709 20,126 3,713 22,128	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 0 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 1,468 113 23 69 96 118	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.00	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 195.40 195.40 195.40 230.50 230.50	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00 0.00 0.00	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 1114 2,304 2,836 2,836	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 27,199	-146,678 256,867 -256,867 256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 -15,208 0 0 1,838
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.00 24.03	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 15.58	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847 292,709 20,126 3,713 22,128 27,199	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -0 0 1,838
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.1 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 118 MT 7,167 MT 7,167 MT		15,279 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 113 23 69 96 118 0 0	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.02 16.26 21.00 13.25 8.00 24.00 24.03 24.03 9.58	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83	242,478 389,865 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 -15,208 0 0 1,838 -1,838 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.1 P Ballast No.2 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 118 MT 7,167 MT 8,577 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 1113 23 69 96 118 118 0 0	15.87 15.80 15.80 15.80 15.80 15.83 16.02 16.02 16.26 16.26 21.00 13.25 8.00 24.03 24.03 24.03 9.58 9.58	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 230.50 34.36 34.36 76.30	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00 0.00 0.00 15.58 15.83 15.83 17.47	242,478 389,865 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 2,836 0 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 27,199 0 0	-146,678 256,867 -256,867 256,867 255,040 -255,040 36,766 -36,766 15,208 -15,208 0 0 1,838 -1,838 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 S Siop Tank S Siop Tank S Siop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.2 S Ballast No.2 S Ballast No.2 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 118 MT 7,167 MT 7,167 MT 8,577 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 11,468 113 23 69 96 118 118 0 0 0	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 9.58 8.72	35.13 76.30 76.30 120.50 120.50 120.50 164.68 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 10.36 0.00 0.00 0.00 15.58 15.58 15.83 17.47	242,478 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -36,766 0 0 1,838 -1,838 0 0 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Siop Tank S Siop Tank S Siop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.1 S Ballast No.2 S Ballast No.2 P Ballast No.2 P Ballast No.2 P Ballast No.2 P Ballast No.2 P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,577 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 9.58 8.72 8.72	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 24.36 34.36 34.36 76.30 120.50	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 1114 2,304 2,836 0 0 0 0 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -0 0 1,838 -1,838 0 0 0 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.2 P Ballast No.2 P Ballast No.3 S Ballast No.3 S Ballast No.3 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,578 MT		15,279 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.00 24.03 24.03 9.58 9.58 8.72 8.72	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 120.50 120.50	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 1114 2,304 2,836 2,836 0 0 0 0 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0	-146,678 256,867 -256,867 -256,867 255,040 -255,040 36,766 -36,766 0 0 0 1,838 -1,838 0 0 0 0 0 0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.2 S Ballast No.2 P Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.3 P Ballast No.3 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 2,708 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT		15,279 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 4,963	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 9.58 9.72 8.72 8.72	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 76.30 120.50 120.50 120.50 163.98	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47 17.47 17.47	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 45,064	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 813,833	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -36,766 0 0 0 1,838 -1,838 0 0 0 0 0 85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 P Silop Tank S Siop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.2 S Ballast No.3 P Ballast No.3 P Ballast No.3 P Ballast No.4 S Ballast No.4 S Ballast No.4 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,578 MT 8,136 MT 8,136 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 1,468 113 23 69 96 118 0 0 0 0 0 0 0 4,963 4,963	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.72 8.7	35.13 76.30 76.30 120.50 120.50 164.68 190.08 199.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 120.50 120.50 120.50 120.50 163.98 163.98	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 17.47 17.47 17.47 17.47 17.22 17.22	242,478 389,865 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 0 45,064 45,064	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 0 0 813,833 813,833	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -15,208 -0 0 1,838 -1,838 0 0 0 0 0 0 85,463 -85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 S Cargo No.4 P Silop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 P Ballast No.2 S Ballast No.2 P Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.4 S Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.5 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 2,708 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT 8,578 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 113 23 69 96 118 118 0 0 0 0 4,963 4,963 1,594	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.25 24.00 24.03 24.03 9.58 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.90 9.08	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 230.50 230.50 24.36 76.30 76.30 120.50	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.36 10.36 10.36 10.36 10.00 15.58 15.58 15.83 17.47 17.47 17.47 17.47 17.47 17.22 16.35	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 45,064	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 813,833	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -36,766 0 0 0 1,838 -1,838 0 0 0 0 0 0 85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 P Silop Tank S Siop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 S Ballast No.2 S Ballast No.3 P Ballast No.3 P Ballast No.3 P Ballast No.4 S Ballast No.4 S Ballast No.4 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,578 MT 8,136 MT 8,136 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 1,468 1,468 113 23 69 96 118 0 0 0 0 0 0 0 4,963 4,963	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.72 8.7	35.13 76.30 76.30 120.50 120.50 164.68 190.08 199.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 120.50 120.50 120.50 120.50 163.98 163.98	9.60 10.41 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 17.47 17.47 17.47 17.47 17.22 17.22	242,478 389,865 389,865 389,865 389,865 389,865 389,323 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 0 45,064 45,064	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 0 0 813,833 813,833	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -15,208 -0 0 1,838 -1,838 0 0 0 0 0 85,463 -85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 S Cargo No.4 P Silop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 P Ballast No.2 S Ballast No.2 P Ballast No.3 S Ballast No.3 S Ballast No.3 S Ballast No.4 S Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.5 S	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 118 MT 7,167 MT 8,577 MT 8,578 MT 8,578 MT 8,578 MT 8,136 MT 8,136 MT 1,1627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 113 23 69 96 118 118 0 0 0 0 4,963 4,963 1,594	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.25 24.00 24.03 24.03 9.58 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.90 9.08	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 230.50 230.50 24.36 76.30 76.30 120.50	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.36 10.36 10.36 10.36 10.00 15.58 15.58 15.83 17.47 17.47 17.47 17.47 17.47 17.22 16.35	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 45,064 45,064 16,689	536,751 1,882,703 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 0 0 0 813,833 813,833 306,176	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -265,040 -36,766 -36,766 -36,766 -36,788 -0 0 0 0 0 1,838 -1,838 0 0 0 0 85,463 -85,463 -85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 S Cargo No.4 S Cargo No.4 S Cargo No.4 S Slop Tank S Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.2 S Ballast No.2 P Ballast No.3 S Ballast No.4 P Ballast No.4 S Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.4 P Ballast No.5 S Ballast No.5 S Ballast No.5 P	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,136 MT 8,136 MT 8,136 MT 1,627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 0 4,963 4,963 1,594	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.72	35.13 76.30 76.30 120.50 120.50 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 230.50 24.36 34.36 34.36 76.30 120.50 120.50 163.98 163.98 163.98 163.98 163.98 163.98 163.98	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 15.83 17.47 17.47 17.47 17.47 17.47 17.47 17.22 16.35 16.35	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 1114 2,304 2,836 0 0 0 0 0 45,064 45,064 16,689	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 813,833 813,833 306,176	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -15,208 -0 0 0 1,838 -1,838 0 0 0 0 0 85,463 -85,463 -85,463
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.1 P Ballast No.2 P Ballast No.3 S Ballast No.3 P Ballast No.3 P Ballast No.4 S Ballast No.4 P Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 P Ballast No.5 S Ballast No.5 S Ballast No.5 P Aft Peak	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,136 MT 8,136 MT 1,627 MT 1,627 MT 1,627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 4,963 4,963 4,963 1,594 1,594 6,465	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.72 8.7	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 34.36 76.30 120.50 120.	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47 17.47 17.47 17.47 17.22 17.22 16.35 0.00	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 1114 2,304 2,836 0 0 0 0 0 45,064 45,064 45,064 16,689 16,689	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 0 813,833 813,833 813,833 306,176 306,176	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,766 -15,208 -0 0 1,838 -1,838 -0 0 0 0 0 0 85,463 -85,463 -26,062 -26,062
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.1 P Ballast No.2 P Ballast No.3 S Ballast No.3 P Ballast No.3 P Ballast No.4 S Ballast No.4 P Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 P Ballast No.5 S Ballast No.5 S Ballast No.5 P Aft Peak	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,136 MT 8,136 MT 1,627 MT 1,627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 0 4,963 4,963 1,594 1,594 6,465 0	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.02 16.26 21.00 24.00 24.03 24.03 9.58 9.58 8.72 8.72 8.72 8.72 8.72 9.08 9.08 10.47 10.47 14.32	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 76.30 120.5	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47 17.47 17.47 17.47 17.22 16.35 16.35 10.00	242,478 389,865 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 0 45,064 45,064 16,689 16,689 92,579 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 813,833 813,833 306,176 306,176 1,531,946	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -255,040 -36,766 -36,766 -36,766 -36,786 -15,208 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 P Silop Tank S Silop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water S Fresh Water P Ballast No.1 P Ballast No.2 S Ballast No.3 P Ballast No.3 P Ballast No.4 P Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.5 S Ballast No.5 S Ballast No.5 S Ballast No.5 P Aft Peak Forepeak	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,136 MT 8,136 MT 1,627 MT 1,627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.87 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.02 16.26 21.00 13.25 8.00 24.03 24.03 9.58 8.72 8.72 8.72 8.72 8.72 8.72 8.72 8.7	35.13 76.30 76.30 120.50 120.50 164.68 164.68 190.08 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 34.36 76.30 120.50 120.	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47 17.47 17.47 17.47 17.22 17.22 16.35 0.00	242,478 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 0 45,064 45,064 16,689 16,689 92,579 0	536,751 1,882,703 1,882,703 2,973,338 2,973,338 4,050,140 4,050,140 684,478 286,847 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 0 0 0 0 0 0	-146,678 -256,867 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -36,766 -36,76
Summer Load Line Cargo No.1 S Cargo No.1 P Cargo No.2 S Cargo No.2 P Cargo No.3 S Cargo No.3 P Cargo No.4 S Cargo No.4 P Slop Tank S Slop Tank P Fuel Oil S Fuel Oil P Generator Fuel Lube Oil Waste Oil Sewage Fresh Water P Ballast No.1 S Ballast No.1 P Ballast No.2 P Ballast No.3 S Ballast No.3 P Ballast No.3 P Ballast No.4 S Ballast No.4 P Ballast No.4 S Ballast No.4 S Ballast No.4 S Ballast No.4 P Ballast No.5 S Ballast No.5 S Ballast No.5 P Aft Peak	15,639 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,556 MT 18,495 MT 2,708 MT 2,708 MT 1,498 MT 1,498 MT 115 MT 24 MT 71 MT 98 MT 118 MT 7,167 MT 8,577 MT 8,577 MT 8,578 MT 8,136 MT 8,136 MT 1,627 MT 1,627 MT		15,279 24,675 24,675 24,675 24,675 24,675 24,594 24,594 3,601 3,601 1,468 113 23 69 96 118 118 0 0 0 0 0 0 4,963 4,963 1,594 1,594 6,465 0	15.87 15.80 15.80 15.80 15.80 15.83 15.83 16.02 16.02 16.02 16.26 21.00 24.00 24.03 24.03 9.58 9.58 8.72 8.72 8.72 8.72 8.72 9.08 9.08 10.47 10.47 14.32	35.13 76.30 76.30 120.50 120.50 164.68 190.08 195.40 195.40 195.40 195.40 230.50 230.50 230.50 34.36 76.30 76.30 76.30 120.5	9.60 10.41 10.41 10.41 10.37 10.37 10.21 10.21 10.36 0.00 0.00 0.00 0.00 15.58 15.83 15.83 17.47 17.47 17.47 17.47 17.47 17.22 16.35 16.35 10.00	242,478 389,865 389,865 389,865 389,865 389,865 389,865 389,323 57,688 57,688 23,870 24,357 1,828 114 2,304 2,836 0 0 0 0 0 0 45,064 45,064 16,689 16,689 92,579 0	536,751 1,882,703 1,882,703 2,973,338 4,050,140 4,050,140 684,478 684,478 286,847 292,709 20,126 3,713 22,128 27,199 0 0 0 0 0 0 813,833 813,833 306,176 306,176 1,531,946	-146,678 -256,867 -256,867 -256,867 -256,867 -255,040 -255,040 -255,040 -36,766 -36,766 -36,766 -36,786 -15,208 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0

TOTALS (Summer+Lightship)		236,683	15	121	-0.01	3,614,561	28,668,817	-2,052
(Cammor Lightomp)								
125K DWT								
Cargo No.1 S	15,639 MT	15,326	15.87	35.13	9.60	243,224	538,402	147,130
Cargo No.1 P	15,639 MT	15,326	15.87	35.13	9.60	243,224	538,402	-147,130
Cargo No.2 S	18,556 MT	9,278	15.80	76.30	10.41	293,185	1,415,823	96,584
Cargo No.2 P	18,556 MT	9,278	15.80	76.30	10.41	293,185	1,415,823	-96,584
Cargo No.3 S	18,556 MT	14,659	15.80	120.50	10.41	293,185	2,235,998	152,600
Cargo No.3 P	18,556 MT	14,659	15.80	120.50	10.41	293,185	2,235,998	-152,600
Cargo No.4 S	18,495 MT	18,125	15.83	164.68	10.37	292,776	3,045,757	187,956
Cargo No.4 P	18,495 MT	18,125	15.83	164.68	10.37	292,776	3,045,757	-187,956
Slop Tank S	2,708 MT	2,654	16.02	190.08	10.21	43,382	514,737	27,097
Slop Tank P	2,708 MT	2,654	16.02	190.08	10.21	43,382	514,737	-27,097
Fuel Oil S	1,498 MT	1,468	16.26	195.40	10.36	24,357	292,709	15,208
Fuel Oil P	1,498 MT	1,468	16.26	195.40	10.36	24,357	292,709	-15,208
Generator Fuel	115 MT	113	21.00	195.40	0.00	24,357	292,709	0
Lube Oil	24 MT	23	13.25	195.40	0.00	1,828	20.126	0
Waste Oil	71 MT	69	8.00	195.40	0.00	114	3,713	0
Sewage	98 MT	96	24.00	230.50	0.00	2,304	22,128	0
Fresh Water S	118 MT	118	24.03	230.50	15.58	2,836	27,199	1,838
Fresh Water P	118 MT	118	24.03	230.50	15.58	2,836	27,199	-1,838
Ballast No.1 S	7,167 MT	0	9.58	34.36	15.83	0	0	0
Ballast No.1 P	7,167 MT	0	9.58	34.36	15.83	0	0	0
Ballast No.2 S	8,577 MT	0	8.72	76.30	17.47	0	0	0
Ballast No.2 P	8,577 MT	0	8.72	76.30	17.47	0	0	0
Ballast No.3 S	8,578 MT	0	8.72	120.50	17.47	0	0	0
Ballast No.3 P	8,578 MT	0	8.72	120.50	17.47	0	0	0
Ballast No.4 S	8,136 MT	0	9.08	163.98	17.22	0	0	0
Ballast No.4 P	8,136 MT	0	9.08	163.98	17.22	0	0	0
Ballast No.5 S	1,627 MT	0	10.47	192.08	16.35	0	0	0
Ballast No.5 P	1,627 MT	0	10.47	192.08	16.35	0	0	0
Aft Peak	6,597 MT	2,375	14.32	236.96	0.00	34,010	562,780	0
Forepeak	6,597 MT	0	15.15	6.82	0.00	0	0	0
		Weight (MT)	VCG (m)	LCG (m)	TCG (m)	VMOM (MT*m)	LMOM (MT*m)	TMOM (MT*m)
TOTALS (125K DWT)		125,932	,		,	2,448,502	17,042,705	0
TOTALS (125K DWT+Lightship)		153,915	18	135	-0.01	2,826,527	20,717,972	-2,052